Academic literature on the topic 'Catchment scale'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Catchment scale.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Catchment scale"

1

Troch, P. A., G. Carrillo, M. Sivapalan, T. Wagener, and K. Sawicz. "Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution." Hydrology and Earth System Sciences 17, no. 6 (June 18, 2013): 2209–17. http://dx.doi.org/10.5194/hess-17-2209-2013.

Full text
Abstract:
Abstract. Budyko (1974) postulated that long-term catchment water balance is controlled to first order by the available water and energy. This leads to the interesting question of how do landscape characteristics (soils, geology, vegetation) and climate properties (precipitation, potential evaporation, number of wet and dry days) interact at the catchment scale to produce such a simple and predictable outcome of hydrological partitioning? Here we use a physically-based hydrologic model separately parameterized in 12 US catchments across a climate gradient to decouple the impact of climate and landscape properties to gain insight into the role of climate-vegetation-soil interactions in long-term hydrologic partitioning. The 12 catchment models (with different paramterizations) are subjected to the 12 different climate forcings, resulting in 144 10 yr model simulations. The results are analyzed per catchment (one catchment model subjected to 12 climates) and per climate (one climate filtered by 12 different model parameterization), and compared to water balance predictions based on Budyko's hypothesis (E/P = ϕ (Ep/P); E: evaporation, P: precipitation, Ep: potential evaporation). We find significant anti-correlation between average deviations of the evaporation index (E/P) computed per catchment vs. per climate, compared to that predicted by Budyko. Catchments that on average produce more E/P have developed in climates that on average produce less E/P, when compared to Budyko's prediction. Water and energy seasonality could not explain these observations, confirming previous results reported by Potter et al. (2005). Next, we analyze which model (i.e., landscape filter) characteristics explain the catchment's tendency to produce more or less E/P. We find that the time scale that controls subsurface storage release explains the observed trend. This time scale combines several geomorphologic and hydraulic soil properties. Catchments with relatively longer subsurface storage release time scales produce significantly more E/P. Vegetation in these catchments have longer access to this additional groundwater source and thus are less prone to water stress. Further analysis reveals that climates that give rise to more (less) E/P are associated with catchments that have vegetation with less (more) efficient water use parameters. In particular, the climates with tendency to produce more E/P have catchments that have lower % root fraction and less light use efficiency. Our results suggest that their exists strong interactions between climate, vegetation and soil properties that lead to specific hydrologic partitioning at the catchment scale. This co-evolution of catchment vegetation and soils with climate needs to be further explored to improve our capabilities to predict hydrologic partitioning in ungauged basins.
APA, Harvard, Vancouver, ISO, and other styles
2

Troch, P. A., G. Carrillo, M. Sivapalan, T. Wagener, and K. Sawicz. "Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution." Hydrology and Earth System Sciences Discussions 10, no. 3 (March 7, 2013): 2927–54. http://dx.doi.org/10.5194/hessd-10-2927-2013.

Full text
Abstract:
Abstract. Catchment hydrologic partitioning, regional vegetation composition and soil properties are strongly affected by climate, but the effects of climate-vegetation-soil interactions on river basin water balance are still poorly understood. Here we use a physically-based hydrologic model separately parameterized in 12 US catchments across a climate gradient to decouple the impact of climate and landscape properties to gain insight into the role of climate-vegetation-soil interactions in long-term hydrologic partitioning. The 12 catchment models (with different parameterizations) are subjected to the 12 different climate forcings, resulting in 144 10-yr model simulations. The results are analyzed per catchment (one catchment model subjected to 12 climates) and per climate (one climate filtered by 12 different model parameterization), and compared to water balance predictions based on Budyko's hypothesis (E/P = φ (EP/P); E: evaporation, P: precipitation, EP: potential evaporation). We find significant anti-correlation between average deviations of the evaporation index (E/P) computed per catchment vs. per climate, compared to that predicted by Budyko. Catchments that on average produce more E/P have developed in climates that on average produce less E/P, when compared to Budyko's prediction. Water and energy seasonality could not explain these observations, confirming previous results reported by Potter et al. (2005). Next, we analyze which model (i.e., landscape filter) characteristics explain the catchment's tendency to produce more or less E/P. We find that the time scale that controls perched aquifer storage release explains the observed trend. This time scale combines several geomorphologic and hydraulic soil properties. Catchments with relatively longer aquifer storage release time scales produce significantly more E/P. Vegetation in these catchments have longer access to this additional groundwater source and thus are less prone to water stress. Further analysis reveals that climates that give rise to more (less) E/P are associated with catchments that have vegetation with less (more) efficient water use parameters. In particular, the climates with tendency to produce more E/P have catchments that have lower % root fraction and less light use efficiency. Our results suggest that there exists strong interactions between climate, vegetation and soil properties that lead to specific hydrologic partitioning at the catchment scale. This co-evolution of catchment vegetation and soils with climate needs to be further explored to improve our capabilities to predict hydrologic partitioning in ungaged basins.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Qiaoling, Zhijia Li, Yuelong Zhu, Yuanqian Deng, Ke Zhang, and Cheng Yao. "Hydrological regionalisation based on available hydrological information for runoff prediction at catchment scale." Proceedings of the International Association of Hydrological Sciences 379 (June 5, 2018): 13–19. http://dx.doi.org/10.5194/piahs-379-13-2018.

Full text
Abstract:
Abstract. Regionalisation provides a way of transferring hydrological information from gauged to ungauged catchments. The past few decades has seen several kinds of regionalisation approaches for catchment classification and runoff predictions. The underlying assumption is that catchments having similar catchment properties are hydrological similar. This requires the appropriate selection of catchment properties, particularly the inclusion of observed hydrological information, to explain the similarity of hydrological behaviour. We selected observable catchments properties and flow duration curves to reflect the hydrological behaviour, and to regionalize rainfall-runoff response for runoff prediction. As a case study, we investigated 15 catchments located in the Yangtze and Yellow River under multiple hydro-climatic conditions. A clustering scheme was developed to separate the catchments into 4 homogeneous regions by employing catchment properties including hydro-climatic attributes, topographic attributes and land cover etc. We utilized daily flow duration curves as the indicator of hydrological response and interpreted hydrological similarity by root mean square errors. The combined analysis of similarity in catchment properties and hydrological response suggested that catchments in the same homogenous region were hydrological similar. A further validation was conducted by establishing a rainfall-runoff coaxial correlation diagram for each catchment. A common coaxial correlation diagram was generated for each homogenous region. The performances of most coaxial correlation diagrams met the national standard. The coaxial correlation diagram can be transferred within the homogeneous region for runoff prediction in ungauged catchments at an hourly time scale.
APA, Harvard, Vancouver, ISO, and other styles
4

Wilson, Henry F., and Marguerite A. Xenopoulos. "Landscape influences on stream fish assemblages across spatial scales in a northern Great Plains ecoregion." Canadian Journal of Fisheries and Aquatic Sciences 65, no. 2 (February 1, 2008): 245–57. http://dx.doi.org/10.1139/f07-165.

Full text
Abstract:
We examined the relationship between multiple spatial scales of fish assemblage structure and land cover in streams of a northern Great Plains ecoregion. We used regional richness measurements, an index of biotic integrity (IBI), and nonmetric multidimensional scaling (NMS) ordination to characterize fish assemblages. These metrics were related to regional catchment landscape at two spatial scales (overall catchment, overall riparian) and then to a set of local subcatchments from within these catchments at three scales (overall subcatchment, overall riparian buffer, and reach). Relationships between catchment fish richness, IBI scores, and landscape predictors were strongest at the riparian scale, with the strongest single predictor being riparian forest (r2 = 0.63, P < 0.01). NMS ordination analysis showed clear similarities between fish species assemblages in agriculturally dominated catchments and assemblages found in smaller headwater streams. At the same time, forested catchments and catchments with larger areas exhibited similar fish species assemblages. Our results indicate that both local and regional stream fish assemblages are structured by broader-scale landscape characteristics, with land cover providing a better indication of overall available habitat volume than catchment area or stream order.
APA, Harvard, Vancouver, ISO, and other styles
5

Donnelly, Chantal, Jörgen Rosberg, and Kristina Isberg. "A validation of river routing networks for catchment modelling from small to large scales." Hydrology Research 44, no. 5 (October 27, 2012): 917–25. http://dx.doi.org/10.2166/nh.2012.341.

Full text
Abstract:
Underpinning all hydrological simulations is an estimate of the catchment area upstream of a point of interest. Locally, the delineation of a catchment and estimation of its area is usually done using fine scale maps and local knowledge, but for large-scale hydrological modelling, particularly continental and global scale modelling, this level of detailed data analysis is not practical. For large-scale hydrological modelling, remotely sensed and hydrologically conditioned river routing networks, such as HYDRO1k and HydroSHEDS, are often used. This study evaluates the accuracy of the accumulated upstream area in each gridpoint given by the networks. This is useful for evaluating the ability of these data sets to delineate catchments of varying scale for use in hydrological models. It is shown that the higher resolution HydroSHEDS data set gives better results than the HYDRO1k data set and that accuracy decreases with decreasing basin scale. In ungauged basins, or where other local catchment area data are not available, the validation made in this study can be used to indicate the likelihood of correctly delineating catchments of different scales using these river routing networks.
APA, Harvard, Vancouver, ISO, and other styles
6

Yillia, P. T., and N. Kreuzinger. "Net flux of pollutants at a reduced spatial scale - an index of catchment vulnerability." Water Science and Technology 59, no. 1 (January 1, 2009): 109–16. http://dx.doi.org/10.2166/wst.2009.568.

Full text
Abstract:
Emissions and riverine loads of pollutants were estimated for five sub-catchments in the Njoro River Catchment, Kenya to isolate specific areas for interim pollution management. The most vulnerable sub-catchments were the densely settled and heavily farmed areas around Egerton University and Njoro Township with the restricted area between them demonstrating a remarkable potential to retain/remove most of the pollution emitted in the Egerton University area. The least vulnerable sub-catchment was the predominantly forested Upper Njoro River Catchment whereas the recently settled and increasingly farmed Lower Little Shuru was moderately vulnerability. The method provided a scientific framework for the rapid assessment of catchment vulnerability to prioritize areas for remediation.
APA, Harvard, Vancouver, ISO, and other styles
7

van der Velde, Y., J. C. Rozemeijer, G. H. de Rooij, F. C. van Geer, P. J. J. F. Torfs, and P. G. B. de Louw. "Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads." Hydrology and Earth System Sciences Discussions 7, no. 5 (October 26, 2010): 8427–77. http://dx.doi.org/10.5194/hessd-7-8427-2010.

Full text
Abstract:
Abstract. Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale discharge and nitrate loads. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD) curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2) and simple process descriptions were applied to relate the groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from hydrographs of two nested catchments (0.4 and 6.5 km2). The estimated contribution of tube drain effluent (a dominant source for nitrates) decreased with increasing scale from 76–79% at the field-site to 34–61% and 25–50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements simulates better nitrate loads and better predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.
APA, Harvard, Vancouver, ISO, and other styles
8

Vogt, E., C. F. Braban, U. Dragosits, M. R. Theobald, M. F. Billett, A. J. Dore, Y. S. Tang, et al. "Estimation of nitrogen budgets for contrasting catchments at the landscape scale." Biogeosciences Discussions 9, no. 7 (July 23, 2012): 8989–9028. http://dx.doi.org/10.5194/bgd-9-8989-2012.

Full text
Abstract:
Abstract. A comprehensive assessment of nitrogen (N) flows at the landscape scale is fundamental to understand spatial interactions in the N cascade and to inform the development of locally optimised N management strategies. To explore this interactions, complete N budgets were estimated for two contrasting hydrological catchments (dominated by agricultural grassland vs. semi-natural peat-dominated moorland), forming part of an intensively studied landscape in southern Scotland. Local scale atmospheric dispersion modelling and detailed farm and field inventories provided high resolution estimations of input fluxes. Agricultural inputs (i.e. grazing excreta, organic and synthetic fertiliser) accounted for most of the catchment N inputs with 80% in the grassland and 57% in the moorland catchment, while atmospheric deposition made a significant contribution, particularly in the moorland catchment with 38% of the N inputs. The estimated catchment N budgets highlighted areas of key uncertainty, particularly N2 emissions from denitrification and stream N export. The resulting N balances suggest that the study catchments have a limited capacity to store N within soils, vegetation and groundwater. The "catchment N retention", i.e. the amount of N which is either stored within the catchment or lost through atmospheric emissions, was estimated to be 3% of the net anthropogenic input in the moorland and 55% in the grassland catchment. These values contrast with regional scale estimates: catchment retentions of net anthropogenic input estimated within Europe at the regional scale range from 50% to 90% with an average of 82% (Billen et al., 2011). This study emphasises the need for detailed budget analyses to identify the N status of European landscapes.
APA, Harvard, Vancouver, ISO, and other styles
9

Vogt, E., C. F. Braban, U. Dragosits, M. R. Theobald, M. F. Billett, A. J. Dore, Y. S. Tang, et al. "Estimation of nitrogen budgets for contrasting catchments at the landscape scale." Biogeosciences 10, no. 1 (January 9, 2013): 119–33. http://dx.doi.org/10.5194/bg-10-119-2013.

Full text
Abstract:
Abstract. A comprehensive assessment of nitrogen (N) flows at the landscape scale is fundamental to understand spatial interactions in the N cascade and to inform the development of locally optimised N management strategies. To explore these interactions, complete N budgets were estimated for two contrasting hydrological catchments (dominated by agricultural grassland vs. semi-natural peat-dominated moorland), forming part of an intensively studied landscape in southern Scotland. Local scale atmospheric dispersion modelling and detailed farm and field inventories provided high resolution estimations of input fluxes. Direct agricultural inputs (i.e. grazing excreta, N2 fixation, organic and synthetic fertiliser) accounted for most of the catchment N inputs, representing 82% in the grassland and 62% in the moorland catchment, while atmospheric deposition made a significant contribution, particularly in the moorland catchment, contributing 38% of the N inputs. The estimated catchment N budgets highlighted areas of key uncertainty, particularly N2 exchange and stream N export. The resulting N balances suggest that the study catchments have a limited capacity to store N within soils, vegetation and groundwater. The "catchment N retention", i.e. the amount of N which is either stored within the catchment or lost through atmospheric emissions, was estimated to be 13% of the net anthropogenic input in the moorland and 61% in the grassland catchment. These values contrast with regional scale estimates: Catchment retentions of net anthropogenic input estimated within Europe at the regional scale range from 50% to 90%, with an average of 82% (Billen et al., 2011). This study emphasises the need for detailed budget analyses to identify the N status of European landscapes.
APA, Harvard, Vancouver, ISO, and other styles
10

Carroll, C., K. Rohde, G. Millar, C. Dougall, S. Stevens, R. Ritchie, and S. Lewis. "Neighbourhood catchments: a new approach for achieving ownership and change in catchment and stream management." Water Science and Technology 45, no. 11 (June 1, 2002): 185–91. http://dx.doi.org/10.2166/wst.2002.0394.

Full text
Abstract:
The Neighbourhood Catchment approach integrates land and stream management practices at a property and through to a local catchment scale, links production and environmental goals, and is a building block to achieve ownership and change at a sub-catchment scale and larger. Research conducted in two 'focus' Neighbourhood Catchments has shown that land management practices that retain &gt;30% soil cover reduce sediment movement to streams. The Neighbourhood Catchment approach engages both early and cautious adopters, and enables continuous improvement of resource management to take place, and be recorded at an individual property and local catchment scale.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Catchment scale"

1

Zanardo, Stefano. "Catchment-scale transport phenomena: rainfall intermittency, age of runoff, anthropic catchment management." Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3427400.

Full text
Abstract:
Complexity of transport phenomena at the catchment scale arises from the interconnection of several processes over a range of spatial and temporal scales. The hydrologic and biogeochemical response of catchments is produced by the highly non-linear interaction between meteorological forcing, landscape heterogeneity, and human activity. As a result, a simple experimental analysis does not give significant insight into the processes involved and exploring such phenomena is a challenging task. Nevertheless, investigating these processes is important in order to evaluate the dominant controls on catchment-scale mechanisms as well as predict the response of the systems to human activities and climate-related perturbations. This is particularly relevant in changing environments, where a deep understanding of the systems is critical for a proper management of landscape and water resources. This thesis aims at exploring catchment-scale transport phenomena by applying novel modeling tools to relevant case studies. Both deterministic and probabilistic approaches are followed, as the latter are required by the random nature physical processes whereas the former allow for the analysis of the systems under certain, well defined conditions. Model evaluations are supported by robust analyses of extensive datasets, whose purpose is not simply to validate the approaches but rather to provide further insight into the processes. Long term effects of hydrologic fluctuations are captured by stochastic models in terms of steady state statistical distributions of relevant physical quantities. This modeling approach provides a causal relationship between daily rainfall random fluctuations and daily stream flow variability, this, in turn, relates to the variability of stream stage, and in-stream nutrients removal. The stochastic approach is further extended to evaluate the effect of the daily variability of precipitation on the inter-annual variability of water balance. The application of the model to a large amount of experimental catchment across the United States shows how there exist regions where the daily variability of water partitioning is the major control on inter-annual variability of water balance, and regions where the inter-annual variability arises from controls other than the simple scaling-up of short term processes. A deterministic approach, namely Mass Response Function (MRF), is used to evaluate the effect of soil heterogeneities, as well as the effect of water-mixing mechanisms on the hydrologic and biogeochemical response of catchments. The main idea underlying this framework is that the evolution of solute and water pulses moving within the soil largely depends on their residence time. The application of the MRF model to a tracer study on nitrates and lithium suggests that runoff is composed by a collection of water particles with a mixture of ages and that, in this case, the effect of unmixed preferential flow can be ruled out. The MRF is then coupled with a `source zone' model suitable to describe pesticides release from the top soil layer in intensively managed catchments. This additional module proves necessary to properly simulate the pesticides transport mechanisms. The application of the model to a decade-long water-quality monitoring dataset suggests that the prediction of the agro-chemical response requires an accurate knowledge of the management practices. In particular, the interval between the occurrence of large rainfall events and the pesticide application dates seems to constitute the main control on the pesticide release dynamics. These considerations are of particular interest when modeling pesticides as they are exclusively of anthropic origin. Whereas, when considering other types contaminant such as nutrients, the anthropic component may be clouded by the effect of chemical soil production.
La complessità dei fenomeni di trasporto alla scala di bacino deriva dall'interconnessione di diversi processi su diverse scale temporali e spaziali. La risposta idrologica e biogeochimica dei bacini è il prodotto di interazioni altamente non lineari tra le forzanti meteorologiche, le eterogeneità del territorio e le attività umane. Di conseguenza, semplici analisi sperimentali non permettono un'adeguata comprensione dei processi coinvolti, e l'analisi di questi fenomeni rappresenta un obiettivo ambizioso. Tuttavia, l'esplorazione di questi processi è importante per valutare i controlli dominanti su meccanismi di trasporto alla scala di bacino e predirne la risposta idrologica e biogeochimica a perturbazioni climatiche ed alla gestione del territorio. Questo è particolarmente importante nel caso di ecosistemi in cambiamento, dove una profonda comprensione dei processi è fondamentale per una corretta gestione del territorio e delle risorse idriche. Lo scopo di questa tesi è l'analisi di fenomeni di trasporto alla scala di bacino attraverso l'applicazione di nuovi approcci modellistici a casi studio di interesse. A questo scopo si è utilizzato sia un approccio probabilistico sia un approccio deterministico: il primo richiesto dalla natura casuale di numerosi processi fisici coinvolti, il secondo necessario per analizzare le dinamiche sotto condizioni ben definite. Lo studio è supportato da una robusta analisi dei dati disponibili, il cui scopo non è semplicemente quello di validare i modelli ma piuttosto di fornire una comprensione più approfondita delle dinamiche in gioco. Gli effetti di fluttuazioni idrologiche nel lungo termine sono simulati attraverso distribuzioni di probabilità stazionarie relative a grandezze fisiche rilevanti. Questo approccio modellistico fornisce una relazione causale tra la fluttuazione giornaliera della pioggia e la fluttuazione giornaliera dei deflussi, la quale, a sua volta, è messa in relazione con l'atezza di moto nei corsi d'acqua ed infine con i processi rimozione di nutrienti nelle reti idrografiche. Tale approccio stocastico è successivamente utilizzato per valutare l'effetto delle fluttuazioni giornaliere delle precipitazioni sulla variabilità inter-annuale del bilancio idrico alla scala di bacino. L'applicazione del modello ad un esteso numero di bacini sperimentali, distribuiti sul territorio degli Stati Uniti, mostra come esistano alcune regioni dove le fluttuazioni della pioggia giornaliera rappresentano il controllo principale sulla la variabilità inter-annuale del bilancio idrico, ed altre regioni dove questa variabilità è determinata da altri processi che non necessariamente avvengono alla scala giornaliera. Un modello deterministico, detto Mass Response Function (MRF), è utilizzato per valutare l'effetto delle eterogeneità del suolo e dei meccanismi di mescolamento sulla risposta idrologica e biogeochimica dei bacini. Il concetto principale che caratterizza questo approccio si basa sull'assunzione che l'evoluzione degli impulsi di acqua e soluti che si muovono nel suolo sia prevalentemente governata dal relativo tempo di residenza. L'applicazione del modello MRF ad uno studio di traccianti effettuato utilizzando nitrati e litio suggerisce che i deflussi sono composti da un insieme di impulsi aventi differenti età e che, almeno nel caso in esame, l'effetto di flussi preferenziali non mescolati può essere trascurato. Il modello MRF è stato successivamente accoppiato con un modello detto `source zone' atto a simulare il rilascio di pesticidi dallo strato superficiale del suolo in bacini intensamente antropizzati. L'aggiunta di questo secondo modello si è dimostrata necessaria per rappresentare accuratamente le dinamiche di trasporto dei pesticidi. L'applicazione ad un caso di studio sperimentale suggerisce come la previsione della risposta agro-chimica richieda un'accurata conoscenza della pratiche agricole utilizzate. In particolare, l'intervallo tra la data di applicazione dei pesticidi e i primi eventi di pioggia successivi sembra costituire il fattore principale nelle dinamiche di rilascio di contaminanti. Queste considerazioni sono di particolare interesse nella modellazione dei pesticidi in quanto di origine esclusivamente antropica. Nel caso invece della modellazione contaminanti quali i nutrienti, la componente antropica può venire oscurata dalla produzione chimica del suolo.
APA, Harvard, Vancouver, ISO, and other styles
2

Newham, Lachlan Thomas Hopkins, and lachlan newham@anu edu au. "Catchment Scale Modelling of Water Quality and Quantity." The Australian National University. Centre for Resource and Environmental Studies, 2002. http://thesis.anu.edu.au./public/adt-ANU20050919.144548.

Full text
Abstract:
Appropriately constructed pollutant export models can help set management priorities for catchments, identify critical pollutant source areas, and are important tools for developing and evaluating economically viable ways of minimising surface water pollution.¶ This thesis presents a comparison, an evaluation and an integration of models for predicting the export of environmental pollutants, in particular sediment, through river systems. A review of the capabilities and limitations of current water quality modelling approaches is made. Several water quality and quantity modelling approaches are applied and evaluated in the catchment of the upper Murrumbidgee River.¶ The IHACRES rainfall-runoff model and a simple hydrologic routing model are applied with the aim of developing a capacity to predict streamflow at various catchment scales and to enable integration with other pollutant load estimation techniques. Methods for calculating pollutant loads from observed pollutant concentration and modelled streamflow data are also investigated. Sediment export is estimated using these methods over a 10-year period for two case study subcatchments. Approaches for water quality sampling are discussed and a novel monitoring program using rising stage siphon samplers is presented. Results from a refinement of the Sediment River Network model in the upper Murrumbidgee catchment (SedNet-UM) are presented. The model provides a capacity to quantify sediment source, transport and to simulate the effects of management change in the catchment. The investigation of the model includes rigorous examination of the behaviour of the model through sensitivity assessment and comparison with other sediment modelling studies. The major conclusion reached through sensitivity assessment was that the outputs of the model are most sensitive to perturbation of the hydrologic parameters of the model.¶ The SedNet-UM application demonstrates that it is possible to construct stream pollutant models that assist in prioritising management across catchment scales. It can be concluded that SedNet and similar variants have much potential to address common resource management issues requiring the identification of the source, propagation and fate of environmental pollutants. In addition, incorporating the strengths of a conceptual rainfall-runoff model and the semi-distributed SedNet model has been identified as very useful for the future prediction of environmental pollutant export.
APA, Harvard, Vancouver, ISO, and other styles
3

Diamantini, Elena. "Catchment scale modelling of micro and emerging pollutants." Doctoral thesis, Università degli studi di Trento, 2018. https://hdl.handle.net/11572/368591.

Full text
Abstract:
The fate and transport of solutes introduced into a watershed and sampled at the catchment outlet depends on many environmental, chemical and hydro-climatological forces.Moreover, if the solutes are micro and emerging pollutants (i.e. pharmaceuticals), which are non-regulated contaminants not routinely monitored but often-detected in fresh waters, the description of the transport sources and routes becomes an interesting and challenging topic to investigate and describe, especially in conjunction with the well-known travel time transport approach at the catchment-scale. In fact, with the travel time approach to pharmaceuticals represents a framework that allows dealing in a unitary and simple way the main two mitigation mechanisms controlling them, which are dilution and biological decay. Moreover, possible consequences on the health of humans and of aquatic organisms have become issue of increasing concern by the scientific community worldwide. The topics have been extensively studied in the last decades, with some recent benchmark contributions. Nevertheless, there is still room for further development for emerging contaminant models and there is still the necessity of complementing the applications with measured data. This doctoral thesis aimed at contributing with new insights into the multi-faceted aspects of solute transport at catchment-scale, proposing novel solutions, with applications to real-world case studies and including a detailed description of the major aspects that influence the water quality dynamics in rivers. The thesis is divided into three interconnected and chronological subsequent parts. In the first part, a detailed description of three large European river basins are presented (i.e. Adige, Ebro and Sava), believing that an accurate analysis of existing information is therefore useful and necessary to identify stressors that may act in synergy and to design new field campaigns. In addition, a detailed data analysis of the main water quality variables is presented: advanced statistical analyses (i.e. Spearman rank correlation, Principal Component Analysis, andMann-Kendall trend tests) were applied to long-term time series of water quality data both in the Adige River Basin and in the Ebro and Sava catchments, aiming at providing an integrated and comparative analysis of recent trends, in order to investigate the relationships between water quality parameters and the main factors controlling them (i.e. climate change, streamflow, land use, population) in the Mediterranean region. These catchments are included into the EU project “Globaqua †, dealing with the analysis of the combined effect of several stressors on the freshwater ecosystems inMediterranean rivers. In fact, little attention has been paid to linkages between long-term trends in climate, streamflow and water quality in European basins; nevertheless, such analysis can represent, complementary to a deep knowledge of the investigated systems, a reliable tool for decision makers in river basin planning by providing a reliable estimate of the impacts on the aquatic ecosystem of the studied basins. In the second part, sampling campaigns performed in our study basin, the Adige catchment, are presented in detail. Special attention is also given to emerging pollutants, whose study on the occurrence patterns and spatiotemporal variability in the Adige River Basin has been conducted in conjunction with population patterns and touristic fluxes. In the third and last part, novel theoretical solutions of the well-known advection-dispersion-reaction (ADR) equation are presented. The theory was developed for both general water quality variables and pharmaceuticals, evidencing differences and analysing the main factors that influence water quality dynamics. An application is also proposed to the Adige catchment.
APA, Harvard, Vancouver, ISO, and other styles
4

Diamantini, Elena. "Catchment scale modelling of micro and emerging pollutants." Doctoral thesis, University of Trento, 2018. http://eprints-phd.biblio.unitn.it/2870/1/Tesi_PhD_Diamantini_definitiva.pdf.

Full text
Abstract:
The fate and transport of solutes introduced into a watershed and sampled at the catchment outlet depends on many environmental, chemical and hydro-climatological forces.Moreover, if the solutes are micro and emerging pollutants (i.e. pharmaceuticals), which are non-regulated contaminants not routinely monitored but often-detected in fresh waters, the description of the transport sources and routes becomes an interesting and challenging topic to investigate and describe, especially in conjunction with the well-known travel time transport approach at the catchment-scale. In fact, with the travel time approach to pharmaceuticals represents a framework that allows dealing in a unitary and simple way the main two mitigation mechanisms controlling them, which are dilution and biological decay. Moreover, possible consequences on the health of humans and of aquatic organisms have become issue of increasing concern by the scientific community worldwide. The topics have been extensively studied in the last decades, with some recent benchmark contributions. Nevertheless, there is still room for further development for emerging contaminant models and there is still the necessity of complementing the applications with measured data. This doctoral thesis aimed at contributing with new insights into the multi-faceted aspects of solute transport at catchment-scale, proposing novel solutions, with applications to real-world case studies and including a detailed description of the major aspects that influence the water quality dynamics in rivers. The thesis is divided into three interconnected and chronological subsequent parts. In the first part, a detailed description of three large European river basins are presented (i.e. Adige, Ebro and Sava), believing that an accurate analysis of existing information is therefore useful and necessary to identify stressors that may act in synergy and to design new field campaigns. In addition, a detailed data analysis of the main water quality variables is presented: advanced statistical analyses (i.e. Spearman rank correlation, Principal Component Analysis, andMann-Kendall trend tests) were applied to long-term time series of water quality data both in the Adige River Basin and in the Ebro and Sava catchments, aiming at providing an integrated and comparative analysis of recent trends, in order to investigate the relationships between water quality parameters and the main factors controlling them (i.e. climate change, streamflow, land use, population) in the Mediterranean region. These catchments are included into the EU project “Globaqua ”, dealing with the analysis of the combined effect of several stressors on the freshwater ecosystems inMediterranean rivers. In fact, little attention has been paid to linkages between long-term trends in climate, streamflow and water quality in European basins; nevertheless, such analysis can represent, complementary to a deep knowledge of the investigated systems, a reliable tool for decision makers in river basin planning by providing a reliable estimate of the impacts on the aquatic ecosystem of the studied basins. In the second part, sampling campaigns performed in our study basin, the Adige catchment, are presented in detail. Special attention is also given to emerging pollutants, whose study on the occurrence patterns and spatiotemporal variability in the Adige River Basin has been conducted in conjunction with population patterns and touristic fluxes. In the third and last part, novel theoretical solutions of the well-known advection-dispersion-reaction (ADR) equation are presented. The theory was developed for both general water quality variables and pharmaceuticals, evidencing differences and analysing the main factors that influence water quality dynamics. An application is also proposed to the Adige catchment.
APA, Harvard, Vancouver, ISO, and other styles
5

Higgins, David Ian. "Catchment scale influences on brown trout fry populations in the Upper Ure catchment, North Yorkshire." Thesis, Durham University, 2011. http://etheses.dur.ac.uk/3571/.

Full text
Abstract:
A multi-scale approach for restoration site selection is presented and applied to an upland catchment, the River Ure, North Yorkshire. Traditional survey methods, advances in remote sensing, Geographical Information Systems (GIS) and risk-based fine sediment modelling using the SCIMAP module are combined to gather data at the catchment-scale through to the in-stream habitat-scale. The data gathered have been assessed against spatially distributed brown trout fry populations using Pearson’s correlation and multiple stepwise regressions. Fine sediment was shown to have a positive correlation with fry populations when upland drainage channels (grips) were added to the SCIMAP model. This suggests risk from peatland drainage is realised further down the catchment where eroded sediments are deposited. Farm-scale SCIMAP modelling was tested against farmers’ knowledge with variable results. It appears there is a cultural response to risk developed over generations. Management of meadows and pasture land through sub-surface drainage and stock rotation resulted in the risk being negated or re-routed across the holding. At other locations apparently low-risk zones become risky through less sensitive farming methods. This multi-scale approach reveals that the largest impacts on brown trout recruitment operate at the habitat-adjacent scale in tributaries with small upstream areas. The results show a hierarchy of impact, and risk-filters, arising from different intensity land management. This offers potential for targeted restoration site selection. In low-order streams it seems that restoration measures which exclude livestock, and provide bankside shading, can be effective. At such sites the catchment-scale shows a reduced signal on in-stream biota. Thus, brown trout stocks could be significantly enhanced by targeting restoration at riffle-habitat zones and adjacent land in order to disconnect the stream from farm-derived impacts and through adding structure to the stream channel.
APA, Harvard, Vancouver, ISO, and other styles
6

Parker, Chris. "Quantifying catchment-scale coarse sediment dynamics in British rivers." Thesis, University of Nottingham, 2010. http://eprints.nottingham.ac.uk/11980/.

Full text
Abstract:
It has become increasingly clear that river channel sediment dynamics must be taken into account within British flood risk management because changes in channel morphology resulting from sediment transfer can have an impact on channel flood capacity. It is also recognised that an understanding of catchment-scale sediment dynamics is desirable with respect to many other aspects of river management. However, despite this recognition, application of existing approaches that account for coarse sediment dynamics has been limited within British river management. Based on these considerations, this study aims to develop and substantiate a new approach that quantitatively accounts for catchment-scale coarse sediment dynamics in British rivers. These research efforts contribute to the activity of the Flood Risk Management Research Consortium (http://www.floodrisk.org.uk/) A review of the availability and accuracy of data sources useful to considerations of coarse sediment dynamics reveals that only discharge, channel slope, and channel width can be represented widely at the catchment-scale. As a result, none of the approaches currently available to account for coarse sediment dynamics were found to be both scientifically robust and practically applicable at the catchment-scale. This leads to the conclusion that the most suitable approach to account for coarse sediment dynamics at the catchment-scale in British rivers is a reach-based sediment balance model, using no more than slope, width and discharge data. A new reach-based sediment balance model, ST:REAM (Sediment Transport: Reach Equilibrium Assessment Method), is developed. It has several unique features including: representation of the entire catchment network; automatic delineation of the catchment network into functional reaches using a zonation algorithm; application of a new general formula for the prediction of bed surface material transport rate; and adoption of an assumption that makes it unnecessary to collect bed material size data. The outputs from ST:REAM are in the form of predicted Capacity Supply Ratios which compare the annual mass of sediment predicted to enter a reach with the annual mass of sediment predicted to leave it. Initial assessment of ST:REAM using two test catchments shows that it can produce a reasonable representation of observed, broad-scale sediment dynamics. The accuracy of its predictions decreases when attempting to incorporate downstream variability in bed material size into the model, and scale issues are encountered when attempting to increase the resolution at which reaches are identified by the zonation algorithm. ST:REAM has many potential applications within river management, but it is of most value when providing a broad-scale picture of predicted reach sediment balances throughout the drainage network. As well as the practical applications of ST:REAM, the research contained within this thesis has important theoretical implications, relating both to the insights it provides on catchment-scale sediment dynamics in particular and methodological and foundational developments in the field of sediment studies more generally. Online version lacks Appendices, which were submitted on CD-ROM accompanying printed version.
APA, Harvard, Vancouver, ISO, and other styles
7

Pattison, Ian. "Rural land management impacts on catchment scale flood risk." Thesis, Durham University, 2010. http://etheses.dur.ac.uk/531/.

Full text
Abstract:
This thesis examines the relationship between rural land management and downstream flood risk. The recent increase in flood frequency and magnitude has been hypothesised to have been caused by either climate change or land management. The theoretical basis for why these factors might increase flood risk is well known, but showing their impact on downstream flood risk remains a challenge. Field scale studies have found that changing land management practices does affect local runoff and streamflow. Upscaling these effects to the catchment scale continues to be problematic,both conceptually and, more importantly, methodologically. Conceptually, upscaling is critical. As land management may impact upon the relative timing as well as the magnitude of runoff, any changes in land management practice may lead to changes in the synchronisation of tributaries flows, either reducing or increasing downstream flood risk. Methodologically, understanding this effect requires capturing the spatial resolution associated with field-scale hydrological processes simultaneously with the upscaling of these processes to the downstream locations where flood risk is of concern. Most approaches to this problem aim to upscale from individual grid cells to whole catchments, something that restricts the complexity of possible process representation,produces models that may not be parsimonious with the data needed to calibrate them and, faced with data uncertainties, provides computational limitations on the extent to which model uncertainty can be fully explored. Rather than upscaling to problems of concern, this thesis seeks to downscale from locations of known flood risk, as a means of identifying where land use management changes might be beneficial and then uses numerical modelling to identify the kinds of management changes required in those downscaled locations. Thus, the aim of this thesis is to test an approach to understanding the impacts of rural land management upon flood risk based upon catchment-to-source downscaling. This thesis uses the case study of the River Eden catchment (2400 km2) as a test case. Firstly the downstream flood risk problem was assessed using both gauged data and documentary evidence to investigate the historical flood record. This found the last decade does not differ significantly from previous flood rich periods, which were defined as 1) 1873-1904; 2) 1923-1933; and 3) 1994-present. Second, the potential causes of floods within the catchment were investigated; firstly climate variability was assessed using Lamb weather types, which found that five weather types were responsible for causing 90% of the floods in the last 30 years. Third, spatial downscaling of catchment-scale flood risk was undertaken using two methods; databased statistical analysis; and hydraulic modelling. Both approaches consider the magnitudes and the timing of the flows from each major sub-catchment. The statistical approach involved a principal components analysis to simplify the complex subcatchment interactions and a stepwise regression to predict downstream flood risk. The hydraulic modelling approach used iSIS-Flow to undertake a series of numerical experiments, where the input hydrographs from each tributary were shifted individually and the effect on downstream peak stage assessed. Both these approaches found that the Upper Eden and Eamont sub-catchments were the most important in explaining downstream flood risk. The Eamont sub-catchment was chosen for future analysis as:(1) it was shown to have a significant impact on downstream flood risk; and (2) it had range of data and information needed for modelling land use changes. The second part of this thesis explored the land management scenarios that could be used to reduce flood risk at the catchment scale. The scenarios to be tested were determined through a stakeholder participation approach, whereby workshops were held to brainstorm and prioritise land management options, and then to identify specific locations within the Eamont sub-catchment where they could tested. There were two main types of land management scenarios chosen: (1) landscape-scale changes,including afforestation and compaction; and (2) channel modification and floodplain storage scenarios, including flood bank removal and wet woodland creation. The hydrological model CRUM3 was used to test the catchment scale land use changes,while the hydraulic model iSIS-Flow was used to test the channel and floodplain scenarios. It was found that through changing the whole of a small sub-catchment(Dacre Beck), the scenarios of reducing compaction and arabilisation could reduce catchment scale (2400 km2) flood risk by up to 3.5% for a 1 in 175 year flood event(January 2005). Changing localised floodplain roughness reduced sub-catchment (Lowther) peak stage by up to 0.134 m. This impact diminished to hardly any effect on peak flow magnitudes at the sub-catchment scale (Eamont). However, these scenarios caused a delay of the flood peak by up to 5 hours at the sub-catchment scale, which has been found to reduce peak stage at Carlisle by between 0.167 m to 0.232 m, corresponding to a 5.8% decrease in peak discharge. A key conclusion is that land management practices have been shown to have an effect on catchment scale flooding, even for extreme flood events. However, the effect of land management scenarios are both spatially and temporally dependent i.e. the same land management practice has different effects depending on where it is implemented, and when implemented in the same location has different effects on different flood events.
APA, Harvard, Vancouver, ISO, and other styles
8

Kernan, Martin Richard. "Predicting surface water critical loads at the catchment scale." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298825.

Full text
Abstract:
Current applications of the critical loads concept are geared primarily towards targeting emission control strategies at a national and international level. In the UK maps of critical loads for freshwaters are available at 10km2 resolution based on a single representative site in each grid square. These maps do not take variations of water chemistry within mapping units into account and are therefore of limited use for application to non-mapped sites. This thesis describes the development of an empirical statistical model, which uses nationally available secondary data, to predict freshwater critical loads for catchments lacking the appropriate water chemistry information. A calibration exercise using data from 78 catchments throughout Scotland is described. Water chemistry for each catchment has been determined and each catchment is characterised according to a number of attributes. Multivariate statistical analysis of these data shows clear relationships between catchment attributes and water chemistry and between water chemistry and diatom critical load. The key variables which explain most of the variation in critical load relate to soil, geology and land use within the catchment. Using these variables (as predictors) in a regression analysis diatom critical load could be predicted across a broad gradient of sensitivity (R2adj = c. 0.8). The predictive power of the model was maintained when different combinations of explanatory variables were used. This accords the model a degree of flexibility in that model paramaterisation can be geared towards availability of secondary data. There are limitations with the model. These relate to the nature of the predictor variables and the ability of the model to predict critical loads for more sensitive sites. Nevertheless the ability of the model to differentiate between sensitive and non-sensitive sites offers considerable scope for environmental managers to undertake national inventories of catchment sensitivity and specific assessments of individual catchments.
APA, Harvard, Vancouver, ISO, and other styles
9

Arnott, Sean. "An assessment of methods for catchment-scale identification of goundwater-suface water interractions in lowland permeable catchments." Thesis, University of Exeter, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.532017.

Full text
Abstract:
A better understanding f groundwater-surface water interactions is urgently required o underpin the implementation of the Water Framework Directive and to increase our knowledge of environmental processes in relation to base flow, chemical and nutrient fluxes, contaminated groundwater-surface water transfers, the selection of spawning sites by Atlantic salmon( Salmos alar) and the abstraction of groundwater. This project assessed a range of methods, other than the time-consuming technique of flow gauging, as fast and effective indicators of groundwater-surface water interactions over a catchment-wide scale.The study was aided by the results of two high resolution catchment-wide flow-accretion surveys. Physical and chemical tracers were shown to be ineffective when compared against the results of the flow-accretion surveys. A number of factors, such as long reach lengths, anthropogenic discharges, other in-stream processes and similar groundwater and surface water composition, appeared to diminish the signals produced by groundwater inputs to below detectable levels. A detailed reach-scale investigation assessed a range of methods over different temporal and spatial scales. The direct measurement of groundwater and surface water levels were 100% accurate in the identification of groundwater-surface water interactions, but this method would be impractical for catchment-scale assessment. Three methods for predicting groundwater-surface water interaction sites were assessed based on hydrogeological theory, such as groundwater flow systems, dry valley inputs and localised aspects of the solid geology. The effectiveness of the predictions were compared against the results of the Frome and Piddle flow-accretion surveys. The method using the localised aspects of the solid geology showed relatively high accuracy (60-70%)and was quite fast for catchment-scale assessment. The final investigation showed a statistically insignificant correlation between groundwater inputs and the location of Atlantic salmon( Salmos alar) redds. However, lower densities of Atlantic salmon redds were observed a long certain survey reaches that were subjected to surface water losses.
APA, Harvard, Vancouver, ISO, and other styles
10

Abancó, i. Martínez de Arenzana Clàudia. "Monitoring and geomorphologic characterization of debris flows at catchment scale." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/128677.

Full text
Abstract:
Debris flows are very fast mass movements and are considered as one of the most hazardous phenomenain mountainous regions. Research on this field has strongly improved during the last decades. However,many open questions remain concerning the details of the triggering mechanisms of this type of phenomena and their dynamic behaviour; both of them key points in the hazard assessment. The global purpose of this work is to improve some aspects of the debris-flow hazard assessment atcatchment scale; particularly the estimation of the events¿ magnitude, the determination of their intensity and the characterization of the triggering factors. Most of the objectives have been carried out by means of the auscultation of a catchment in wich the debris flows are frequent. Furthermore, data of geomorphological characterization of other catchments have been analysed. This work aims at increasing the knowledge on debris flows in the Pyrenees. In the context of this thesis, a debris-flow monitoring system has been set up in the Pyrenees, in the Rebaixader torrent (Alta Ribagorça, Central Pyrenees). Since July 2009, six debris flows involving volumes ranging from 1000 to 21000 m3, eleven debris floods (volumes from 350 to 2800 m3) and four rockfalls have been registered. The distinction between processes and the identification of the different phases of the flow events have mainly been based on ground vibration data. The detailed analysis of the ground vibration generated by torrential processes has revealed that there are several on-site factors strongly influencing the signal registered by the geophones. In particular, a significant decrease of the signal has been recognized at the geophones that were not placed close to the active channel. The ground vibration signal generated by some debris-flow events has not only been registered using the conventional digital sampling of the ground velocity signal, but also by means of transforming the ground velocity into impulses. Both techniques are suitable for the detection and characterization of the debris-flow events. However, the transformation into impulses shows interesting advantages, such as the low power consumption and the simplicity of the analysis of this type of signal in comparison to the conventional one. Both aspects are crucial in early warning and alarm systems (EWAS). Besides, the characterization of the rainfalls in the catchment has revealed that the most common debris-flow triggering rainfalls in the Rebaixader torrent last around 2 hours and the critical hourly intensity value is around 15 mm/h. However, it has been detected that also spring episodes of moderate intensity, accompanied by the potential infiltration from snowmelt can trigger torrential flows and rockfalls. In particular, a detailed analysis of three rockfalls that occurred in spring is presented. Moreover, a methodology to estimate the entrainment of bed material in a debris-flow event is presented within this study. The methodology was based on the creation of a decision tree (applying data mining techniques) over a database of geomorphologic parameters, collected in the field and from a digital elevation model, which incorporates 110 reaches from 17 torrents. Finally, a general decision tree was proposed that should be calibrated and adapted, in order to widen its application to other catchments and climatic regions.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Catchment scale"

1

Zhang, Jian Yun. A decision support system for water management at catchment scale based on a geographical information system. Dublin: University College Dublin, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

The role of macropore flow from plot to catchment scale: A study in a semi-arid area. Utrecht: Koninklijk Nederlands Aardrijkskundig Genootschap, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Workshop on the Effects of Global Climate Change on Hydrology, and Water Resources at the Catchment Scale (1992 Tsukuba-shi, Japan). Proceedings of the Workshop on the Effects of Global Climate Change on Hydrology and Water Resources at the Catchment Scale, February 3-6, 1992, Tsukuba, Japan. Tsukuba, Japan: The Committee, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Merz, Juerg. Water balances, floods and sediment transport in the Hindu Kush-Himalayas: Data analyses, modelling and comparison of selected meso-scale catchments. Berne, Switzerland: Institute of Geography, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mannaerts, Christiaan. Assessment of the transferability of laboratory rainfall-runoff and rainfall-soil loss relationships to field and catchment scales: A study in the Cape Verde Islands. Enschede: International Institute for Aerospace Survey and Earth Sciences (ITC), 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hatton, TJ. Catchment Scale Recharge Modelling - Part 4. CSIRO Publishing, 1998. http://dx.doi.org/10.1071/9780643105362.

Full text
Abstract:
This paper addresses the need to model recharge to groundwater systems at the scale of whole catchments. It looks at developing the right conceptual model of how water moves through a given landscape for both homogeneous and heterogeneous catchments. One-dimensional recharge models and three-dimensional recharge models are considered. Discussion of which recharge modelling approach to use take in consideration of the availability of data, the nature of the questions being asked, and the expertise of the investigators.
APA, Harvard, Vancouver, ISO, and other styles
7

Hatton, T. J. Catchment Scale Recharge Modelling - Part 4. CSIRO Publishing, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

(Editor), William E. Dietrich, and Garrison Sposito (Editor), eds. Hydrologic Processes from Catchment to Continental Scale Basins. Annual Reviews, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Perk, Marcel Van Der. Soil and Water Contamination: From Molecular to Catchment Scale. Taylor & Francis Group, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Perk, Marcel van der. Soil and Water Contamination: From Molecular to Catchment Scale. Taylor & Francis Group, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Catchment scale"

1

Arnold, J. G., and R. Srinivasan. "A Continuous Catchment-Scale Erosion Model." In Modelling Soil Erosion by Water, 413–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58913-3_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jenkins, Bryan R. "Cumulative Effects at the Catchment Scale." In Global Issues in Water Policy, 153–203. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-024-1213-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gilevska, T., and G. Imfeld. "Compound-Specific Isotope Analyses to Investigate Pesticide Transformation in Soil and Water." In Tracing the Sources and Fate of Contaminants in Agroecosystems, 33–61. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47265-7_4.

Full text
Abstract:
AbstractThis chapter provides an overview of approaches employed in tracking pesticide degradation within agricultural catchments, focusing on the existing challenges and burgeonic prospects afforded by pesticide compound-specific isotope analyses (CSIA). The discussion centers on the development of CSIA for low concentrations of pesticides in environmental matrices. Additionally, the chapter explores the viability of implementing pesticide CSIA in field applications for tasks such as for source apportionment, discerning transformation reactions, and quantifying the extent of degradation on a catchment scale.
APA, Harvard, Vancouver, ISO, and other styles
4

Skeffington, Richard A., Andrew J. Wade, Paul G. Whitehead, Dan Butterfield, øyvind Kaste, Hans Estrup Andersen, Katri Rankinen, and Gaël Grenouillet. "Modelling Catchment-Scale Responses to Climate Change." In Climate Change Impacts on Freshwater Ecosystems, 236–61. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444327397.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vásquez, Nicolás, Javier Cepeda, Tomás Gómez, Pablo A. Mendoza, Miguel Lagos, Juan Pablo Boisier, Camila Álvarez-Garretón, and Ximena Vargas. "Catchment-Scale Natural Water Balance in Chile." In World Water Resources, 189–208. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56901-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

El-Sadek, Alaa. "Upscaling field scale hydrology and water quality modelling to catchment scale." In Integrated Assessment of Water Resources and Global Change, 149–69. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/978-1-4020-5591-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brutsaert, Wilfried. "Catchment-Scale Evaporation and the Atmospheric Boundary Layer." In 1986, Trends and Directions in Hydrology, 39S—45S. Washington, DC: American Geophysical Union, 2014. http://dx.doi.org/10.1002/9781118782088.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

McDonnell, Rachael. "Applying GIS to Catchment-Scale Soil Erosion Modelling." In Modelling Soil Erosion by Water, 351–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58913-3_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gaur, Murari Lal. "Catchment Scale Forest-Water Interfaces for Pollution Management." In Water Quality, Assessment and Management in India, 71–111. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95687-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sinha, Manish Kumar, Triambak Baghel, Klaus Baier, Mukesh Kumar Verma, Ramakar Jha, and Rafig Azzam. "Impact of Urbanization on Surface Runoff Characteristics at Catchment Scale." In Water Resources and Environmental Engineering I, 31–42. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2044-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Catchment scale"

1

Jeníček, Michal, Ondřej Nedělčev, Radovan Tyl, Ondřej Ledvinka, Václav Vajskebr, Petr Šercl, Jana Bernsteinová, Jakub Langhammer, and Jan Unucka. "CAMELS-CZ: A catchment attribute database for hydrological and climatological studies using a large sample of catchments." In První konference PERUN. Český hydrometeorologický ústav, 2023. http://dx.doi.org/10.59984/978-80-7653-063-8.14.

Full text
Abstract:
Hydrological methods based on the analysis of data from a large sample of catchments with different characteristics (large-sample hydrology; comparative hydrology) allow a comprehensive analysis of the hydrological regime and thus a description of hydrological variability and change in the components of the water balance. These methods provide insight into hydrological processes that are shaped by environmental and climatic factors and allow more general conclusions to be drawn. However, in addition to climate and runoff data, catchment attributes, such as geology, soils, topography and vegetation, are essential for effective hydrological behaviour analysis. For these reasons, the global hydrological community has recently developed a number of freely available large-scale datasets known as CAMELS (Catchment Attributes and MEteorology for Large-sample Studies), which provide catchment attributes, as well as hydrological and meteorological time series, in a comparable structure at national scales. The aim of this contribution is to present the current state of preparation the CAMELS database for Czechia (CAMELS-CZ) as a reference data platform for analysis and modelling, using large-sample of catchments.
APA, Harvard, Vancouver, ISO, and other styles
2

"Irrigation return flows at catchment scale." In 2015 ASABE / IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation - A Tribute to the Career of Terry Howell, Sr. Conference Proceedings. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/irrig.20152147621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sánchez-Murillo, Ricardo. "DOC transport and export in a dynamic tropical catchment." In I Congreso Internacional de Ciencias Exactas y Naturales. Universidad Nacional, 2019. http://dx.doi.org/10.15359/cicen.1.35.

Full text
Abstract:
Dissolved organic carbon (DOC) transport and export from headwater forests into freshwaters in highly dynamic tropical catchments are still understudied. Here, we present a DOC analysis (2017) in a pristine and small (~2.6 km2) tropical catchment of Costa Rica. Storm flows governed a rapid surface and lateral allochthonous DOC transport (62.2% of the annual DOC export). Cross-correlation analysis of rainfall and stream discharge indicated that DOC transport occurred on average ~1.25 hours after the rainfall maxima, with large contributions of event water, ranging from 42.4±0.3% up to 98.2±0.3% of the total discharge. Carbon export flux (annual mean=6.7±0.1 g C m-2 yr-1) was greater than values reported in subtropical and temperate catchments. Specific ultraviolet absorbance indicated a mixture of hydrophobic humic and hydrophilic non-humic matter during both baseflow and storm events. Our results highlight the rapid storm-driven DOC transport and export as well as low biogeochemical attenuation during baseflow episodes in a climate sensitive hot-spot. By understanding the key factors controlling the amount of organic carbon transported to streams in dynamic tropical landscapes, better global and catchment-scale model assessments, conservation practices, and water treatment innovations can be identified.
APA, Harvard, Vancouver, ISO, and other styles
4

Howden, N. J. K., S. A. Mathias, T. P. Burt, F. Worrall, and M. J. Whelan. "A model of long-term catchment-scale nitrate transport in a UK Chalk catchment." In BHS 3rd International Conference. British Hydrological Society, 2010. http://dx.doi.org/10.7558/bhs.2010.ic46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pattison, I., S. N. Lane, R. J. Hardy, and S. M. Reaney. "Rural land management impacts on catchment scale flood risk." In BHS 3rd International Conference. British Hydrological Society, 2010. http://dx.doi.org/10.7558/bhs.2010.ic33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carbone, Marco. "MODELING OF HYDRAULIC BEHAVIOUR OF GREEN ROOF IN CATCHMENT SCALE." In 14th SGEM GeoConference on WATER RESOURCES. FOREST, MARINE AND OCEAN ECOSYSTEMS. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b31/s12.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Han, Xujun, Xin Li, Yanlin Zhang, and Jian Kang. "A multi-sources data assimilation system for catchment scale research." In IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6352561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cipollini, Stefano, Aldo Fiori, and Elena Volpi. "MULTIPLE RESERVOIRS EFFECT ON FLOOD FREQUENCY AT THE CATCHMENT SCALE." In Proceedings of the 39th IAHR World Congress From Snow to Sea. Spain: International Association for Hydro-Environment Engineering and Research (IAHR), 2022. http://dx.doi.org/10.3850/iahr-39wc2521711920221284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rianna, Maura, Valeria Montesarchio, Francesco Napolitano, and Lucio Ubertini. "A preliminary analysis of rainfall spatial distribution at catchment scale." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kaushik, Tryambak, Milind V. Khire, Terry Johnson, and Michael Caldwell. "Surface Runoff at an Instrumented Catchment Scale Water Balance Final Cover." In Geo-Congress 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413272.401.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Catchment scale"

1

Wieting, Celeste, Sara Rathburn, and John Kemper. Evaluation of gully erosion for archaeological preservation in Wupatki National Monument. National Park Service, 2024. http://dx.doi.org/10.36967/2302447.

Full text
Abstract:
Wupatki National Monument contains an abundance of prehistoric and historic archaeological sites that are vulnerable to gully erosion from heavy sporadic rainstorms. Increased erosional risks are predicted as more extreme weather causes frequent or intense rainfall, flooding, and gullying. At Wupatki National Monument, gullies generally form on hillslopes within volcanic-derived cinders that are ubiquitous across the landscape and are unconsolidated, non-cohesive, highly mobile, and permeable. Lithological differences between volcanic cinders and underlying sedimentary rocks, and surface runoff influence the progression of gully erosion near archaeological sites. We assessed gullies based on changes in gully morphology and categorized archaeological sites based on vulnerability from erosion and runoff processes. We found that 35 measured gullies are actively eroding, with statistically significant changes in gully depth from 2016 to 2021. Up to 0.5 m of incision was documented over a five-year period. A structure from motion analysis at the hillslope scale confirmed gully morphological changes and supports the applicability of conducting similar analyses on a larger scale. More erosion occurred in gullies with catchments predominantly covered with cinders because of cinder mobility. We noted a weak relationship between gully catchment area and gully head slope, likely related to runoff processes from outcrops of resistant sedimentary rocks forming cliffs and characteristics of cinders that maximize infiltration and transport. Based on our assessment of gully morphologic change and substrate characteristics, 22 archaeological sites along Wupatki Wash were identified as having a high vulnerability to erosion, helping monument managers to prioritize their monitoring initiatives.
APA, Harvard, Vancouver, ISO, and other styles
2

Andresen, Jens-Bjørn R., and Søren M. Kristiansen. Historic maps as source for hydrological reconstruction of pre-industrial landscape wetness in Denmark: a methodological study. Det Kgl. Bibliotek, 2023. http://dx.doi.org/10.7146/aul.491.

Full text
Abstract:
Historic maps are an important primary source which can be utilized in the reconstruction of environmental variables of the pre-industrial landscape. However, methodological constraints have hitherto prevented large scale and systematic approaches. In this paper a novel methodology is presented, which documents the usefulness of the maps in the study of paleo-hydrology and thus serves a better understanding of the conditions for agricultural production under pre-drainage conditions. The methodology is developed based on eighteenth and nineteenth century maps from a 100 km2 study area in one stream catchment in East Jutland, Denmark. It combines information from two types of historic maps in order to correlate computed soil hydrology (wetness index) and recorded historic land-use. The calculated wetness indexes are derived from contour lines on topographic (military) maps (in Danish: Høje Maalebordsblade), whereas the spatial overlays are land-use classes from economic maps (in Danish: Matrikelkort - Original 1). This study demonstrates – for the first time - that the wetness index is explanatory for the agricultural suitable/non-suitable dichotomy (tilled land versus “wetland”: meadows, fens, and peat bogs) on the historic economic maps. Furthermore, the study shows that pre-industrial arable areas were stretched to their limits in respect to cropping wet soils in this agricultural dominated landscape. The study confirms the existing belief that the historic economic maps constitute the best available source of these mosaic-landscapes for periods before the intense subsurface tile drainage began. This finding opens for further methodological development and up-scaling using automatic feature detection, contour line extraction and text recognition of historical maps.
APA, Harvard, Vancouver, ISO, and other styles
3

Caritat, P. de, and U. Troitzsch. Towards a regolith mineralogy map of the Australian continent: a feasibility study in the Darling-Curnamona-Delamerian region. Geoscience Australia, 2021. http://dx.doi.org/10.11636/record.2021.035.

Full text
Abstract:
Bulk quantitative mineralogy of regolith is a useful indicator of lithological precursor (protolith), degree of weathering, and soil properties affecting various potential landuse decisions. To date, no national-scale maps of regolith mineralogy are available in Australia. Catchment outlet sediments collected over 80% of the continent as part of the National Geochemical Survey of Australia (NGSA) afford a unique opportunity to rapidly and cost-effectively determine regolith mineralogy using the archived sample material. This report releases mineralogical data and metadata obtained as part of a feasibility study in a selected pilot area for such a national regolith mineralogy database and atlas. The area chosen for this study is within the Darling-Curnamona-Delamerian (DCD) region of southeastern Australia. The DCD region was selected as a ‘deep-dive’ data acquisition and analysis by the Exploration for the Future (2020-2024) federal government initiative managed at Geoscience Australia. One hundred NGSA sites from the DCD region were prepared for X-Ray Diffraction (XRD) analysis, which consisted of qualitative mineral identification of the bulk samples (i.e., ‘major’ minerals), qualitative clay mineral identification of the <2 µm grain-size fraction, and quantitative analysis of both ‘major’ and clay minerals of the bulk sample. The identified mineral phases were quartz, plagioclase, K-feldspar, calcite, dolomite, gypsum, halite, hematite, goethite, rutile, zeolite, amphibole, talc, kaolinite, illite (including muscovite and biotite), palygorskite (including interstratified illite-smectite and vermiculite), smectite (including interstratified illite-smectite), vermiculite, and chlorite. Poorly diffracting material (PDM) was also quantified and reported as ‘amorphous’. Mineral identification relied on the EVA® software, whilst quantification was performed using Siroquant®. Resulting mineral abundances are reported with a Chi-squared goodness-of-fit between the actual diffractogram and a modelled diffractogram for each sample, as well as an estimated standard error (esd) measurement of uncertainty for each mineral phase quantified. Sensitivity down to 0.1 wt% (weight percent) was achieved, with any mineral detection below that threshold reported as ‘trace’. Although detailed interpretation of the mineralogical data is outside the remit of the present data release, preliminary observations of mineral abundance patterns suggest a strong link to geology, including proximity to fresh bedrock, weathering during sediment transport, and robust relationships between mineralogy and geochemistry. The mineralogical data generated by this study are presented in Appendix A of this report and are downloadable as a .csv file. Mineral abundance or presence/absence maps are shown in Appendices B and C to document regional mineralogical patterns.
APA, Harvard, Vancouver, ISO, and other styles
4

Gregow, Hilppa, Antti Mäkelä, Heikki Tuomenvirta, Sirkku Juhola, Janina Käyhkö, Adriaan Perrels, Eeva Kuntsi-Reunanen, et al. Ilmastonmuutokseen sopeutumisen ohjauskeinot, kustannukset ja alueelliset ulottuvuudet. Suomen ilmastopaneeli, 2021. http://dx.doi.org/10.31885/9789527457047.

Full text
Abstract:
The new EU strategy on adaptation to climate change highlights the urgency of adaptation measures while bringing forth adaptation as vitally important as a response to climate change as mitigation. In order to provide information on how adaptation to climate change has been promoted in Finland and what calls for attention next, we have compiled a comprehensive information package focusing on the following themes: adaptation policy, impacts of climate change including economic impacts, regional adaptation strategies, climate and flood risks in regions and sea areas, and the availability of scientific data. This report consists of two parts. Part 1 of the report examines the work carried out on adaptation in Finland and internationally since 2005, emphasising the directions and priorities of recent research results. The possibilities of adaptation governance are examined through examples, such as how adaptations steering is organised in of the United Kingdom. We also examine other examples and describe the Canadian Climate Change Adaptation Platform (CCAP) model. We apply current information to describe the economic impacts of climate change and highlight the related needs for further information. With regard to regional climate strategy work, we examine the status of adaptation plans by region and the status of the Sámi in national adaptation work. In part 2 of the report, we have collected information on the temporal and local impacts of climate change and compiled extensive tables on changes in weather, climate and marine factors for each of Finland's current regions, the autonomous Åland Islands and five sea areas, the eastern Gulf of Finland, the western Gulf of Finland, the Archipelago Sea, the Bothnian Sea and the Bay of Bothnia. As regards changes in weather and climate factors, the changes already observed in 1991-2020 are examined compared to 1981-2010 and future changes until 2050 are described. For weather and climate factors, we examine average temperature, precipitation, thermal season duration, highest and lowest temperatures per day, the number of frost days, the depth and prevalence of snow, the intensity of heavy rainfall, relative humidity, wind speed, and the amount of frost per season (winter, spring, summer, autumn). Flood risks, i.e. water system floods, run-off water floods and sea water floods, are discussed from the perspective of catchment areas by region. The impacts of floods on the sea in terms of pollution are also assessed by sea area, especially for coastal areas. With regard to marine change factors, we examine surface temperature, salinity, medium water level, sea flood risk, waves, and sea ice. We also describe combined risks towards sea areas. With this report, we demonstrate what is known about climate change adaptation, what is not, and what calls for particular attention. The results can be utilised to strengthen Finland's climate policy so that the implementation of climate change adaptation is strengthened alongside climate change mitigation efforts. In practice, the report serves the reform of the National Climate Change Adaptation Plan and the development of steering measures for adaptation to climate change both nationally and regionally. Due to its scale, the report also serves e.g. the United Nations’ aim of protecting marine life in the Baltic Sea and the national implementation of the EU strategy for adaptation to climate change. As a whole, the implementation of adaptation policy in Finland must be speeded up swiftly in order to achieve the objectives set and ensure sufficient progress in adaptation in different sectors. The development of binding regulation and the systematic evaluation, monitoring and support of voluntary measures play a key role.
APA, Harvard, Vancouver, ISO, and other styles
5

Moreda, Fekadu, Benjamin Lord, Mauro Nalesso, Pedro Coli Valdes Daussa, and Juliana Corrales. Hydro-BID: New Functionalities (Reservoir, Sediment and Groundwater Simulation Modules). Inter-American Development Bank, November 2016. http://dx.doi.org/10.18235/0009312.

Full text
Abstract:
The Inter-American Development Bank (IDB) provides financial and technicalsupport for infrastructure projects in water and sanitation, irrigation, flood control, transport, and energy, and for development projects in agriculture, urban systems, and natural resources. Many of these projects depend upon water resources and may be affected negatively by climate change and other developments that alter water availability, such as population growth and shifts in land use associated with urbanization, industrial growth, and agricultural practices. Assessing the potential for future changes in water availability is an important step toward ensuring that infrastructure and other development projects meet their operational, financial, and economic goals. It is also important to examine the implications of such projects for the future allocation of available water among competing users and uses to mitigate potential conflict and to ensure such projects are consistent with long-term regional development plans and preservation of essential ecosystem services. As part of its commitment to help member countries adapt to climate change, the IDB is sponsoring work to develop and apply the Regional Water Resources Simulation Model for Latin America and the Caribbean, an integrated suite of watershed modeling tools known as Hydro-BID. Hydro-BID is a highly scalable modeling system that includes hydrology and climate analysis modules to estimate the availability of surface water (stream flows) at the regional, basin, and sub-basin scales. The system includes modules for incorporating the effects of groundwater and reservoirs on surface water flows and for estimating sediment loading. Data produced by Hydro-BID are useful for water balance analysis, water allocation decisions, and economic analysis and decision support tools to help decision-makers make informed choices among alternative designs for infrastructure projects and alternative policies for water resources management. IDB sponsored the development of Hydro-BID and provides the software and basic training free of charge to authorized users; see hydrobidlac.org. The system was developed by RTI International as an adaptation of RTI's proprietary WaterFALL® modeling software, based on over 30 years of experience developing and using the U.S. National Hydrography Dataset (NHDPlus) in support to the U.S. Geological Survey and the U.S. Environmental Protection Agency. In Phase I of this effort, RTI prepared a working version of Hydro-BID that includes: (1) the Analytical Hydrography Dataset for Latin America and the Caribbean (LAC AHD), a digital representation of 229,300 catchments in Central America, South America, and the Caribbean with their corresponding topography, river, and stream segments; (2) a geographic information system (GIS)-based navigation tool to browse AHD catchments and streams with the capability of navigating upstream and downstream; (3) a user interface for specifying the area and period to be modeled and the period and location for which water availability will be simulated; (4) a climate data interface to obtain rainfall and temperature inputs for the area and period of interest; (5) a rainfall-runoff model based on the Generalized Watershed Loading Factor (GWLF) formulation; and (6) a routing scheme for quantifying time of travel and cumulative flow estimates across downstream catchments. Hydro-BID generates output in the form of daily time series of flow estimates for the selected location and period. The output can be summarized as a monthly time series at the user's discretion. In Phase II of this effort, RTI has prepared an updated version of Hydro-BID that includes (1) improvements to the user interface; (2) a module to simulate the effect of reservoirs on downstream flows; (3) a module to link Hydro-BID and groundwater models developed with MODFLOW and incorporate water exchanges between groundwater and surface water compartments into the simulation of sur
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography