Dissertations / Theses on the topic 'Catchment salinity'

To see the other types of publications on this topic, follow the link: Catchment salinity.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 dissertations / theses for your research on the topic 'Catchment salinity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Lee, Lisa Yu-Ting. "EFFICIENT WATER ALLOCATION IN A HETEROGENEOUS CATCHMENT SETTING." University of Sydney, 2007. http://hdl.handle.net/2123/2466.

Full text
Abstract:
Doctor of Philosophy
The problem of water scarcity has become one of the most controversial topics in Australia over the past decades, with particular focus being the ‘sustainable’ allocation of water between extractive and environmental purposes. Geographical factors are defining the extreme variability in climate and water supply in Australia and, in the past, this was used as a rationale for the construction of large irrigation projects to deliver water to rural, urban, and industrial users. During this ‘expansionary’ phase of Australia’s water use sector, the cost of augmenting supply was relatively low and environmental considerations were secondary to the development imperative. As a result, water resources became over-allocated for extractive uses spurred on by consistent underpricing of water, which indicated a failure to reflect the true cost of water supply. As Australia’s water economy entered a ‘mature’ phase, it was no longer possible to increase supply cheaply as the most easily accessible water resources had already been captured. This was followed by widespread environmental degradation manifested in the Murray- Darling Basin, the nation’s largest river basin which hosts much of Australia’s agricultural production. Consequently, the focus shifted towards demand management, leading to a myriad of regulation aimed at increasing the allocative efficiency of scarce water resources. Towards this end, substantial government funding was injected into the various initiatives throughout the water reform process. Despite the on-going government activities in the area of water reform, the understanding of the actual economic impact and environmental outcomes of various water policies in practice remains limited. In the absence of such understanding, the effectiveness of various government water initiatives is ambiguous and inevitably compromised. The present study addresses this knowledge gap by establishing a method for evaluating the economic and environmental outcomes of environmentally-oriented polices that affect irrigated industries in a catchment. The method is based on an integrated biophysical and economic modelling approach, which enables spatial relationships to be captured accurately allowing a more realistic analysis. Information generated from a computer based biophysical simulation model form the basis of an economic optimisation model with constraints pertaining to environmental targets and water supply limits. The economic model consists of a linear programming and dynamic programming component, and involves the optimisation of resource use from a catchment manager’s perspective, seeking to achieve efficient resource use but at the same time conform to given environmental objectives. This embedded linear and dynamic programming approach was required to determine the optimal intra-seasonal and inter-seasonal water allocation, given various catchment environmental targets. The interdisciplinary approach enables the economic and ecological outcomes of the catchment management policies to be simulated and assessed at a spatially explicit scale, due to the link to Geographical Information Systems (GIS) in the biophysical model. The overall objective was to create a decision-making framework that could be used to determine the least-cost means of meeting environmental targets and resource constraints. The solutions to the analysis are directly applicable to the case study, the Mooki catchment in northern New South Wales (NSW), but with an adaptable framework that can be applied to other catchments. Specific objectives include an evaluation of the possibility of using alternative irrigation systems, as well as an evaluation of the benefits that can be realised by establishing water market, in the light of environmentally-oriented catchment policies for the case study. The economic cost of achieving environmental targets pertaining to environmental flow requirements and salinity reduction, in the form of end-of-valley salinity targets, was explicitly calculated through the economic model. While salinity targets have been set for NSW catchments, the practicality of such targets is in question, given the substantial reductions in water allocation to irrigation activities, which is one of the key contributors to deep-drainage. An additional objective in this study was therefore to investigate the value of having deep drainage targets. A further consideration is the effect of “external agents” in the form of government plans to buyback entitlements from irrigation districts, or the possibility of significant water rights purchases from mining industries. The implications of external water market entrants on the regional agricultural industry were examined.
APA, Harvard, Vancouver, ISO, and other styles
2

Lerotholi, Sekhonyana. "The role of salinity as an abiotic driver of ecological condition in a rural agricultural catchment." Thesis, Rhodes University, 2006. http://hdl.handle.net/10962/d1005528.

Full text
Abstract:
The Kat River is an agricultural catchment that drains salt rich geology. Potential salinity impacts on ecological condition of the river were investigated. Monthly salt concentrations and flow discharges were monitored at ten sites along the Kat River below the Kat Dam. Monthly salt loads were computed to relate salinity to land use and ionic data used to assess the toxicity of major salts using the TIMS model. Concentration duration curves for sodium chloride were derived from flow concentration relationships, representing sodium chloride concentrations to which the aquatic ecosystem had been exposed. The ecological condition was assessed at nineteen sites using SASS5 biotic index over four seasons. Finally, the modelled instream salt concentrations and bioasessments were evaluated in terms of the modelled level of species protection afforded at different salt concentrations. Species Sensitivity Distributions (SSDs) were used for this exercise. There was a general downstream increase in salinity with the minimum concentrations recorded at the Fairbain tributary (84 mg/L) and maximum levels at the sewage outfall in Fort Beaufort (1222 mg/L). There was evidence that citrus irrigation upstream of Fort Beaufort increased salinisation. Sodium chloride, and to a lesser extent magnesium sulphate, were the dominant salts in the Kat River catchment, with the latter being more toxic. However these had little or no impact on the aquatic ecosystem. Flow-derived sodium chloride concentrations showed that both the Balfour and Blinkwater tributaries were in a fair/ poor condition. However with regard to ecological condition, it was demonstrated that the river is generally in a good state except for the Blinkwater River and the lower catchment. Degraded habitat condition at the Blinkwater was responsible for poor ecological condition. Integrating SSD derived classes, sodium chloride classes and ecological condition indicated that sodium chloride is a driver of ecological condition at the sewage treatment works and the subsequent site (only two of nineteen biomonitoring sites).
APA, Harvard, Vancouver, ISO, and other styles
3

Simpson, Trevor Baylie. "Understanding the groundwater system of a heavily drained coastal catchment and the implications for salinity management." Thesis, Cranfield University, 2007. http://dspace.lib.cranfield.ac.uk/handle/1826/2460.

