Academic literature on the topic 'Cathodal tDCS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cathodal tDCS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cathodal tDCS"
Lang, Nicolas, Michael A. Nitsche, Michele Dileone, Paolo Mazzone, Javier De Andrés-Arés, Luis Diaz-Jara, Walter Paulus, Vincenzo Di Lazzaro, and Antonio Oliviero. "Transcranial direct current stimulation effects on I-wave activity in humans." Journal of Neurophysiology 105, no. 6 (June 2011): 2802–10. http://dx.doi.org/10.1152/jn.00617.2010.
Full textNejati, Vahid, Mohammad Ali Salehinejad, Michael A. Nitsche, Asal Najian, and Amir-Homayoun Javadi. "Transcranial Direct Current Stimulation Improves Executive Dysfunctions in ADHD: Implications for Inhibitory Control, Interference Control, Working Memory, and Cognitive Flexibility." Journal of Attention Disorders 24, no. 13 (September 22, 2017): 1928–43. http://dx.doi.org/10.1177/1087054717730611.
Full textDai, Wenjun, Yao Geng, Hao Liu, Chuan Guo, Wenxiang Chen, Jinhui Ma, Jinjin Chen, Yanbing Jia, Ying Shen, and Tong Wang. "Preconditioning with Cathodal High-Definition Transcranial Direct Current Stimulation Sensitizes the Primary Motor Cortex to Subsequent Intermittent Theta Burst Stimulation." Neural Plasticity 2021 (October 21, 2021): 1–8. http://dx.doi.org/10.1155/2021/8966584.
Full textSpielmann, K., R. van der Vliet, W. M. E. van de Sandt-Koenderman, M. A. Frens, G. M. Ribbers, R. W. Selles, S. van Vugt, J. N. van der Geest, and P. Holland. "Cerebellar Cathodal Transcranial Direct Stimulation and Performance on a Verb Generation Task: A Replication Study." Neural Plasticity 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/1254615.
Full textWang, Jiarui, Jinhua Tian, Renning Hao, Lili Tian, and Qiang Liu. "Transcranial direct current stimulation over the right DLPFC selectively modulates subprocesses in working memory." PeerJ 6 (May 28, 2018): e4906. http://dx.doi.org/10.7717/peerj.4906.
Full textPaquette, Caroline, Michael Sidel, Basia A. Radinska, Jean-Paul Soucy, and Alexander Thiel. "Bilateral Transcranial Direct Current Stimulation Modulates Activation-Induced Regional Blood Flow Changes during Voluntary Movement." Journal of Cerebral Blood Flow & Metabolism 31, no. 10 (May 11, 2011): 2086–95. http://dx.doi.org/10.1038/jcbfm.2011.72.
Full textValero-Cabré, Antoni, Clara Sanches, Juliette Godard, Oriane Fracchia, Bruno Dubois, Richard Levy, Dennis Q. Truong, Marom Bikson, and Marc Teichmann. "Language boosting by transcranial stimulation in progressive supranuclear palsy." Neurology 93, no. 6 (July 3, 2019): e537-e547. http://dx.doi.org/10.1212/wnl.0000000000007893.
Full textde Venecia, Angelito Braulio F., and Shane M. Fresnoza. "Visual Cortex Transcranial Direct Current Stimulation for Proliferative Diabetic Retinopathy Patients: A Double-Blinded Randomized Exploratory Trial." Brain Sciences 11, no. 2 (February 21, 2021): 270. http://dx.doi.org/10.3390/brainsci11020270.
Full textJahshan, Carol, Jonathan K. Wynn, Brian J. Roach, Daniel H. Mathalon, and Michael F. Green. "Effects of Transcranial Direct Current Stimulation on Visual Neuroplasticity in Schizophrenia." Clinical EEG and Neuroscience 51, no. 6 (May 28, 2020): 382–89. http://dx.doi.org/10.1177/1550059420925697.
Full textLiu, Hui-Hua, Xiao-Kuo He, Hsin-Yung Chen, Chih-Wei Peng, Alexander Rotenberg, Chi-Hung Juan, Yu-Cheng Pei, et al. "Neuromodulatory Effects of Transcranial Direct Current Stimulation on Motor Excitability in Rats." Neural Plasticity 2019 (December 17, 2019): 1–9. http://dx.doi.org/10.1155/2019/4252943.
Full textDissertations / Theses on the topic "Cathodal tDCS"
VAROLI, ERICA. "TMS-EEG: a promising tool to study the cathodal tDCS effects on cortical excitability." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/280669.
Full textTranscranial direct current stimulation (tDCS) is a non-invasive neuromodulatory technique able to induce plasticity-related alterations in neuronal excitability. There is a growing interest in the use of tDCS in both experimental and clinical settings; in particular, the chance to induce long-term effects fostered the used of the technique to treat cognitive impairments associated with different neuropsychological and psychiatric disorders. Although tDCS is increasingly used, presently little is still known about its neurophysiological underpinnings, particularly concerning the activity on the brain regions that underlie high cognitive brain functions. In these cases, optimal tDCS stimulation parameters also have yet to be clearly defined. A deeper understanding of the mechanisms underpinning this technique would be crucial to achieving a better refinement of stimulation protocols for clinical and research purposes. For this reason, a systematic and comprehensive study of its cortical effects acquires a critical relevance. In the last years, there has been indeed a keen interest in understanding the working mechanisms of this technique. To address this issue, in this project we explored the cortical plasticity modulation induced by cathodal stimulation on healthy subjects while resting or during task execution, using an integrated system of Transcranial Magnetic Stimulation and Electroencephalography (TMS-EEG), which allows to directly measure cortical excitability modulation all over the cortex and effective connectivity. In the first study, starting from the previous results with anodal tDCS, the effects of cathodal stimulation over the right Posterior Parietal Cortex (PPC) were explored during resting state. The contralateral homologue brain area, namely the left posterior parietal cortex (PPC), was targeted with TMS before, during, and after cathodal stimulation. In the second study, we explored the behavioural effects induced by the application of cathodal tDCS over right PPC during the execution of two tasks, one of visuospatial working memory and a second tapping visual attention reorienting, which are known to involve this brain area. The aim was to find tasks sensitive to the effect of cathodal tDCS over the right PCC, to be used in the third study. A disruption of the performance was found for the Posner Cueing Task. In the third study, we employed again TMS-EEG to track the neurophysiological effects of cathodal tDCS on right PPC at an active state, i.e. while the participants were performing the task tested on the second study. The results at resting state for cathodal tDCS, both at sensors and cortical sources levels, converge in showing no differences during and after tDCS compared to pre-stimulation sessions, both at a global and local level. The previous results with anodal tDCS, instead, reported a widespread rise of cortical excitability along with a bilateral frontoparietal network, following structural connections. On the other hand, at an active state, cathodal, as well as anodal, tDCS induced modulation of cortical excitability only in the task-relevant brain regions. Several significant findings emerged from this empirical work. First of all, these data highlight a non-linear impact of anodal and cathodal stimulation on cortical excitability at rest that is not depicted by the simplistic view of anodal-excitatory and cathodal-inhibitory effects. Another relevant point is the crucial role played by the different cortical states (resting vs active). These results seem to point out that the level of cortical state can contribute to modulate the tDCS effects, in line with “activity-selectivity” hypothesis. The level of cortical state needs to be taken into account, especially to observe neuromodulatory effects also with cathodal tDCS. All these findings hold relevant implications for tDCS setup in both cognitive neuroscience experiments and rehabilitation protocols.
Heyl, Franziska. "Die Wirksamkeit von repetitiver kathodaler transkranieller Gleichstromstimulation (rc-tDCS) des visuellen Kortex in der Prophylaxe der menstruellen Migräne." Doctoral thesis, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-12EF-A.
Full textKriener, Naomi. "Kathodale transkranielle Stromstimulation des visuellen Kortex als Verfahren zur prophylaktischen Behandlung der Migräne." Doctoral thesis, 2021. http://hdl.handle.net/21.11130/00-1735-0000-0005-15B4-8.
Full textWeidenmüller, Matthias. "Kathodale transkranielle Gleichstromstimulation (tDCS) bei Gitarristen mit fokaler Dystonie." Doctoral thesis, 2010. http://hdl.handle.net/11858/00-1735-0000-0006-B161-6.
Full textBook chapters on the topic "Cathodal tDCS"
Nejadgholi, I., T. Davidson, C. Blais, F. Tremblay, and M. Bolic. "Classification of responders versus non-responders to tDCS by analyzing voltage between anode and cathode during treatment session." In IFMBE Proceedings, 990–93. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19387-8_241.
Full textConference papers on the topic "Cathodal tDCS"
CHOWDHURY, ZARIF AHMED, DEWAN NAHIDUL ALAM, MD ABU FATTAH HOSSAIN BHUIYAN NAHID, MD ANISUR RAHMAN, and MOHAMMAD ZAVID PARVEZ. "Detection of Modulated Motor Cortex using Anodal and Cathodal TDCS based Neurofeedback." In 2020 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2020. http://dx.doi.org/10.1109/icmlc51923.2020.9469038.
Full textTakahashi, Marcela Tengler Carvalho, Paulo Rodrigo Bázan, Joana Bisol Balardin, Danielle de Sá Boasquevisque, Edson Amaro Júnior, and Adriana Bastos Conforto. "Effect of transcranial direct current stimulation in the first weeks after stroke: a preliminary study." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.252.
Full textLoreti, Eduardo Henrique, Viviane Cristina Tomaz Correa, Elaine Kakuta, Renan Gama de Oliveira, and Elisabete Castelon Konkiewitz. "Transcranial direct current stimulation in the treatment of pain in women with fibromyalgia: Randomized double-blind clinical trial." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.334.
Full text