Full text
Abstract:
The Thurne catchment in north-east Norfolk, UK, is an extremely important part of the Broads National Park, an internationally important wetland environment. Extensive engineered land drainage of the marshes of this low-lying coastal catchment over the past two centuries has led to land subsidence and the need for drainage pumps to control water levels sufficiently below sea-level to maintain agricultural productivity. Consequently, seawater from the North Sea has intruded into the underlying Pleistocene Crag (sand) aquifer and brackish groundwater enters into land drainage channels, thereby raising their salinity. Powerful pumps discharge these brackish drainage waters into a Special Area of Conservation (SAC) and RAMSAR site, leading to adverse ecological impacts on salt-sensitive species. Chloride concentrations within drainage channels throughout the network have been found to significantly vary, with several influential factors affecting channel salinity such as proximity to the sea and connectivity to the underlying aquifer. A thorough understanding of the surface-water/groundwater system and a subsequent quantification of the various processes has been necessary for the development for the drain/aquifer interactions and a numerical groundwater model. These models are used to estimate the long-term distribution of the salinity within the drainage system under current conditions. The model credibility is justified by comparable aquifer-drain water balance, a comparable coast water inflow/ total groundwater ratio and the particle tracking from the coastal reaches trace to previously-measured saline-vulnerable locations. The numerical groundwater model has demonstrated that the average daily inflow of saline groundwater into the Crag aquifer of the Thurne catchment is 3,081 m3/day, of which the HempsteadMarshes main drain is one of the main conduits for saline inflow into the Brograve system, which discharges directly into the SAC. Various changes to the engineering design or operation of the drainage system have been proposed to minimise the saline inflow to the SAC, but the implementation of any proposals must be considered in conjunction with the current dynamics of the system. Three separate management or engineering remedial measures have been modelled: (i) raising the water levels in the drains of the Hempstead Marshes in the north east of the catchment (ii) lining the main drain of the HempsteadMarshes with low permeability material, and (iii) The construction of a new coastal open ditch drain which is intended to ‘intercept’ the saline intrusion and prevent ingress into inland drains of the Brograve system. The results suggest that raising the water levels in the Hempstead Marshes will reduce the saline inflow into the Brograve sub-catchment substantially, and decrease the overall saline inflow into the Thurne catchment from 3081 m3/day to 2822 m3/day). The lining of the main drain in Hempstead produces a less than 10% decrease in saline inflow into the catchment from 3,081 m3/day to 2,958 m3/day. The simulated coastal interceptor drain could in theory through maintaining a low groundwater head near the coast, prevent the inflow of saline groundwater into the Brograve system. However, such a drain would increase the saline inflow across the coastal boundary by around six times (from 3,081 m3/day to 19,750 m3/day), remove large quantities of fresh groundwater from the Pleistocene Crag aquifer and lead to high energy and pumping costs. The research has shown that there are partial solutions to reducing the saline inflow into the drainage systems in this lowland coastal catchment. However, any intended alterations must first consider other potential impacts, such as changes to flood risk, land management restrictions or hydrodynamic effects on the receiving watercourse through changed discharge volumes.
APA, Harvard, Vancouver, ISO, and other styles
4

Morgan, Karina School of Biological Earth &amp Environmental Sciences UNSW. "Evaluation of salinisation processes in the Spicers Creek catchment, central west region of New South Wales, Australia." Awarded by:University of New South Wales. School of Biological, Earth and Environmental Sciences, 2005. http://handle.unsw.edu.au/1959.4/24327.

Full text
Abstract:
Spicers Creek catchment is located approximately 400 km west of Sydney in the Central West region of New South Wales, Australia. Dryland salinity has been recognised as a major environmental issue impacting soil and water resources in the Central West region of NSW for over 70 years. Due to the geological complexity of the catchment and the presence of high salt loads contained within the soils, groundwater and surface waters, the Spicers Creek catchment was identified as a large contributor of salinity to the Macquarie River catchment. Over fifty-two dryland salinity occurrences have been identified in the Spicers Creek catchment and it appears that dryland salinity is controlled by the presence of geological structures and permeability contrasts in the shallow aquifer system. Combinations of climatic, geological and agricultural factors are escalating salinity problems in the catchment. The main aim of this thesis was to identify the factors affecting salinisation processes in the Spicers Creek catchment. These include the role of geological structures, the source(s) of salts to the groundwater system and the geochemical processes influencing seepage zone development. To achieve these aims a multidisciplinary approach was untaken to understand the soils, geology, hydrogeology and hydrogeochemistry of the catchment. Investigative techniques employed in this project include the use of geophysics, soil chemistry, soil spectroscopy, hydrogeochemistry and environmental isotopes. Evaluation of high-resolution airborne magnetics data showed a major north-east to south-west trending shear zone. This structure dissects the catchment and several other minor faults were observed to be splays off this major structure. These structures were found to be conducive to groundwater flow and are influencing the groundwater chemistry in the fractured aquifer system. Two distinctive groundwater chemical types were identified in the catchment; the saline Na(Mg)-Cl-rich groundwaters associated with the fractured Oakdale Formation and the Na-HCO3-rich groundwaters associated with the intermediate groundwater system. The groundwater chemistry of other deep groundwaters in the catchment appears to be due to mixing between these end-member groundwaters within the fractured bedrock system. The spatial distribution of electrical conductivity, Cl-, Sr2+ and 87Sr/86Sr isotopic ratios showed the correlation between saline groundwaters and the location of faults. Elevated salinities were associated with the location of two crosscutting fault zones. The spatial distribution of HCO3-, K+, Li+ and ?????3CDIC highlighted the extent of Na-HCO3-rich groundwaters in the catchment and showed that these groundwaters are mixing further east than previously envisaged. These findings show that Na(Mg)-Cl-rich groundwaters are geochemically distinctive and have evolved due to extensive water-rock interaction processes within the fracture zones of the Oakdale Formation. These saline groundwaters contain elevated concentrations of trace elements such as As, V and Se, which pose a potential risk for water resources in the area. 87Sr/86Sr isotopic ratios indicated that the source of salinity to the Na(Mg)-Cl-rich groundwaters was not purely from marine or aerosol input. Salt is most likely contributed from various allochthonous and autochthonous sources. This research found that the main mechanism controlling the formation of dryland salinity seepage zones in the Spicers Creek catchment is due to the presence of geological structures. These groundwater seepage zones act as mixing zones for rainfall recharge and deeper groundwaters. The main sources of salt to the seepage zones are from deeper Na(Mg)-Cl-rich groundwaters and rainfall accession. The major importance of this research highlights the need for an integrated approach for the use of various geoscientific techniques in dryland salinity research within geologically complex environments.
APA, Harvard, Vancouver, ISO, and other styles
5

Daniels, Fahiema. "The effects of catchment management and salinity on the dominant macro-algae in the Bot River estuary." Thesis, University of Cape Town, 2004. http://hdl.handle.net/11427/26647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Holzapfel, Michael, and n/a. "Regolith-landform mapping and dryland salinity investigaton: Booberoi-Quandialla Transect, Western New South Wales." University of Canberra. Resource, Environmental & Heritage Sciences, 2004. http://erl.canberra.edu.au./public/adt-AUC20060519.144945.

Full text
Abstract:
Landholders in the Booberoi to Quandialla (B-Q) Transect area, located in central west NSW, have been concerned about an emerging dryland salinity problem since the late 1990�s (Wooldridge 2002, pers. comm. Muller 2002, pers. comm.) with borehole information and electromagnetic induction investigations supporting anecdotal observations. The presence of indicator vegetation, waterlogging of soils and salinisation of land are becoming increasingly prevalent, with two well-documented sites including �Strathairlie� near Quandialla, and �Back Creek� near West Wyalong. The B-Q Transect area lies within the Bland Creek Catchment, a broad open plain of subdued topography and restricted drainage receiving sediments from elevated rises located to the west, south and east. Significant deposits of transported alluvial materials have in-filled the catchment to depths in excess of 160 m and have posed a particular impediment to regional-scale mineral exploration. Stream flow across the alluvial plains and low angle alluvial fans is intermittent with most of the flow being diverted into groundwater storage or lost to evaporation. Rarely do streams flow into Lake Cowal to the north. A partial electromagnetic (EM) induction survey coupled with a long term bore and piezometer network monitoring program have been implemented by the Department of Infrastructure, Planning and Natural Resources (DIPNR � formerly Department of Land and Water Conservation) Central West NSW Salt Group. These programs allow for initial, broad-scale evaluation of the magnitude and spatial distribution of the salinity problem but fail to pinpoint remaining sites at risk as well as the mechanisms of salt emplacement. As part of an approach to assist with hazard mitigation and land management, two regolith-landform maps are being compiled using 1:20,000 scales in the Back Creek and Quandialla areas. A third, more regional regolith-landform map at 1:50,000 scale (Holzapfel & Moore 2003a, b & c) provides context for the more detailed mapping areas. The new regolith-landform maps will aid in interpretation of existing geophysical techniques, help piece together the three-dimensional characteristics of the Bland Creek catchment, aid in the development of a shallow fluid flow and palaeotopographic model and assist land managers in formulating land management units (LMU�s). The three-dimensional integration of regolith-landform mapping, electromagnetic studies, bore information and other geophysical methods is critical in determining the interaction, distribution and movement of groundwater in the Bland Creek Catchment as buried palaeochannels represent preferred fluid pathways. The distribution of these palaeochannels has implications for future dryland salinity outbreaks, the remediation of current outbreaks and mineral exploration closer to the well-known Wyalong Goldfield (Lawrie et al., 1999). The western quarter of the B-Q Transect area partially overlaps with the recently completed GILMORE Project (Lawrie et al., 2003a,b & c), a multi-disciplinary study, coordinated by Geoscience Australia (GA) and the Bureau of Rural Sciences (BRS). Regolith-landform information in addition to gamma-ray spectrometry, magnetics, airborne electromagnetics and a digital elevation model acquired by the GILMORE Project have been incorporated into regolith-landform maps over the B-Q Transect. The incorporation of these datasets has helped not only extend the usefulness of the GILMORE Project data but provide a consistent, regolith-landform coverage for the broader Bland Creek Catchment. Regolith-landform mapping has been successful in highlighting major recharge zones for local and intermediate flow systems. The mechanisms for dryland salinity at two well-known sites have also been determined. Increasing salt stores are occurring through evaporation of intermittent floodwaters sourced from floodplains, back plains and broad meandering existing creek systems and recharging partially exposed palaeochannels intersecting the surface. Due to the shallow nature of these partially exposed palaeochannels, evaporation further concentrates the salt load in the soil profile. It is unknown if mapped shallow palaeochannels further away from current drainage systems are affected by rising salt loads. Regolith-landform mapping highlights two additional risk factors common to the 1:50,000 and 1:20,000 scale B-Q Transect mapping areas including widespread waterlogging of soils and wind erosion. Due to the subdued topography, features such as gilgai, fences and roads are having an effect on drainage modification. Wind erosion was also observed to play a major role within the B-Q Transect with significant loss of topsoil creating hardened clay surfaces resistant to water infiltration and significant redistributed deposits of aeolian materials. Interpretation of regolith-landform mapping against geophysical datasets and drill hole data show considerable lateral and vertical variation of regolith units. This variation of regolith distribution with depth does not reduce the effectiveness of using regolithlandform mapping as a valued management tool. The subdued relief coupled with the complex interplay between recharge zones, discharge zones and surficial drainage networks over the B-Q Transect still requires a detailed knowledge of surface regolithlandform characteristics whilst reinforcing the need for a multidisciplinary approach to gain a 3D perspective. Catchment analysis has been performed on drainage systems within the Bland Creek Catchment and has helped explain the strong effect different catchments have had on sediment supply to the Bland Basin. Catchment analysis results have been used in basic calculations of salt loads in the Bland Creek Catchment. An estimated 18,780 Tonnes/yr of salt enter the Bland Creek catchment and as stream flow out of the Bland Creek Catchment is intermittent, salt stores are increasing in the upper margins of the soil profile and groundwater reserves. Reconstruction of the palaeotopography of the B-Q Transect has been made possible using a mutli-disciplinary approach incorporating information from regolith-landform mapping, drill hole information, gamma-ray spectrometry and GILMORE Project datasets. The production of large-scale regolith-landform mapping, the development of a shallow fluid flow model and reconstruction of palaeotopography builds on and contributes to knowledge of the Bland Creek Catchment allowing for detailed farmscale and paddock-scale land management decisions.
APA, Harvard, Vancouver, ISO, and other styles
7

Nikrouz, Ramin School of Biological Earth &amp Environmental Sciences UNSW. "Three-dimensional (3D) three-component (3C) shallow seismic refraction surveys across a shear zone associated with dryland salinity at the Spicers Creek Catchment, New South Wales, Australia." Awarded by:University of New South Wales. School of Biological, Earth and Environmental Sciences, 2005. http://handle.unsw.edu.au/1959.4/20607.

Full text
Abstract:
Dryland salinity occurs extensively throughout the Spicers Creek Catchment in central west New South Wales, Australia. The extent of dryland salinity in the Spicers Creek Catchment has severely altered the landscape, having major environmental implication. Large area of the catchments has experienced soil erosion resulting from the saline groundwater in the surface soil causing the destruction of clay and soil structure. The objective of this study was to use seismic refraction methods to map in detail a shear zone, which was associated with an area of major dryland salination. In particular, both the width of shear zone and the rock fabric within it were to be mapped with two both compressional (P) and shear (S) waves using a three-dimensional (3D) array of three- component (3C) receivers. The seismic data was recorded across a shear zone which is associated with salination in the Spicers Creek Catchment using the Australian National Seismic Imaging Resources (ANSIR) 360-trace system. Three-component (3C) geophones were used to record shear waves as well as compressional wave. An IVI minivibrator T-15000 was used as the main source of energy for the seismic survey. The results of the three-dimensional three-component seismic refraction surveys at the Spicers Creek Catchment show that the shear zone exhibit the seismic geophysical anomaly of a shear zone, existing as a narrow region with low seismic velocities and increased depth of weathering. A detailed analysis of the refractor seismic velocities and amplitude show a number of linear features parallel to and cross-cutting the shear zone. Linear features cut the shear zones at each site. They have been interpreted as a series of recent faults which act as discharge zone bringing saline groundwater to the surface.
APA, Harvard, Vancouver, ISO, and other styles
8

Bugan, Richard D. H. "Modeling and regulating hydrosalinity dynamics in the Sandspruit river catchment (Western Cape)." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86492.

Full text
Abstract:
Thesis (PhD)--Stellenbosch University, 2014.
ENGLISH ABSTRACT: Bugan, R.D.H. Modelling and regulating hydrosalinity dynamics in the Sandspruit River catchment (Western Cape). PhD dissertation, Stellenbosch University. The presence and impacts of dryland salinity are increasingly become evident in the semi-arid Western Cape. This may have serious consequences for a region which has already been classified as water scarce. This dissertation is a first attempt at providing a methodology for regulating the hydrosalinity dynamics in a catchment affected by dryland salinity, i.e. the Sandspruit catchment, through the use of a distributed hydrological model. It documents the entire hydrological modelling process, i.e. the progression from data collection to model application. A review of previous work has revealed that salinisation is a result of land use change from perennial indigenous deep rooted vegetation to annual shallow rooted cropping systems. This has altered the water and salinity dynamics in the catchment resulting in the mobilisation of stored salts and subsequently the salinisation of land and water resources. The identification of dryland salinity mitigation measures requires thorough knowledge of the water and salinity dynamics of the study area. A detailed water balance and conceptual flow model was calculated and developed for the Sandspruit catchment. The annual streamflow and precipitation ranged between 0.026 mm a-1 - 75.401 mm a-1 and 351 and 655 mm a-1 (averaging at 473 mm a- 1), respectively. Evapotranspiration was found to be the dominant component of the water balance, as it comprises, on average, 94% of precipitation. Streamflow is interpreted to be driven by quickflow, i.e. overland flow and interflow, with minimal contribution from groundwater. Quantification of the catchment scale salinity fluxes indicated the Sandspruit catchment is in a state of salt depletion, i.e. salt output exceeds salt input. The total salt input to and output from the Sandspruit catchment ranged between 2 261 - 3 684 t Catchment-1 and 12 671 t a-1 - 21 409 t a-1, respectively. Knowledge of the spatial distribution of salt storage is essential for identifying target areas to implement mitigation measures. A correlation between the salinity of sediment samples collected during borehole drilling and the groundwater EC (r2 = 0.75) allowed for the point data of salt storage to be interpolated. Interpolated salt storage ranged between 3 t ha-1 and 674 t ha-1, exhibiting generally increasing storage with decreasing ground elevation. The quantified water and salinity fluxes formed the basis for the application of the JAMS/J2000-NaCl hydrological model in the Sandspruit catchment. The model was able to adequately simulate the hydrology of the catchment, exhibiting a daily Nash-Sutcliffe Efficiency of 0.61. The simulated and observed salt outputs exhibited discrepancies at daily scale but were comparable at an annual scale. Recharge control, through the introduction of deep rooted perennial species, has been identified as the dominant measure to mitigate the impacts of dryland salinity. The effect of various land use change scenarios on the catchment hydrosalinity balance was evaluated with the JAMS/J2000-NaCl model. The simulated hydrosalinity balance exhibited sensitivity to land use change, with rooting depth being the main factor, and the spatial distribution of vegetation. Revegetation with Mixed forests, Evergreen forests and Range Brush were most effective in reducing salt leaching, when the “salinity hotspots” were targeted for re-vegetation (Scenario 3). This re-vegetation strategy resulted in an almost 50% reduction in catchment salt output. Overall, the results of the scenario simulations provided evidence for the consideration of re-vegetation strategies as a dryland salinity mitigation measure in the Sandspruit catchment. The importance of a targeted approach was also highlighted, i.e. mitigation measures should be implemented in areas which exhibit a high salt storage.
AFRIKAANSE OPSOMMING: Die teenwoordigheid en impak van droëland versouting word duideliker in die halfdor Wes-Kaap. Dit kan ernstige gevolge inhou vir die streek wat reeds as ‘n waterskaars area geklassifiseer is. Hierdie verhandeling is ‘n poging om ‘n metode vir die regulering van waterversoutingsdinamiek in ‘n opvangsgebied wat deur verbrakking van grond geaffekteer is, i.e. die Sandspruit opvangsgebied, te bepaal deur gebruik te maak van ‘n verspreide hidrologiese model. Dit dokumenteer die volledige hidrologiese modeleringsproses, i.e. vanaf die versameling van data tot die aanwending van die model. ‘n Oorsig van vorige studies bevestig dat versouting ‘n gevolg is van die verandering vanaf meerjarige inheemse plantegroei met diep wortelstelsels tot die verbouing van gewasse met vlak wortelstelsels. Dit het ‘n verandering in die water en versoutingsdinamiek in die opvangsgebied tot gevolg gehad in soverre dat dit die mobilisering van versamelde soute en gevolglike versouting van die grond en waterbronne tot gevolg gehad het. Die identifikasie van maatreëls om droëland versouting te verminder, vereis ‘n deeglike kennis van die water- en versoutingsdinamiek van die studie gebied. ‘n Gedetailleerde waterbalans en konseptuele vloeimodel was bereken vir die Sandspruit opvangsgebied. Die jaarlikse stroomvloei en neerslag varieer tussen 0.026 - 75.401 mm a-1 en 351 - 655 mm a-1 (gemiddeld 473 mm a-1), onderskeidelik. Dit is bevind dat evapotranspirasie die dominante komponent is van die waterbalans, aangesien dit 94% uitmaak van die neerslag. Stroomvloei word aangedryf deur snelvloei, i.e oppervlakvloei en deurvloei met minimale bydrae van grondwater. Die omvang van die opvangsgebied se soutgehalte het aangedui dat die Sandspruit opvangsgebied tans ‘n toestand van soutvermindering ondervind, i.e. sout invloei word oorskrei deur sout uitvloei. Die totale sout in- en uitvloei in die Sandspruit opvangsgebied het gewissel tussen 2 261 - 3 684 t Opvangsgebied-1 en 12 671 - 21 409 t a-1 onderskeidelik. Kennis van die ruimtelike verspreiding van opbou van soute in die grond is belangrik om areas te identifiseer vir die toepassing van voorsorgmaatreëls. ‘n Korrelasie tussen die soutinhoud van sediment monsters wat versamel is tydens die boor van boorgate en die grondwater EC (r2 = 0.75) het die interpolasie van puntdata waar sout aansamel toegelaat. Hierdie interpolasie van sout aansameling het gewissel tussen 3 t ha-1 and 674 t ha-1 en bewys ‘n algemeen verhoogde opbou met vermindering in grond elevasie. Die hoeveelheidsbepaling van water en die versoutings roetering vorm die basis vir die aanwending van die JAMS/J2000-NaCl hidrologiese model in die Sandspruit opvangsgebied. Die model het ‘n geskikte simulasie van die hidrologie van die opvangsgebied geimplimenteer, en het ‘n daaglikse Nash-Sutcliffe Efficiency van 0.61 getoon. Die gesimuleerde en waargenome sout afvoer het teenstrydighede getoon t.o.v daaglike metings maar was verenigbaar op ‘n jaarlikse skaal. Aanvullingsbeheer deur die aanplanting van meerjarige spesies met diep wortelstelsels is geidentifiseer as ‘n oorwegende maatreël om die impak van verbrakking van grond teë te werk. Die effek van verskeie veranderde grondgebuike op die balans van die opvangsgebied se hidro-soutgehalte is geëvalueer met die JAMS/J2000-NaCl model. Die balans van gesimuleerde hidro-saliniteit het ‘n sensitiwiteit t.o.v veranderde grondgebruik getoon, met die diepte van wortelstels as die hoof faktor, asook die ruimtelike verspreiding van plantegroei. Hervestiging van verskeie tipes bome, meerjarige bome en “Range Brush” was die effektiefste t.o.v die vermindering in sout uitloging waar die soutgraad konsentrasie areas ge-oormerk was vir hervestiging van plantegroei (Scenario 3). Die strategie van hervestinging het ‘n afname van 50% in versouting in die opvangsgebied getoon. In die geheel het die resultate van die simulasies genoegsame bewys gelewer dat ‘n strategie van hervestiging en groei as ‘n voorsorg maatreël kan dien om droëland versouting in die Sandspruit opvangsgebied teen te werk. Die belangrikeid daarvan om ‘n geteikende benadering te volg is benadruk, i.e. voorsorg maatreëls kan toegepas word in areas met hoë soutgehalte.
APA, Harvard, Vancouver, ISO, and other styles
9

Damons, Matthew. "An assessment of the contribution of surface and subsurface flows to river flows of the Sandspruit in the Berg River Catchment, South Africa." University of the Western Cape, 2018. http://hdl.handle.net/11394/6415.

Full text
Abstract:
Magister Scientiae - MSc (Environ & Water Science)
Studies have shown that the primary origin of salinity in river flows of the Sandspruit in the Berg Catchment located in the Western Cape Province of South Africa was mainly a result of atmospheric deposition of salts. The salts are transported to rivers through surface runoff and subsurface flow (i.e. through flow and groundwater flow). The purpose of this study was to determine the contributions of subsurface and surface flows to the total flows in the Sandspruit, Berg Catchment. Three rain events were studied. Water samples for two rain events were analysed for environmental tracers ?18O, Silica or Silicon dioxide (SiO2), Calcium (Ca2+) and Magnesium (Mg2+). Tracers used for two component hydrograph separation were ?18O and SiO2. The tracers, Ca2+ and Mg2+, revealed inconsistent contributions of both subsurface flow and surface flow. Two component hydrograph separations indicated is that groundwater is the dominant contributor to flow, while surface runoff mainly contributes during the onset of the storm event. Groundwater response to precipitation input indicated that boreholes near the river have a quicker response than boreholes further away from the river. Boreholes nearer to the river also indicate higher water levels in response to precipitation, in comparison to boreholes further from the river.
APA, Harvard, Vancouver, ISO, and other styles
10

Bari, Mohammed A. "A distributed conceptual model for stream salinity generation processes : a systematic data-based approach." University of Western Australia. School of Earth and Geographical Sciences, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0058.

Full text
Abstract:
[Truncated abstract] During the last fifty years mathematical models of catchment hydrology have been widely developed and used for hydrologic forecasting, design and water resources management. Most of these models need large numbers of parameters to represent the flow generation process. The model parameters are estimated through calibration techniques and often lead to ‘unrealistic’ values due to structural error in the model formulations. This thesis presents a new strategy for developing catchment hydrology models for representing streamflow and salinity generation processes. The strategy seeks to ‘learn from data’ in order to specify a conceptual framework that is appropriate for the particular space and time scale under consideration. Initially, the conceptual framework is developed by considering large space and time scales. The space and time scales are then progressively reduced and conceptual model complexity systematically increased until ultimately, an adequate simulation of daily streamflow and salinity is achieved. This strategy leads to identification of a few key physically meaningful parameters, most of which can be estimated a priori and with minimal or no calibration. Initially, the annual streamflow data from ten experimental catchments (control and cleared for agriculture) were analysed. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in stream zone saturated area. The annual evapotranspiration losses from native vegetation and pasture, the ‘excess’ water (resulting from reduced transpiration after land use change), runoff and deep storage were estimated by a simple water balance model. The model parameters are obtained a priori without calibration. The annual model was then elaborated by analysing the monthly rainfall-runoff, groundwater and soil moisture data from four experimental catchments. Ernies (control, fully forested) and Lemon (53% cleared) catchments are located in zone with a mean annual rainfall of 725 mm. Salmon (control, fully forested) and Wights (100% cleared) are located in zone with mean annual rainfall of 1125 mm. Groundwater levels rose and the stream zone saturated area increased significantly after clearing. From analysis of this data it was evident that at a monthly time step the conceptual model framework needed to include a systematic gain/loss to storage component in order to adequately describe the observed lags between peak monthly rainfall and runoff.
APA, Harvard, Vancouver, ISO, and other styles
11

Mokoena, Portia Leah. "Novel approach of using Hydrogeochemistry, Hydrogeologic and Hydrostratigraphic techniques in evaluating coastal aquifers in Heuningnes catchment, South Africa." University of the Western Cape, 2019. http://hdl.handle.net/11394/7960.

Full text
Abstract:
Philosophiae Doctor - PhD
The increasing population in search for better social and economic development in coastal areas puts groundwater resources under pressure because of the high fresh water demand for domestic and agriculture use. Seawater intrusion is widely recognised as major concern in coastal aquifers across the globe and is influenced by multiple factors, being climate variation which is projected to adjust recharge of groundwater because of decreased precipitation patterns and to increase sea level variations and over-abstraction due to high freshwater demand as a result of increased population and agricultural practices, thereby inducing salinization in groundwater. The coastal aquifer in Heuningnes Catchment is not exempted from these issues and salinization is a major concern in the area affecting groundwater quality. In Heuningnes Catchment and South Africa in general there is limited knowledge on the application of integrated approach for assessing groundwater quality especially salinization mechanism in coastal aquifers. The main goal of this research is to test and demonstrate the viability of using joint interpretation approach of geophysics, geochemical and geological information to investigate groundwater quality in coastal aquifers thus improving on the understanding of using such approach. This work offers the initial thorough assessment of groundwater quality and understanding of the salinity sources and hydro-geochemical processes governing the chemical composition of groundwater in the region. Thus provide advice on the fitness of this water for consumption and irrigation purposes. Thirty-two groundwater samples were collected and analysed for (Mg2+), (Ca2+), (Na+), (K+), (Cl-), (SO42), (HCO3-), (pH, TDS and EC). To estimate fitness of groundwater quality for consumption purposes WHO (2011) and SANS241 guideline were used and for irrigation utilization the water quality indices (EC), (Na+%), (SAR), (RSC), (KR) and (MR) were used. Statistics approaches were employed to ascertain the primary geochemical processes governing the chemical composition of groundwater in the research region. Lastly, the spatial distribution maps were created by means of ArcGIS. Electrical resistivity method was used to map the extent of saline distribution within the subsurface. The findings of this study revealed that groundwater in the region is alkaline type and TDS, EC, Na+, Cl- exceeded WHO and SANS241 guidelines for consumption water. The geophysical investigation revealed that the sandy clay/clayey sand, fine sand and fractured sandstone units make up the coastal aquifer systems within the area. Further, revealed that these aquifers were saturated with fresh, saline or brackish water depending on the subsurface layer. The presence of saline and brackish was confirmed by the chemical results which indicated a Na+-Cl- type as a dominant water type. Also classifying groundwater based on EC and TDS supports these findings. The foremost hydro-geochemical processes that controls the salinity and quality of groundwater in the study region as indicated by Gibbs plot are water-rock interaction followed by evaporation process. Furthermore, analysis of hydrochemical data also proposes that weathering of silicate minerals, ion-exchange and dissolution of carbonate minerals amended ion concentration in groundwater thus influencing salinisation in certain parts of the study region. Also assessment of ionic-ratios displays influences of marine sprays as well as seawater, on the chemical structure of groundwater within the Heuningnes Catchment aquifer. Valuation of groundwater quality and its fitness for ingestion and irrigation purposes, the results indicated that shallow groundwater in the area is not suitable for any use; however, groundwater from deeper boreholes was found fresh and appropriate for irrigation and household purposes. Findings of this study indicated that salinity is the major groundwater quality issue for this area and that monitoring of groundwater quality in Heuningnes Catchment is limited. The absence of consistent monitoring program on groundwater quality makes it difficult to ascertain long term trends on groundwater quality parameters. Therefore, this study emphasizes the need for regular groundwater quality monitoring to assess the trends of these parameters in order to make an informed decision as to what can be done for mitigation purposes.
APA, Harvard, Vancouver, ISO, and other styles
12

Sadoddin, Amir. "Bayesian network models for integrated catchment-scale management of salinity." Phd thesis, 2006. http://hdl.handle.net/1885/150932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Biswas, Falguni. "Hydrology of the upper Hunter catchment." Phd thesis, 2010. http://hdl.handle.net/1885/8760.

Full text
Abstract:
One of the ten objectives of the 2004 Australian National Water Initiative is to manage surface and groundwater as a single resource. In order to do that it is necessary to understand the interactions between surface and groundwater, as well as the impacts of water abstraction, land use change and climate variability. In Australia, not just the quantity of water, but also its quality and particularly its salinity are critically important. Some of the difficulties facing agencies in managing surface and groundwater as a single resource are the extreme variability of climate in Australia, the lack of long-term streamflow and groundwater level data sets and the very limited temporal records on water quality. This thesis presents a study of surface and groundwater interaction and salinity in a selected catchment in the Hunter Valley in mid New South Wales, eastern Australia, where data records are limited and incomplete. The hypotheses tested in this work are that (1) salinity discharge in the Hunter is largely determined by mineral weathering and deep groundwater inflows and (2) a simple parameter-efficient coupled surface and groundwater model can accurately predict groundwater and streamflow behaviour over monthly time scale and is useful in determining surface-groundwater interactions.<....>
APA, Harvard, Vancouver, ISO, and other styles
14

Bugan, Richard. "Hydrosalinity Fluxes in a Small Scale Catchment of the Berg River (Western Cape)." Thesis, 2008. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_6568_1260527874.

Full text
Abstract:

The objective of this study was to determine the hydrosalinity fluxes associated with overland and subsurface (vadose zone) flow for different soils and land uses. For this purpose, the following data were collected during 2005 and 2006 in a typical small scale catchment located near the town of Riebeeck-Wes: weather data, hydrological and water quality measurements, soil water contents and chemistry, and vegetation growth. The area is characterized by a Mediterranean climate receiving winter rainfall of approximately 300 mm a catchment is conservative, with Na + and Cl- being the dominant ions.

APA, Harvard, Vancouver, ISO, and other styles
15

Jasonsmith, Julia F. "Origins of salinity and salinisation processes in the Wybong Creek catchment, New South Wales, Australia." Phd thesis, 2010. http://hdl.handle.net/1885/49429.

Full text
Abstract:
The Wybong Creek catchment is located in the upper Hunter Valley of New South Wales, Australia, and contains award winning beef and wine producing operations. Solute concentrations in Wybong Creek are often too high for irrigation use, however, with previous research showing that the saline and Na-Cl dominated water discharged from Wybong Creek decreases water quality in both the Goulburn and Hunter Rivers into which it flows. This study therefore aimed at identifying the source of solutes to the Wybong Creek catchment and the processes which cause salinisation of surface water, soil (regolith) and groundwater. Surface water was sampled at ten sites along Wybong Creek over three years, while groundwater was sampled from most of the bores and piezometers occurring in the Wybong Creek valley. Surface and groundwater in the upper catchment were dominated by Na-Mg-HCO3. Ratios of 87Sr/86Sr and cation/HCO3 indicated these facies were due to silicate weathering of the Liverpool Ranges, with localised groundwater bodies recharging in the Liverpool Ranges and discharging in the upper Wybong Creek valley. Wybong Creek became saline, and Na-Mg-Cl dominated in the mid-catchment area, with salinity doubling between the 55 and 60 km sample sites on some dates. Changes in surface water chemistry occurred independently of surface water input from tributaries, with abrupt salinity increases within a pool between these sites attributed to groundwater input via fractures beneath the Creek. One of two salt scalds in the Wybong Creek catchment also occurs adjacent to this stretch of river. A field site was established at the mid-catchment locality of Manobalai, therefore, in order to constrain the relationship between surface water, regolith and groundwater salinity. Ten piezometers were established at Manobalai, including three piezometer nests. Most regolith at Manobalai was found to be non-saline, including that within the salt scald, with the most saline and Na-Cl dominated regolith samples occurring in some of the most moist and coarse sandy/gravel layers. Groundwater sampled from piezometers installed in the holes drilled for regolith samples had salinities up to 20 times higher than the regolith on a per weight basis, and were similarly dominated by Na-Cl. A lack of carbonate and sulfate minerals within the soils and no indication of Ca-Mg/HCO3- SO4 dominated facies within alluvial soil solutions indicated groundwater did not evolve from rainwater to Na-Cl dominated facies while infiltrating the regolith. Groundwater samples from Manobalai were instead found to be amongst the most fresh and the most saline within the Wybong Creek catchment, and changed salinity abruptly down-gradient along a transect. Groundwater flow occurred through fractures in the Narrabeen Group sandstones and conglomerates, with vertical groundwater flow via fractures causing abrupt changes in salinity. Ratios of Na/Cl, Cl/Br and 87Sr/86Sr indicated saline groundwater at Manobalai and in the lower catchment was influenced by a marine endmember and halite dissolution. A poor relationship between salinity and d18O indicated this marine endmember was not evapoconcentrated rainwater. The occurrence of saline surface and groundwater in the Wybong Creek catchment was instead attributed to discharge from the regional groundwater system occurring in the Wittingham Coal Measures, with the abrupt increases in salinity at Manobalai indicating mixing between local, intermediate and/or regional groundwater systems. Salinity is likely to function similarly to this in the rest of the Hunter Valley also. The occurrence of salinity in both the Hunter River and Wybong Creek catchments is a naturally occurring phenomenon with salinity mitigation difficult due to the regional extent of the saline groundwater systems. Living with salt strategies are therefore recommended, such as limiting irrigation using both saline and fresh water and continuing with restrictions on saline discharge from coal mines.
This work was supported by ARC Linkage grant number LP05060743. Scholarship funding was provided by The Australian National University Faculty of Science and Research School of Earth Sciences, with project funding and support also provided by Hunter Central Rivers Catchment Management Authority and the New South Wales Office of Water.
APA, Harvard, Vancouver, ISO, and other styles
16

Lerotholi, Sekhonyana. "The role of salinity as an abiotic driver of ecological condition in a rural agricultural catchment /." 2005. http://eprints.ru.ac.za/299/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Peterson, Tim J. "Multiple hydrological steady states and resilience." 2009. http://repository.unimelb.edu.au/10187/8540.

Full text
Abstract:
Many physically-based models of surface and groundwater hydrology are constructed without the possibility of multiple stable states. For such a conceptualisation, at the cessation of a transient hydrological disturbance of any magnitude, the model will return to the original stable state and therefore will have an infinite resilience. Ecosystem resilience science propose a very different dynamic where, if the system has a positive feedback, disturbances may shift the system over a threshold where, upon cessation of the disturbance, the system will move to a different steady state. This dissertation brings together concepts from hydrology and ecosystem resilience science to highlight this often implicit assumption within hydrology. It tests the assumption that dry land water-limited catchments always have only one steady state (henceforth referred to as 'attractor'). Following a discussion of this implicit assumption within hydrology, approaches for rigorous testing that could result in its falsification are considered and that of numerical modelling is adopted. The aims of the research were to test this assumption by proposing a biophysically plausible hydrological model; utilise it to investigate the catchment attributes likely to result in multiple attractors; and to assess the model's validity by way of implementation and calibration. (For complete abstract open document.)
APA, Harvard, Vancouver, ISO, and other styles
18

Nikrouz, Ramin. "Three-dimensional (3D) three-component (3C) shallow seismic refraction surveys across a shear zone associated with dryland salinity at the Spicers Creek Catchment, New South Wales, Australia /." 2005. http://www.library.unsw.edu.au/~thesis/adt-NUN/public/adt-NUN20050527.093553/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography