Dissertations / Theses on the topic 'Catchment runoff'

To see the other types of publications on this topic, follow the link: Catchment runoff.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Catchment runoff.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Hyde, Michael L. "Urban runoff quality in the River Sowe catchment." Thesis, Coventry University, 2006. http://curve.coventry.ac.uk/open/items/9c34fa51-7611-4362-844d-30d87ba84205/1.

Full text
Abstract:
There have been no previous studies carried out on the impact of urban runoff in the Coventry City centre area. The culverted nature of the River Sherbourne, and many of its tributaries, makes the investigation of intermittent pollution and rainfall events expensive and impractical, when using traditional spot sample methods. Storm events have been monitored over a period of over 60 months upstream and downstream of the City, using continuous water quality monitors and auto-spot sample methods. The receiving waters of the River Avon had previously suffered annual fish mortalities as a result of summer storm events causing oxygen depletion. Previous studies (Clifforde and Williams 1997) on the impact of Coventry Sewage Treatment Works effluent on the watercourse, have suggested a major component of the intermittent pollutant load arising from the City (upstream of the Sewage Treatment Works), which requires evaluation and remediation. This research identifies the contaminants found during a series of storm events impacting on the River Sherbourne culvert, and discusses the relationship between them and the increased flow measured. The methodology was divided into 3 Phases; Phase 1 examined all of the watercourses in the River Sowe catchment, and identified the culverted streams and drainage system giving an indication of the presence of pollutant sources. Continuous monitors were deployed within the four identified drainage systems to pinpoint intermittent and illegal contaminated discharges, and these discharges were subsequently redirected to the foul sewer or stopped. Phase 2 examined the quality of the River Sherbourne culvert upstream and downstream of the city centre, and demonstrated (using continuous monitors and automated sampling), that six combined sewer overflows discharging to the watercourse upstream of the culvert were opening unsatisfactorily. The dissolved oxygen levels were significantly reduced during rainfall events (with a loss of diurnal variation), and total ammonium levels exceeded current water quality standards. The results were used to instigate a remediation scheme to replace the overflows with additional foul sewage capacity, and a single high-level storm relief. Phase 3 examined the impact of urban runoff during rainfall events after the improvements made following Phases 1 and 2. The results suggest a marked improvement in the water quality, with little impact from organic pollutants. Dissolved oxygen concentrations remained high during many of the post-remedial rainfall events, and ammonia levels remained largely insignificant. The results indicated a fall in pH levels during the rainfall events and increases in all of the heavy metals analysed, though not beyond current water quality guidelines. The efficiency of using continuous monitoring in Coventry was assessed and likely sources of the contaminants in urban runoff were considered. The statistics of compliance with percentile standards do not allow for short-term pollution or storm events, which may kill all aquatic life whilst not breaching water quality standards. Using continuous monitors to identify intermittent and illegal discharges in underground drainage systems was an efficient and cost-effective method of reducing the impact of urban runoff in a failing watercourse. The methodology can be applied to other urban areas to identify unidentified illegal and intermittent point sources. Routine monthly monitoring of an urban watercourse may not identify the peaks and troughs associated with rainfall events that may breach toxicological guidelines, and will not identify intermittent and unknown pollutant sources; particularly when discharging outside of normal working hours. This research was a unique and comprehensive investigation into the nature and composition of urban runoff in the City of Coventry, and local data gathered will be invaluable in promoting further research, improving local knowledge of the urban environment in preparation for the Water Framework Directive (2000/60/EC), and in planning for environmental improvements in the future.
APA, Harvard, Vancouver, ISO, and other styles
2

Whelan, Michael John. "Numerical modelling of small catchment nitrogen dynamics with particular reference to the Slapton Wood catchment, South Devon." Thesis, University of Leeds, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Skoog, Peter, and Henrik Bodin-Sköld. "Nutrients and runoff in a small catchment during spring 2010." Thesis, Linköping University, Linköping University, Department of Water and Environmental Studies, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57611.

Full text
Abstract:

Eutrophication is an increasing problem in the Baltic Sea and is caused by an excess of nutrients in the water which are primarily transported with the runoff from cultivated land. The peninsula Vikbolandet in Östergötland is dominated by arable land and has stream outflows to the bays of Bråviken and Slätbaken. In this study five streams of Vikbolandet have been sampled during the spring flood period with the aim of connecting concentrations of nutrients in the streams with turbidity and runoff in the catchment. This analysis has then been related to the land use in the small catchment of Vadsbäcken in order to investigate the impact of land uses with areal losses of phosphorus. The results indicate that there are increasing concentrations of phosphorus downstream in the sites of Vadsbäcken and that the transported amounts of phosphorus increases with the spring flood and at a rainstorm event. It is shown that the distribution of agricultural blocks in the catchment of Vadsbäcken has a major impact on the nutrient leakage. There is a co-variation between turbidity and runoff during a rainstorm event and between particulate-bound phosphorus and runoff over time. A further aim has been to investigate possibilities for use of an easily managed, cost-effective environmental monitoring method for nutrient measurements in watercourses. Within four out of five streams at Vikbolandet there is a significant co-variation between turbidity and total phosphorus. Using field measurements of turbidity for environmental monitoring could provide a viable alternative for environmental monitoring of watercourses but will need further investigations of co-variation before being brought into use. Further, this study shows that the transport of phosphorus is underestimated in environmental monitoring

APA, Harvard, Vancouver, ISO, and other styles
4

Llewellyn, Neville. "The movement of pesticides within a mixed land use catchment." Thesis, Middlesex University, 1999. http://eprints.mdx.ac.uk/13281/.

Full text
Abstract:
Although the application of UK non-agricultural pesticides (mainly herbicides) comprises only 3% of the total amount used, similar concentrations of agriculturally and non-agriculturallyderived pesticides are routinely detected in surface waters. This has led to concern regarding the contamination of drinking water resources at concentrations above the statutory limits of the EC Drinking Water Directive (ECDWD), and the consequent risk to human health. Before the risks to drinking water resources can be fully assessed, it is important to understand and subsequently predict the chronic and transient levels of herbicide occurrence in receiving surface waters as a result of their normal application. The factors which influence herbicide transport to the aquatic environment from sites of application, particularly from the wide variety of application substrates, are not fully understood. This project addresses this lack of knowledge through an eighteen-month programme (January 1992-March 1993) of storm event herbicide monitoring on a mixed land use catchment at North Weald (Essex) which periodically received applications of common agricultural and non-agricultural herbicides including chlorotoluron, isoproturon, diuron, simazine and atrazine. To support the field monitoring programme a robust multi-residue pesticide method was developed for the simultaneous determination of the previously mentioned compounds from storm water. This was based on liquid-liquid extraction into dichloromethane and high performance liquid chromatography using photo diode array detection. The pesticide runoff data from agricultural land agreed with similar experiments carried out in the UK. The ECDWD was frequently exceeded in baseflow conditions and more frequently during storm event periods. The extent of the exceedance was found to be related to the period which had elapsed between the herbicide application and the timing of the surface water sampling. The range of application losses for the agricultural data-set was 4.0xlO-4-O.204% (median; 4.6x10-2%). The range of peak storm event concentrations was 0.03-10.0jJg/1 (median; 0.34pg/I). Similar exceedances of the ECDWD were observed during storm and non-storm conditions for discharged waters from the urban land area of the catchment. For the urban runoff data-set, the range of application losses was 0.01-45.1% (median; 0.28%) and the range of peak storm event concentrations was 0.2-238.4pg/1 (median; 0.7pg/l). The results of the monitoring programme show that the underlying factor that differentiated between the fates of herbicides applied to the North Weald catchment was the difference in the application substrate properties. Specifically, the hard surfaces, where low infiltration capacity promotes the generation of relatively high volumes of surface runoff and where poor retention behaviour exists, allow applied herbicides to be readily transported in storm event runoff to receiving surface waters. The simazine, isoproturon, chlorotoluron and diuron runoff data produced during the monitoring programme were successfully modelled using the fugacity-based Soilfug model. In the case of chlorotoluron, this model s performance was compared with a statistical model produced using multiple linear regression analysis, which showed the former approach to be superior since it required less input data and was not site specific.
APA, Harvard, Vancouver, ISO, and other styles
5

McCartney, Matthew Peter. "The hydrology of a headwater catchment containing a dambo." Thesis, University of Reading, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

James, April Lynda. "Investigating small multiple catchment runoff generation in a forested temperate watershed." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100630.

Full text
Abstract:
Runoff generation refers to the physical processes by which water travels through the landscape, moving through the subsurface or over the ground surface, ultimately arriving at the stream channel. These physical processes vary in both space and time leading to difficulties in mechanistic modelling of storm response, contaminant transport and nutrient fluxes. Runoff generation has been extensively studied at the hillslope scale and in headwater catchments. However, only recently have empirical studies begun to collect similarly detailed datasets across multiple catchments with which to examine how these processes change with scale. This study examines runoff generation from a series of eight small nested forest catchments and focuses specifically on the controlling influences of antecedent moisture conditions and catchment topography.
End-member-mixing-analysis using stream water hydrochemistry from the eight catchments shows changing seasonal and storm-based source water contributions to the stream channel. Analysis identifies hydrochemical solutes with behaviour consistent with the assumptions of the mixing-model approach for all eight catchments. Results indicate that testing of solute selection is critical in the application of this method to multiple catchments.
Runoff generation observed for five storm events shows a strong nonlinear relationship between runoff and antecedent moisture conditions, supporting the hypothesis of varying 'states of wetness'. Detailed hillslope-scale investigation during the different 'states of wetness' indicates that while groundwater and soil moisture profiles show changing active-flow connectivity on a seasonal and storm-base dtime scale, there no significant change in spatial patterns of shallow soil moisture. These results suggest that a priori spatial patterns in shallow soil moisture in forested terrains may not be a good predictor of critical hydrologic connectivity that leads to the threshold change in runoff generation, as has been found in rangeland catchments.
Differences in storm response from the eight catchments are in part attributable to variation in topography and landscape organization. The multiple catchments have similar distributions of topographic index and yet differences in mean values of topographic index lead to significantly different estimates of mean residence time. Scaling of storm response is dominated by the behaviour of the three largest catchments. These three catchments distinguish themselves with larger MRT and larger valley bottom areas. It is these three catchments that, under dry antecedent moisture conditions, show significantly larger amounts of new water delivery to the stream channel, suggesting a significant change in dominant runoff mechanisms related to topography and landscape organization.
APA, Harvard, Vancouver, ISO, and other styles
7

Godun, Oleh Serhiyovich. "Generation of phosphorus bioavailability in runoff from a calcareous agricultural catchment." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Young, Andrew Richard. "Regionalising a daily rainfall runoff model within the United Kingdom." Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zakharova, Yulia S. "Highway drainage as a component of metal input into the catchment." Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/8254.

Full text
Abstract:
Highway runoff, as a nonpoint source, may exert significant pollutant load on the catchment. Finding ways to mitigate nonpoint sources of pollutants is a matter of great concern for improving water quality. It was cited by the Environment Agency in 2005 that more than 80% of English rivers were at risk of failing to achieve Water Framework Directive (WFD) objectives through diffuse pollution (Faram, 2007; p.14). The presence and behaviour of metals were analysed and compared through seasonal sampling from one of the most trafficked roads in the Midlands, M1. These were compared with other sources: local streams and sewage works. The concentration of metals in stormwater from the M1, three neighbouring rural brooks and three local sewage works, all in the same catchment, were sampled. Three metals (Fe, Cu and Zn) were used as an indicator because of their predominance and potential harmful effect on biodiversity. The data was analysed to establish any links between the total and dissolved metals and standard water quality parameters. The thesis also examines the performance of a standard highway treatment system of interceptor and lagoon for removing metals. The results indicate that evaporation and de-icer salts had the strongest effect on metal concentrations and their solubility in the runoff from the M1. As additional factors, rainfall intensity and antecedent dry weather period (ADWP) had the most important influence on metal concentrations. Fe was always at the highest concentrations for all weather conditions (total and dissolved) and all sampling locations. The results also showed that Fe was affiliated with the particulate matter; however, it was also suggested that it was solubilised by anaerobic conditions. Zntot during wet weather exceeded the environmental quality standards (EQS) both on the M1 and in Woodbrook. The sewage work effluent did not exceed the EQS at any time of sampling. It was also found that Zn solubility was increased by the presence of de-icer salts which released it from the sediment by a process of ion-exchange, as suggested by the literature. Cu concentrations had the most erratic values and varied widely but were in the lowest concentrations compared to other metals. During wet weather Cudis from the M1 runoff exceeded the EQS. It was also concluded that the analytical and sample preservation methods chosen could have an effect on the concentrations of copper. Filtration with recycled glass and pea-gravel was able to remove particles down to 5 μm, but at the typical flow rate (5 m/hr), and solids loading the filters would need regular washing. The adsorption studies showed that metals are more effectively removed by alkaline conditions than acid conditions which release metals into the environment.
APA, Harvard, Vancouver, ISO, and other styles
10

Goyen, Allan. "Spatial and temporal effects on urban rainfall/runoff modeling." Online version, 2000. http://hdl.handle.net/2100/626.

Full text
Abstract:
University of Technology, Sydney. Faculty of Engineering.
Although extensive worldwide literature on urban stormwater runoff exists, very few publications describe runoff development in terms of its basic building blocks or processes and their individual and accumulative significance in response to varying inputs and boundary conditions. Process algorithms should respond accurately to varying input magnitudes and characteristics as well as to changes in antecedent conditions. The present state of estimation errors involved in many current numerical simulation techniques has been reviewed in this thesis. A significant amount of errors that are presently encountered for have been explained in terms of undefined process response not explicitly included within many modelling methodologies. Extensive field monitoring of intra-catchment rainfall and runoff within an urban catchment at Giralang in Canberra, which is typical of Australian urban catchments, was carried out over a 3-year period to define and measure individual runoff processes. This monitoring work led to a greater understanding of the processes driving the aggregation of local runoff from many sub-areas into the runoff observed at full catchment scale. The results from the monitoring process prompted a number of approaches to potentially reduce standard errors of estimate from model-attributable errors based on improvements to definable catchment response mechanisms. The research isolated a number of basic building blocks associated with typical residential allotments, that can be grouped into roof drainage, yard drainage and adjacent road drainage. A proposed modelling approach was developed that allowed these building blocks at an allotment scale to be simply computed using storage routing techniques. This then aggregated via the total catchment’s public drainage system isochronal characteristics utilising a “process tree” approach to provide full catchment scale runoff response. The potential reduction in estimation errors utilising the developed procedure was assessed using a large number of recorded events from the Giralang catchment monitoring data. The proposed numerical modelling approach was found to provide significant improvements over current methods and offered a scale-independent and stormindependent methodology to model catchments of any size without the need for changes to any of the runoff routing parameters. Additionally the approach permits the flexible sequencing and inclusion of a wide range of different urban drainage structures within a catchment that are representative of the local characteristics. The developed procedure also includes a spatially varied water balance approach to infiltration estimation that is more suited to future continuous simulation models. The developed “flexible process tree” approach provides an important step forward in the numerical modelling of complex urban drainage systems. This can reduce errors of estimate by improving intra-catchment process representation.
APA, Harvard, Vancouver, ISO, and other styles
11

Chingombe, Wisemen. "Effects of land-cover - land-use on water quality within the Kuils - Eerste River catchment." Thesis, University of Western Cape, 2012. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_5893_1373463134.

Full text
Abstract:

The most significant human impacts on the hydrological system are due to land-use change. The conversion of land to agricultural, mining, industrial, or residential uses significantly alters the hydrological characteristics of the land surface and modifies pathways and rates of water flow. If this occurs over large or critical areas of a catchment, it can have significant short and long-term impacts, on the quality of water. While there are methods available to quantify the pollutants in surface water, methods of linking non-point source pollution to water quality at catchment scale are lacking. Therefore, the research presented in this thesis investigated modelling techniques to estimate the effect of land-cover type on water quality. The main goal of the study was to contribute towards improving the understanding of how different land-covers in an urbanizing catchment affect surface water quality. The aim of the research presented in this thesis was to explain how the quality of surface runoff varies on different land-cover types and to provide guidelines for minimizing water pollution that may be occurring in the Kuils-Eerste River catchment. The research objectives were
(1) to establish types and spatial distribution of land-cover types within the Kuils-Eerste River catchment, (2) to establish water quality characteristics of surface runoff from specific land-cover types at the experimental plot level, (3) to establish the contribution of each land-cover type to pollutant loads at the catchment scale. Land-cover characteristics and water quality were investigated using GIS and Remote Sensing tools. The application of these tools resulted in the development of a land-cover map with 36 land classifications covering the whole catchment. Land-cover in the catchment is predominantly agricultural with vineyards and grassland covering the northern section of the catchment. Vineyards occupy over 35% of the total area followed by fynbos (indigenous vegetation) (12.5 %), open hard rock area (5.8 %), riparian forest (5.2 %), mountain forest 
 
(5 %), dense scrub (4.4 %), and improved grassland (3.6 %). The residential area covers about 14 %. Roads cover 3.4 % of the total area.
Surface runoff is responsible for the transportation of large quantities of pollutants that affect the quality of water in the Kuils-Eerste River catchment. The different land-cover types and the distribution and concentration levels of the pollutants are not uniform. Experimental work was conducted at plot scale to understand whether land-cover types differed in their contributions to the concentration of water quality attributes emerging from them. Four plots each with a length of 10 m to 12 m and 5 m width were set up. Plot I was set up on open grassland, Plot II represented the vineyards, Plot III covered the mountain forests, and Plot IV represented the fynbos land-cover. Soil samples analyzed from the experimental plots fell in the category of sandy soil (Sa) with the top layer of Plot IV (fynbos) having loamy sand (LmSa). The soil particle sizes range between fine sand (59.1 % and 78.9 %) to coarse sand (between 7 % and 22 %). The content of clay and silt was between 0.2 % and 2.4 %. Medium sand was between 10.7 % and 17.6 %. In terms of vertical distribution of the particle sizes, a general decrease with respect to the size of particles was noted from the top layer (15 cm) to the bottom layer (30 cm) for all categories of the particle sizes. There was variation in particle size with depth and location within the experimental plots.Two primary methods of collecting water samples were used
grab sampling and composite sampling. The quality of water as represented by the samples collected during storm events during the rainfall season of 2006 and 2007 was 
used to establish  
water quality characteristics for the different land-cover types. The concentration of total average suspended solids was highest in the following land-cover types, cemeteries (5.06 mg L-1), arterial roads/main roads (3.94 mg L-1), low density residential informal squatter camps (3.21 mg L-1) and medium density residential informal townships (3.21 mg L-1). Chloride concentrations were high on the following land-cover types, recreation grass/ golf course (2.61 mg L-1), open area/barren land (1.59 mg L-1), and improved grassland/vegetation crop (1.57 mg L-1). The event mean concentration (EMC) values for NO3-N were high on commercial mercantile (6 mg L-1) and water channel (5 mg L-1). The total phosphorus concentration mean values recorded high values on improved grassland/vegetation crop (3.78 mg L-1), medium density residential informal townships (3mgL-1) and low density residential informal squatter camps (3 mg L-1). Surface runoff may also contribute soil particles into rivers during rainfall events, particularly from areas of disturbed soil, for example areas where market gardening is taking place. The study found that different land cover types contributed differently to nonpoint source pollution.
A GIS model was used to estimate the diffuse pollution of five pollutants (chloride, phosphorus, TSS, nitrogen and NO3-N) in response to land cover variation using water quality data. The GIS model linked land cover information to diffuse nutrient signatures in response to surface runoff using the Curve Number method and EMC data were developed. Two models (RINSPE and N-SPECT) were used to estimate nonpoint source pollution using various GIS databases. The outputs from the GIS-based model were compared with recommended water quality standards. It was found that the RINSPE model gave accurate results in cases where NPS pollution dominate the total pollutant inputs over a given land cover type. However, the N-SPECT model simulations were too uncertain in cases where there were large numbers of land cover types with diverse NPS pollution load. All land-cover types with concentration values above the recommended national water quality standard were considered as areas that needed measures to mitigate the adverse effects of nonpoint pollution. The expansion of urban areas and agricultural land has a direct effect on land cover types within the catchment. The land cover changes have adverse effect which has a potential to contribute to pollution.

APA, Harvard, Vancouver, ISO, and other styles
12

Smith, Russell. "Space-time dynamics of runoff generation in a snowmelt-dominated montane catchment." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/38132.

Full text
Abstract:
Runoff source area dynamics are controlled by the interaction of processes influencing the dynamics of water inputs at the soil surface and processes influencing vertical versus lateral flux partitioning at or below the soil surface coupled with variability in connectivity between runoff generating areas. These issues are investigated for the snowmelt-dominated Cotton Creek Experimental Watershed in southeast British Columbia, Canada. First, the controls on midwinter snowmelt are investigated. Accumulated snowmelt during the midwinter period of 2007 with nearly continuous subzero air temperatures comprised between 3% and 27% of the total snowfall. This, and other circumstantial evidence, supports the hypothesis that soil heat flux generated the midwinter snowmelt. Early-winter soil hydrothermal conditions and midwinter meteorological conditions are important controls on the midwinter melt dynamics. Second, the influences of soil hydraulic conductivity (Ks) and water input dynamics on the formation of transient perched shallow groundwater via percolation-excess processes are investigated. The results suggest that the initiation depth and maximum water table level vary according to and can be predicted by an interplay between the Ks profile and the maximum water input intensity during an event. At sites where Ks does not decrease gradually with depth, water input intensity does not appear to influence the depth of groundwater initiation. Last, seasonal variation in the spatial controls on the occurrence, timing, and persistence of shallow groundwater response are examined. The Ks of the soil at 75 cm depth is a first-order control on the distribution of sites that generate shallow groundwater response versus sites that experience only deep percolation. Upslope contributing area and slope gradient are first-order controls on the persistence of shallow groundwater response during peak flow, recession flow, and low flow periods, and runoff source areas expand and contract throughout these periods according to an interplay between catchment wetness and the spatial patterns of topographic convergence. However, controls on the space-time distribution and rates of snowmelt, and controls on vertical versus lateral flux partitioning in the soil overwhelm the importance of topographic convergence during early spring freshet periods.
APA, Harvard, Vancouver, ISO, and other styles
13

Williams, Jamie. "The effect of water-use efficiency on catchment runoff in Great Britain." Thesis, Swansea University, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Senior, Anna. "Catchment factors affecting particle and phosphorus retention in constructed wetlands receiving agricultural runoff." Thesis, Linköpings universitet, Biologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-74262.

Full text
Abstract:
Eight agricultural catchments in south Sweden were investigated for factors that may affect phosphorus (P) load and retention in the downstream situated wetlands (WL). P load is known to affect retention, and is determined by hydrological and geographical catchment characteristics. The wetlands were small (0.02-0.88%) in relation to their catchments (CA) and varied in design. Net sedimentation and P retention was determined with sedimentation plates during one year. The variables that best explained differences in particles and TP retention were the hydraulic load (q), TP load and the wetland length to width ratio. Contrary to expectations there was no correlation between factors that could be associated with erosion (i.e. slope and soil clay content) and retention of neither particles nor TP. Generally, the highest amounts of settled particles and P were found close to the wetland inlets, but soil disturbance (i.e. tillage) and high q increased the settling distance. It was likely that the smallest clay particles were too unaggregated to settle within these wetlands. Factors not included, such as wetland vegetation and bioturbation may have a large impact on P retention and this should be further investigated. The study also points to the difficulties in scaling down geological and P loss data from a regional to a local scale, as there can be large local deviations from the regional standard values. An easy method for identification of local “hotspots” for P losses should be of value for planning the location of future wetlands.
APA, Harvard, Vancouver, ISO, and other styles
15

French, Rachel. "Modelling urban runoff : volume and pollutant concentration of the Barker Inlet Wetland Catchment." Title page, abstract and contents only, 1999. http://web4.library.adelaide.edu.au/theses/09ENS/09ensf875.pdf.

Full text
Abstract:
Bibliography :leaves 158-171. A monitoring program, funded by the South Australian government (through the former MFP Development Corporation), was established to monitor the quality and quantity of storm water entering and leaving the wetland. This study formed part of the funded program. Simple regression models were developed; and will assist in the monitoring of performance of the wetland to alleviate the pollutant load into the Barker Inlet.
APA, Harvard, Vancouver, ISO, and other styles
16

Thornton, Craig Matthew. "Effects of Land Development on Peak Runoff Rate and its Prediction for Brigalow Catchments in Central Queensland, Australia." Thesis, Griffith University, 2012. http://hdl.handle.net/10072/365709.

Full text
Abstract:
The estimation of runoff volume and peak runoff rate has been the focus of significant hydrological research worldwide. The results of these studies, usually in the form of empirical relationships or models, are intrinsically linked to the environment in which the study was conducted. This often limits the applicability and accuracy of the method of runoff estimation at alternative and ungauged locations. Within the brigalow belt of central Queensland, Australia, a scarcity of stream gauging stations to measure runoff volume and peak runoff rate has impeded research on the surface water hydrology of the region. Intermittent failure of these stations and consequently, multiple periods of missing data, have added further complexity and challenge to the understanding of catchment hydrology in the region. Commencing in 1965 and continuing today, the Brigalow Catchment Study in central Queensland has measured both runoff volume and peak runoff rate from three small catchments which initially contained native brigalow scrub. The natural hydrology of the three catchments was characterised during a 17-year calibration period from 1965 to 1981. In 1982, two of the three catchments were cleared, with one developed for cropping and one developed for improved pasture, while the third was retained as an uncleared control catchment. Study of the effect of land development on surface hydrology commenced in 1984. Twenty-one years of record was used to quantify the changes in peak runoff rate associated with land development. Results however, were confounded by missing data. To allow for robust analysis, estimates of missing data were generated via three different methods: (1) multiple variable regression analyses; (2) Soil Conservation Service curve number and graphical peak discharge methodologies; and (3) a simple variable infiltration rate model. The suitability of each technique for the estimation of peak runoff rate was assessed using both graphical and numerical evaluation.
Thesis (Masters)
Master of Philosophy (MPhil)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
APA, Harvard, Vancouver, ISO, and other styles
17

Gräff, Thomas. "Soil moisture dynamics and soil moisture controlled runoff processes at different spatial scales : from observation to modelling." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5447/.

Full text
Abstract:
Soil moisture is a key state variable that controls runoff formation, infiltration and partitioning of radiation into latent and sensible heat. However, the experimental characterisation of near surface soil moisture patterns and their controls on runoff formation remains a challenge. This subject was one aspect of the BMBF-funded OPAQUE project (operational discharge and flooding predictions in head catchments). As part of that project the focus of this dissertation is on: (1) testing the methodology and feasibility of the Spatial TDR technology in producing soil moisture profiles along TDR probes, including an inversion technique of the recorded signal in heterogeneous field soils, (2) the analysis of spatial variability and temporal dynamics of soil moisture at the field scale including field experiments and hydrological modelling, (3) the application of models of different complexity for understanding soil moisture dynamics and its importance for runoff generation as well as for improving the prediction of runoff volumes. To fulfil objective 1, several laboratory experiments were conducted to understand the influence of probe rod geometry and heterogeneities in the sampling volume under different wetness conditions. This includes a detailed analysis on how these error sources affect retrieval of soil moisture profiles in soils. Concerning objective 2 a sampling strategy of two TDR clusters installed in the head water of the Wilde Weißeritz catchment (Eastern Ore Mountains, Germany) was used to investigate how well “the catchment state” can be characterised by means of distributed soil moisture data observed at the field scale. A grassland site and a forested site both located on gentle slopes were instrumented with two Spatial TDR clusters that consist of up to 39 TDR probes. Process understanding was gained by modelling the interaction of evapotranspiration and soil moisture with the hydrological process model CATFLOW. A field scale irrigation experiment was carried out to investigate near subsurface processes at the hillslope scale. The interactions of soil moisture and runoff formation were analysed using discharge data from three nested catchments: the Becherbach with a size of 2 km², the Rehefeld catchment (17 km²) and the superordinate Ammelsdorf catchment (49 km²). Statistical analyses including observations of pre-event runoff, soil moisture and different rainfall characteristics were employed to predict stream flow volume. On the different scales a strong correlation between the average soil moisture and the runoff coefficients of rainfall-runoff events could be found, which almost explains equivalent variability as the pre-event runoff. Furthermore, there was a strong correlation between surface soil moisture and subsurface wetness with a hysteretic behaviour between runoff soil moisture. To fulfil objective 3 these findings were used in a generalised linear model (GLM) analysis which combines state variables describing the catchments antecedent wetness and variables describing the meteorological forcing in order to predict event runoff coefficients. GLM results were compared to simulations with the catchment model WaSiM ETH. Hereby were the model results of the GLMs always better than the simulations with WaSiM ETH. The GLM analysis indicated that the proposed sampling strategy of clustering TDR probes in typical functional units is a promising technique to explore soil moisture controls on runoff generation and can be an important link between the scales. Long term monitoring of such sites could yield valuable information for flood warning and forecasting by identifying critical soil moisture conditions for the former and providing a better representation of the initial moisture conditions for the latter.
Abflussentwicklung, Infiltration und die Umverteilung von Strahlung in latenten und sensiblen Wärmestrom werden maßgeblich durch die Bodenfeuchte der vadosen Zone gesteuert. Trotz allem, gibt s wenig Arbeiten die sich mit der experimentellen Charakterisierung der Bodenfeuchteverteilung und ihre Auswirkung auf die Abflussbildung beschäftigen. Der Fokus dieser Dissertation wurde darauf ausgerichtet: (1) die Methode des Spatial TDR und deren Anwendbarkeit einschließlich der Inversion des TDR Signals in heterogenen Böden zu prüfen, (2) die Analyse der räumlichen und zeitlichen Dynamik der Bodenfeuchte auf der Feldskala einschließlich Feldexperimenten und hydrologischer Modellierung, (3) der Aufbau verschiedener Modellanwendungen unterschiedlicher Komplexität um die Bodenfeuchtedynamiken und die Abflussentwicklung zu verstehen und die Vorhersage des Abflussvolumens zu verbessern. Um die Zielsetzung 1 zu erreichen, wurden verschiedene Laborversuche durchgeführt. Hierbei wurde der Einfluss der Sondenstabgeometrie und verschiedener Heterogenitäten im Messvolumen bei verschiedenen Feuchtegehalten untersucht. Dies beinhaltete eine detaillierte Analyse wie diese Fehlerquellen die Inversion des Bodenfeuchteprofils beeinflussen. Betreffend der Zielsetzung 2, wurden 2 TDR-Cluster in den Quellgebieten der Wilden Weißeritz installiert (Osterzgebirge) und untersucht, wie gut der Gebietszustand mit räumlich hochaufgelösten Bodenfeuchtedaten der Feldskala charakterisiert werden kann. Um die Interaktion zwischen Evapotranspiration und Bodenfeuchte zu untersuchen wurde das hydrologische Prozessmodell CATFLOW angewendet. Ein Beregnungsversuch wurde durchgeführt um die Zwischenabflussprozesse auf der Hangskala zu verstehen. Die Interaktion zwischen Bodenfeuchte und Abflussentwicklung wurde anhand von drei einander zugeordneten Einzugsgebieten analysiert. Statistische Analysen unter Berücksichtigung von Basisabfluss, Bodenvorfeuchte und verschiedenen Niederschlagscharakteristika wurden verwendet, um auf das Abflussvolumen zu schließen. Auf den verschiedenen Skalen konnte eine hohe Korrelation zwischen der mittleren Bodenfeuchte und dem Abflussbeiwert der Einzelereignisse festgestellt werden. Hierbei konnte die Bodenfeuchte genauso viel Variabilität erklären wie der Basisabfluss. Im Hinblick auf Zielsetzung 3 wurden “Generalised liner models” (GLM) genutzt. Dabei wurden Prädiktorvariablen die den Gebietszustand beschreiben und solche die die Meteorologische Randbedingungen beschreiben genutzt um den Abflussbeiwert zu schätzen. Die Ergebnisse der GLMs wurden mit Simulationsergebnissen des hydrologischen Gebietsmodells WaSiM ETH verglichen. Hierbei haben die GLMs eindeutig bessere Ergebnisse geliefert gegenüber den WaSiM Simulationen. Die GLM Analysen haben aufgezeigt, dass die verwendete Messstrategie mehrerer TDR-Cluster in typischen funktionalen Einheiten eine viel versprechende Methode ist, um den Einfluss der Bodenfeuchte auf die Abflussentwicklung zu verstehen und ein Bindeglied zwischen den Skalen darstellen zu können. Langzeitbeobachtungen solcher Standorte sind in der Lage wichtige Zusatzinformationen bei der Hochwasserwarnung und -vorhersage zu liefern durch die Identifizierung kritischer Gebietszustände für erstere und eine bessere Repräsentation der Vorfeuchte für letztere.
APA, Harvard, Vancouver, ISO, and other styles
18

Ockenden, Mary Catherine. "Identification of catchment runoff processes as a basis for defining water quality protection zones." Thesis, Lancaster University, 2010. http://eprints.lancs.ac.uk/66951/.

Full text
Abstract:
'Protection zones' for water quality are often defined as areas within the landscape where potentially polluting activities are excluded or restricted, with the aim of reducing the quantity of pollutants reaching the waterways. Such protection zones are needed in relation to agrochemical pollution from farming. This study uses a combination of hydrological, hydrochemical and modelling approaches to identify the nature and likelihood of generation of different hydrological flow pathways and to recommend hydrology-based protection zones for overland flow within an agricultural catchment. The study is based in the 616 km2 Upper Eden catchment in Cumbria, and one of its subcatchments, Blind Beck (8.8 km2). Transfer function modelling of rainfall-flow is used to investigate how the dominant mode(s) of stream response varies for different scale catchments (1 km2 to 616 km2). This indicates more water taking slower pathways as the proportion of the catchment on permeable sandstone increases. Chemical sampling, high temporal resolution measurements of specific conductivity, stream water temperature and diurnal variations of stream ions show results consistent with the rainfall-flow modelling in identifying a higher proportion of water on slower pathways in a small catchment on sandstone. Spatial distributions of surface soil moisture at 10 plots in Blind Beck investigate how topography, slope and land use affect the local distribution of surface saturation that produces saturation overland flow. At the plot scale, wetness distributions predicted by the Kirkby topographic index show significant discrepancies with the observed soil moisture distributions. A conceptual model for defining hydrology-based protection zones for overland flow combines areas of highest pollutant source risk with areas likely to generate overland flow. Overall, this study shows that while the factors controlling the location of saturated areas are complex, identification of the dominant hydrological pathways is fundamental to the design of water protection zones.
APA, Harvard, Vancouver, ISO, and other styles
19

Li, Yanqiu. "Monitoring, analyzing and modeling hydrological processes over a headwater catchment in Hong Kong." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43085349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Males, Ryan James. "Complex, deterministic hydrological modelling towards decision support for urban catchment management." Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52170.

Full text
Abstract:
Thesis (M.ScEng.)--Stellenbosch University, 2001.
ENGLISH ABSTRACT: Historically, urban waterresources have too often been managed without recognition that the flow in a river integrates many landscape and biological features. This has often resulted in the elimination of natural processes and their replacement by man-made streamlined structures with the effects of increased urbanisation being primarily addressed from an engineering and economics point of view to the detriment of environmental and social issues. Catchment Management, as legislated in the Water Act, No. 36 of 1998, is a management approach to address the negative consequences of an urban stormwater design philosophy restricted to flood restriction. It is a systems approach that integrates engineering and scientific skills, socio-economic concerns, and environmental constraints within a new multidisciplinary decision-making process that recognises the different components of the hydrological and aquatic cycles are linked, and each component is affected by changes in every other component. In order to make effective management decisions, catchment managers require tools to provide reliable information about the performance of alternative arrangements of stormwater management facilities and to quantify the effects of possible management decisions on the water environment. A deterministic hydrological model is such a tool, which provides the link between the conceptual understanding of the physical catchment characteristics and the empirical quantification of the hydrological, water quality and ecological response. In order to provide effective computer based decision support, the hydrological model must be part of an integrated software application in which a collection of data manipulation, analysis, modelling and interpretation tools, including GIS, can be efficiently used together to manage a large potion of the overall decision process. This decision support system must have a simple and intuitive user interface able to produce easily interpreted output. It must have powerful graphical presentation capabilities promoting effective communication and be designed to solve ill-structured problems by flexibly combining statistical analysis, models and data. The Great Lotus River canal, situated on the Cape Flats, Cape Town, has been designed and controlled through extensive canalisation and the construction of detention pond facilities to avoid the flooding of urban areas of the catchment. This approach has resulted in these channels becoming stormwater drains, transporting waste and nutrients in dissolved and particulate forms, and reducing their assimilatory capacity for water quality improvement. In order to investigate the use of hydrological modelling in decision support for Catchment Management, the semi-distributed, physically based model, SWMM, was applied to the Great Lotus River canal. SWMM consists of a number of independent modules allowing the hydrological and hydraulic simulations of urban catchments and their conveyance networks on an event or continuous basis. In order to ease the application of the Fortran based SWMM model, the GUl, PCSWMM98, was developed by Computational Hydraulics Inc (CH!). This provides decision support for SWMM through large array of tools for file management, data file creation, output visualisation and interpretation, model calibration and error analysis and storm dynamic analysis thus easing any simulations with SWMM. In addition, PCSWMM was developed with a GIS functionality for graphically creating, editing and/or querying SWMM model entities and attributes, displaying these SWMM layers with background layers and dynamic model results, and exporting data to SWMM input files thus providing an interface between a GIS and SWMM. In terms of Catchment Management, the above DSS can be used effectively to assist decisionmaking. This is to address tensions between the fundamental catchment management considerations of physical development, social considerations and maintaining ecological sustainability. It is at the stages of Assessment and Planning that the model can play the most significant role in providing decision support to the Catchment Management process. Assessment in the Catchment Management process refers to the collection, storage, modelling and interpretation of catchment information. It is in this quantification, interpretation and assessment of catchment information that a hydrological model contributes to an increase in knowledge in the Catchment Management process. In identifying and quantifying, at a sufficient temporal and spatial scale, the dominant cause and effect relationships in the urban physical environment, a hydrological model is able to highlight the main contributing factors to an issue. This is used in the Planning stage of the Catchment Management process and when combining these contributing factors with assessments of the socio-economic and administrative environments, enables the prioritisation of the principal issues requiring attention in a Catchment Management Strategy. It is possible to link the multiple decision-making requirements of Catchment Management with the abilities of a hydrological model to provide information on these requirements in a conceptual framework. This framework consists of the fundamental catchment considerations of Physical Development, Environmental Management and Social Development and resolves these considerations into the various management issues associated with each consideration ~s well as its management solution. The management solutions are linked to the model through formulating the solution in terms of the model parameters and perturbing the affected parameters in ways to simulate the management solution. This results in model output and graphical interpretation of the effects of the suggested management solution. A comparison between the simulated effects of each management solution allows the Catchment Management body to identify optimal management solutions for the various management Issues. The present model of the Great Lotus River catchment is sufficient to simulate the overland and subsurface flows from individual parts of the catchment and to route these flows and associated pollutant loadings to the catchment outlet. At its present level of complexity, the finely discretised model subcatchment and conveyance network provides decision support for Catchment Management through the simulation, at a pre-feasibility stage, of various Catchment Management issues and their proposed solutions. Given more detailed canal and drainage network dimensions and water quality data, it is possible for the model to incorporate hydraulic calculation routines to assess the implications of alternative river rehabilitation techniques and waste management strategies. This would allow greater capability in assessing the role of the various BMPs in ameliorating stormwater impacts and pollutant loading. In addition, a detailed level survey of the stormwater pipe and canal network could result in hydrological modelling being utilised to identify critical areas where stormwater upgrading would be necessary. In order to facilitate future complex, finely discretised catchment hydrological models, it is imperative that complete and detailed drainage patterns and stormwater network characteristics are available. In addition, to minimise model generation costs and time of model setup, this spatially representative data must be captured in a GIS for rapid inclusion into the model. Furthermore, complete spatially representative precipitation datasets are necessary to ensure that model error is reduced. These two issues of available spatial data and comprehensive precipitation records are crucial for the generated models to function as effective decision support systems for Catchment Management.
AFRIKAANSE OPSOMMING: Histories is stedelike waterbronne te dikwels bestuur sonder inagneming dat die vloei van die rivier baie landskap- en biologiese kenmerke insluit. Dit het dikwels daartoe gelei dat natuurlike prosesse uitgeskakel is en vervang is deur mensgemaakte, stroombelynde strukture waarvan die effek van toenemende verstedeliking hoofsaaklik aangespreek word vanuit 'n ingenieurs- en ekonomiese oogpunt tot nadeel van omgewings- en sosiale kwessies. Opvangsgebiedsbestuur, soos bepaal deur die Waterwet, Wet 36 van 1998, is 'n bestuursbenadering om die negatiewe gevolge van 'n stedelike stormwaterontwerpfilosofie wat beperk is tot vloedbeperking aan te spreek. Dit is 'n stelselbenadering wat ingenieurs- en wetenskaplike vaardighede, sosio-ekonomiese probleme en omgewingsbeperkings integreer in 'n nuwe multidissiplinêre besluitnemingsproses wat erkenning daaraan gee dat die verskillende komponente van die hidrologiese en watersiklusse verbind is, en elke komponent beïnvloed word deur veranderings in elke ander komponent. Om doeltreffende bestuursbesluite te neem, benodig opvangsgebiedsbestuur die hulpmiddels om betroubare inligting oor die prestasie van alternatiewe moontlikhede VIr stormwaterbestuurfasiliteite en om die effek van moontlike bestuursbesluite op die wateromgewing te kwantifiseer. 'n Deterministiese hidrologiese model is so 'n hulpmiddel wat die skakel daarstel tussen die konseptueie begrip van die fisiese opvangsgebiedskenmerke en die empiriese kwantifisering van die water-, waterkwaliteit- en ekologiese reaksie. Om doeltreffende rekenaarbesluitnemingsteun te verskaf, moet die hidrologiese model deel wees van 'n geïntegreerde sagteware-aanwending waarin 'n versameling datamanipulasie-, analise-, modellerings- en interpreteringshulpmiddels, insluitend GIS, doeltreffend saam gebruik kan word om 'n groot deel van die algehele besluitnemingsproses te bestuur. Hierdie besluitnemingsteunstelsel moet 'n eenvoudige en intuïtiewe gebruikersvlak hê wat in staat is om maklik interpreteerbare uitsette te lewer. Dit moet goeie grafiese voorleggingsvermoëns hê wat doeltreffende kommunikasie vergemaklik en ontwerp wees om swak gestruktureerde probleme deur die buigsame samevoeging van statistiese analise, modelle en data op te los. Die Groot Lotusrivierkanaal op die Kaapse Vlakte, Kaapstad is ontwerp en word beheer deur uitgebreide kanalisasie en die konstruksie van detensiedamfasiliteite om die oorstroming van stedelike opvangsgebiede te vermy. Hierdie benadering het daartoe gelei dat hierdie kanale stormwaterafvoerpype geword het wat afval en nutriënte in opgelosde en partikelvorm vervoer en hulle assimilasievermoë vir die verbetering van waterkwaliteit verminder. Om die gebruik van hidrologiese modelle in besluitnemingsteun vir Opvangsgebiedsbestuur te ondersoek, is die semi-verspreide, fisiesgebaseerde model, SWMM, op die Groot Lotusrivierkanaal toegepas. SWMM bestaan uit 'n aantalonafhanklike modules wat die hidrologiese en hidroulika simulasies van stedelike opvangsgebiede en hulle vervoemetwerke per geleentheid of deurlopend monitor. Om die aanwending van die Fortran gebaseerde SWMM model te vergemaklik is die GUl, PCSWMM98 deur Computational Hydraulics Inc (CHD ontwikkel. Dit verskaf besluitnemingsteun vir SWMM deur 'n groot aantal hulpmiddels vir lêerbestuur, die skep van datalêers, uitsetvisualisering en interpretasie, modelkalibrasie, foutanalise en stormdinamikaanalise om enige simulasies met SWMM te vergemaklik. Daarby is PCSWMM ontwikkel met 'n GIS funksionaliteit vir die grafiese daarstelling, redigering en/of navraagfunksie van SWMM model entiteite en kenmerke, wat hierdie SWMM vlakke met agtergrondvlakke en dinamiese modelresultate vertoon en data in SWMM inset1êers plaas en op daardie manier 'n koppelvlak tussen 'n GIS en SWMM verskaf. Volgens Opvangsgebiedsbestuur kan bogenoemde DSS doeltreffend gebruik word in besluitneming. Dit IS om die spanning tussen fundamentele opvangsgebiedsbestuursoorwegings van fisiese ontwikkeling, sosiale oorwegings en ekologiese volhoubaarheid aan te spreek. Dis in die stadiums van Waardebepaling en Beplanning wat die model die belangrikste rol kan vervul in die verskaffing van besluitnemingsteun vir die Opvangsgebiedsbestuursproses. Waardebepaling in die Opvangsgebiedbestuursproses verwys na die versameling, berging, modellering en interpretasie van opvangsgebiedsinligting. Deur hierdie kwantifisering, interpretasie en waardebepaling van opvangsgebiedsinligting dra 'n hidrologiese model by tot 'n verhoging in kennis in die Opvangsgebiedsbestuur. Deur die identifisering en kwantifisering, op 'n ruim genoeg tydelike en ruimtelike skaal, van die dominante oorsaak en gevolg verhoudings in die stedelike fisiese omgewing, kan die hidrologiese model die hoof bydraende faktore uitlig. Dit word gebruik in die Beplanningsfase van die Opvangsgebiedproses en wanneer hierdie bydraende faktore by die waardebepaling van die sosio-ekonomiese en administratiewe omgewings saamgevoeg word, maak dit moontlik om die belangrike kwessies wat aandag behoort te kry in 'n Opvangsgebiedsbestuurstrategie in volgorde van voorrang te plaas. Dit is moontlik om die verskeidenheid besluitnemingsvereistes van Opvangsgebiedsbestuur met die vermoëns van 'n hidrologiese model te koppel om inligting oor hierdie vereistes in 'n konseptuele raamwerk te verskaf. Die raamwerk bestaan uit die fundamentele opvangsgebiedsoorwegings van Fisiese Ontwikkeling, Omgewingsbestuur en Sosiale Ontwikkeling en los hierdie oorwegings op in die verskillende bestuursaangeleenthede wat met elke oorweging en die bestuuroplossing geassosieer word. Die bestuursoplossings word aan die model gekoppel deur die formulering van die oplossing volgens die modelparameters en versteuring van die relevante parameters op sekere manier om die bestuursoplossing te simuleer. Dit lei tot modeluitset en grafiese interpretasie van die effek van die voorgestelde bestuursoplossing. 'n Vergelyking tussen die gesimuleerde effek van elke bestuursoplossing laat die Opvangsgebiedsbestuursliggaam toe om die optimale bestuursoplossings vir die verskeie bestuursaangeleenthede te identifiseer. Die huidige model van die Groot Lotusrivieropvang is genoegsaam om die bo- en ondergrondse vloei vanaf individuele dele van die opvangsgebied te simuleer en om die watervloei en geassosieerde besoedelstofladings na die opvangsgebiedsuitlaatplek te lei. Op sy huidige vlak van kompleksiteit verskaf die fyn gediskretiseerde model subopvangsgebied en vervoernetwerk besluitnemingsteun aan Opvangsgebiedsbestuur deur die simulasie, teen 'n voor-lewensvatbaarheidstudie, van verskeie opvangsgebiedsbestuurkwessies en die voorgestelde oplossings. Indien meer gedetailleerde kanaal- en dreineringsnetwerkdimensies- en waterkwaliteitdata ingevoer word, is dit moontlik vir die model om hidroulikaberekeningsroetines te inkorporeer om die implikasies van alternatiewe rivierrehabilitasietegnieke en afvalbestuurstrategieë te beoordeel. Dit sou die vermoë verbeter om die waarde van die verskeie BMPs te bepaal om die impak van stormwater en besoedelstoflading te versag. Daarby kan 'n gedetailleerde vlakopname van die stormwaterpyp en -kanaalnetwerk daartoe lei dat hidrologiese modelle gebruik kan word om kritieke areas te identifiseer waar stormwateropgradering nodig is. Om toekomstige komplekse, gediskretiseerde opvangsgebiedshidrologiese modelle te verbeter, is dit noodsaaklik dat volledige en gedetailleerde dreineringspatrone en stormwaternetwerkkenmerke beskikbaar is. Om die model-ontwikkelingskoste en tyd bestee aan die opstel van 'n model te minimiseer, moet hierdie ruimtelik verteenwoordigende data ingelees word in 'n GIS vir vinnige insluiting in die model. Daarbenewens is volledige, ruimtelik verteenwoordigende presipitasie datastelle nodig om te verseker dat modelfoute verminder word. Hierdie twee kwessies van beskikbare ruimtelike data en omvattende presipitasierekords is van die uiterste belang sodat die gegenereerde modelle as doeltreffende besluitnemingsteun vir Opvangsgebiedsbestuur kan funksioneer.
APA, Harvard, Vancouver, ISO, and other styles
21

Fionda, Alexander Peter Anthony. "Rainfall-runoff model application in ungauged catchments in Scotland." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-162181.

Full text
Abstract:
The conceptual rainfall-runoff model Hysim is used to estimate the flow in ungauged catchments in Scotland by Scottish Water. However, there are non-quantified uncertainties associated with the outcomes of the modelling strategy used. In order to identify and quantify these uncertainties it was necessary to use the framework of proxy-basin validation in order to evaluate the performance of different modelling strategies.   The proxy-basin validation test requires hydrologically analogous catchments for the evaluation of models, a Region Of Influence regionalisation method was used in order group selected catchments by Q95(%MF). Four groups of four catchments were established, which covered Q95(%MF) 5-7%, 7-9%, 9-11% and 11-13%.   The allocation of “donor catchment” and “target catchment” for each Q95(%MF) group was accomplished through discussion with Scottish Water with respect to existing Scottish Water modelled catchments. A single donor catchment and three target catchments were therefore indicated for each group.   Two modelling strategies were developed by the study; the first full transposition method used the entire optimised parameter-set from the donor catchment with the exception of the target catchment’s “catchment area” parameter. The second partial transposition method used the entire optimal parameter-set with the exception of the target catchment’s “interception storage”, “time to peak”, “rooting depth” and “catchment area” parameters.    It was found that the full transposition method had the least uncertainty associated its use for flow estimation when the parameter-set was derived from a donor catchment calibration that was excellent. Contrarily, it was found that the partial transposition model method had the least uncertainty associated with flow estimation for parameter-sets that were derived from a relatively poor donor catchment calibration.   Encouraged by this testing framework, this study has suggested the use of catalogue of donor parameter-sets that can be used to estimate flow for catchments that are hydrologically similar. This strategy of hydrological modelling has been recommended to improve existing Scottish Water Hysim methodology.
APA, Harvard, Vancouver, ISO, and other styles
22

Gallo, Erika Liliana. "Patterns and Controls of Monsoonal Urban Runoff Hydrologic and Hydrochemical Responses of Semi-arid Catchments." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/204889.

Full text
Abstract:
Projections of population growth, urban expansion and decreasing water resources in arid and semi-arid regions have increased the importance of urban runoff as a potential renewable water resource that, through enhanced recharge, can augment groundwater supplies. However, it is unclear how urbanization alters hydrologic and hydrochemical responses of small catchments ( < 5 km²) in these regions. This body of work identified controls on the spatial and temporal variability of hydrologic and hydrochemical responses of urbanized catchments in the Tucson Metropolitan area of semi-arid southern Arizona. The temporal distribution and characteristics of rainfall did not control urban catchment hydrology where overall, there was no evidence of significant seasonal catchment wetting. Land use did not control hydrologic responses although runoff was more frequent and of longer duration in urbanized than in non-urban catchments. Runoff depth and runoff ratios were controlled by the combined effect of imperviousness, the characteristics of the stormwater drainage system and rainfall depth. Runoff hydrochemistry did not vary in response to land cover or imperviousness. Rapid increases in solute stores between rainfall-runoff vents resulted in invariant seasonal runoff solute concentrations. Four major factors controlling runoff hydrochemistry were identified: 1) landscape heterogeneity and catchment connectivity, 2) the spatial extent of pervious and biogeochemically active areas, 3) the efficiency of overland flow and runoff routing mobilization and 4) the extent of catchment wetting. The stormwater drainage system, and specifically the characteristics of the stream channel substrate, emerged as significant controls of runoff responses. Conservative transport of biogeochemically active solutes during runoff was observed in piped, concrete and gravel lined waterways, whereas solute sourcing and retention was more dynamic in grass lined reaches. Biogeochemical processing in the stream channel substrate between runoff events indicates that pervious waterways alter soil solute pools available for subsequent solute transport, and that stream channel biogeochemical processes are tightly linked to the characteristics of the channel substrate and cyclical channel wetting and drying. This body of work indicates that successful stormwater management strategies in the semi-arid Southwest should focus on the stormwater drainage network and the presence, density and characteristics of pervious channels.
APA, Harvard, Vancouver, ISO, and other styles
23

Al-Ali, Mahmoud. "Soil water conservation and water balance model for micro-catchment water harvesting system." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/10941.

Full text
Abstract:
A simple water balance model was applied to a micro-catchment water harvesting system for a semi-arid area in the North-Eastern part of Jordan. Two Negarim micro-catchment water harvesting systems were built at Al-Khanasri research station. A Randomized complete block design (RCBD) in factorial combination was used with six treatments and three replicates. Each plot was divided into two parts; a runoff area, and a run-on area. Two different treatments were used for the catchment area, these were: compacted (T1) and Natural treatments (T2). Three treatments were used for the run-on area, these were: disturbed (S1), stones (S2), and crop residue mulch (S3). Soil water content was measured over a depth of 0-1 m during the seasons 96-97 in these micro-catchments. In this model; daily rainfall, runoff, and evaporation were used. Runoff was calculated by the curve number method; evaporation was calculated by the Penman equation, the Priestley and Taylor method and the Class A pan approach. The least squares method was used for optimizing model parameters. The performance of the model was assessed by different criteria, such as root mean square error, relative root mean square error, coefficient of determination and the Nash-Sutcliffe efficiency method. The performance of the micro-catchments system was also evaluated. Results showed that with limited but reliable hydrological data good agreement between predicted and observed values could be obtained. The ratio of water storage in a one meter soil depth to the rainfall falling on each catchment indicated that T1S2 and T1S3 have the highest values in size1 plots while T2S1 and T2S2 have the highest values in size 2 plots. Modelling results showed that for all the size 1 plots, the required ratio of the cultivated to catchment area, (C/CA), required to ensure sufficient harvested water, was less than the actual ratio used in the experimental design. For the size 2 plots this was only true for the T1 treatments. Consequently for the majority of plot sizes and treatments, the results showed that a smaller catchment area is capable of providing sufficient harvested water to meet crop growth requirements. The experimental ratio was based on a typical yearly design rainfall for the region having either a 50% or 67% probability of occurrence. Results also indicated that using stones and crop residue as mulch on the soil surface in the cultivated area was effective in decreasing the evaporation rate. S3 was more efficient than S2 as it stored more water due to the higher infiltration rate (12.4 cm/hr) when compared to S2 (4.1 cm/hr).
APA, Harvard, Vancouver, ISO, and other styles
24

Stipinovich, Amalia. "Change in land cover and water abstraction : modelling runoff effects in the Bot River Catchment." Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/1654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Barasa, Bernard. "Modelling the hydrological responses to changes in land use and cover in the Malaba River Catchment, Eastern Uganda." Thesis, Nelson Mandela Metropolitan University, 2014. http://hdl.handle.net/10948/d1020153.

Full text
Abstract:
Hydrological responses vary from one catchment to another, depending on the nature of land use and cover changes. Modelling the hydrological responses to changes in land use and cover at different catchment spatial scales was the major focus of this study. This study assessed the hydrological responses attributed to changes in land use and extreme weather events resulting into increased sediment loading/concentration, rainfall-runoff generation/volume, streamflow fluctuation and modification of the river channel in the Malaba River Catchment, Eastern Uganda. The hydrological responses were assessed using hydrological models (IHACRES, SCS CN, and SHETRAN) to examine the effect of land use on soil physio-chemical properties susceptibility to rainfall-runoff generation and volume, frequency and severity of extreme weather events, changes in streamflow variations, sediment loading/concentration and river channel morphology. The preliminary study results showed that the frequency of extreme weather events reduced from 4-10 to 1-3 years over the catchment. The performance of the IHACRES model with a Nash-Sutcliffe Efficiency (NSE) of 0.89 showed that streamflow comparatively corresponded with the results obtained the drought indices in predicting the recorded events of severe drought (2005) and flood (1997). Changes in land use and cover types showed that the highest change in the gain of land was experienced from the agricultural land use (36.7 percent), and tropical forest (regeneration) (2.2 percent). The biggest losses in land were experienced in the wetlands (24.6 percent) and bushland and thickets (15.3 percent) land cover types. The SHETRAN model calibrated period had a NSE of 0.78 and 0.81 in the validation period showed satisfactory fits between the measured and simulated streamflow. The agricultural land use (crop growing) had a higher influence on the rainfall-runoff generation and increase in the streamflow than the tropical forest, and bushland cover types in the simulated period. Similarly, the curve number model estimated a comparatively higher surface rainfall-runoff volume generated from the agricultural land use (crop growing) (71,740 m3) than in the bushlands and thickets (42,872 m3) from a rainstorm followed by the tropical forest cover type. This was also reflected in the lower rates of saturated hydraulic conductivity from the agricultural land use (crop growing). The study also showed that human-induced sediment loading due to gold mining activities contributed a much higher impact on the concentration of suspended sediments and streamflow than sediments from rainfall-runoff from the sampled streams. The main contributor of human-induced sediments to the Malaba River were Nankuke River (130.6kg/annum), followed by Omanyi River (70.6kg/annum), and Nabewo River (66.8kg/annum). Human-induced sediment loading had a profound impact on the streamflow variations both in the dry and wet seasons from the sampled tributaries. Lastly, in regard to the effect of land use and cover types on the river channel morphology, tree plantation (cohesion=12, angle of internal friction=27) and bushland and thickets (cohesion=14, angle of internal friction=22) cover types had the most stable river banks compared to the wetland and agricultural land use and cover types that exhibited higher levels of sediment concentration.
APA, Harvard, Vancouver, ISO, and other styles
26

Whyman, G. "An investigation of runoff and quality responses on an agricultural catchment with specific reference to storm events : The river Wallington, Hampshire." Thesis, University of Southampton, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373759.

Full text
Abstract:
The primary objective of this study is to investigate the runoff and quality variations exhibited on a medium-sized, agricultural catchment, dominated by a chalk and clay geology: the River Wallington, Hampshire, southern England. Emphasis has been focused on storm-based responses, particularly quality variations, monitored at two locations between October 1981 and May 1983. Quality parameters monitored include nitrate-nitrogen, phosphate, potassium, pH, chloride, sodium, suspended, volatile and dissolved solids, conductivity, temperature and dissolved oxygen. Stable rainfall and runoff conditions were observed with mean daily flows 0.2 m^3/s. Bankfall discharges of 10.0 m^3/s are exceeded at least once a year. Soil moisture status and antecedent catchment conditions are important factors in modelling observed runoff. Storm-based rainfall-runoff responses are adequately modelled using unit hydrograph techniques on seasonally divided data, with observed peak discharges estimated to within 10% and time to peak flows to within 2 hours. Definition of effective precipitation is a prime control on the performance of this prediction, particularly during the summer when more variable antecedent conditions occur. Loss of surface water as recharge to the Chalk aquifer complicates summer modelling. Rock and soil type are the major controls on surface water quality variations, which show stable responses during the study period. The influence of the Chalk maintains high pH, T.D.S., S.E.C. and NO_3-N concentrations, with long-term trends in the Chalk groundwater showing rising NO_3-N and Cl concentrations. Baseflow concentrations show minor dilution with higher discharges while stormflow concentrations show a wide range of behavioural responses with increasing flows, including dilution, concentration, flushing, between sample variability, and stable concentrations. The goodness-of-fit shown by bivariate concentration-discharge models used to describe the data are generally poor, indicating the importance of controls other than discharge in determining runoff quality. Mean storm concentrations show little change from the mean baseflow concentrations with orders of magnitude during storms typically: T.D.S. > V.S. > S.S. > Cl > Na > NO_3-N > D.O. > K > PO_4. The negligible concentration changes result in an increase in loads transferred during storms. The magnitude of increase depends on storm discharges but is typically double for solutes and fifty-fold for particulates. Storms are therefore important mechanisms of material transfer. (D72033/87)
APA, Harvard, Vancouver, ISO, and other styles
27

Blume, Theresa. "Hydrological processes in volcanic ash soils : measuring, modelling and understanding runoff generation in an undisturbed catchment." Phd thesis, Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2008/1655/.

Full text
Abstract:
Streamflow dynamics in mountainous environments are controlled by runoff generation processes in the basin upstream. Runoff generation processes are thus a major control of the terrestrial part of the water cycle, influencing both, water quality and water quantity as well as their dynamics. The understanding of these processes becomes especially important for the prediction of floods, erosion, and dangerous mass movements, in particular as hydrological systems often show threshold behavior. In case of extensive environmental changes, be it in climate or in landuse, the understanding of runoff generation processes will allow us to better anticipate the consequences and can thus lead to a more responsible management of resources as well as risks. In this study the runoff generation processes in a small undisturbed catchment in the Chilean Andes were investigated. The research area is characterized by steep hillslopes, volcanic ash soils, undisturbed old growth forest and high rainfall amounts. The investigation of runoff generation processes in this data scarce area is of special interest as a) little is known on the hydrological functioning of the young volcanic ash soils, which are characterized by extremely high porosities and hydraulic conductivities, b) no process studies have been carried out in this area at either slope or catchment scale, and c) understanding the hydrological processes in undisturbed catchments will provide a basis to improve our understanding of disturbed systems, the shift in processes that followed the disturbance and maybe also future process evolution necessary for the achievement of a new steady state. The here studied catchment has thus the potential to serve as a reference catchment for future investigations. As no long term data of rainfall and runoff exists, it was necessary to replace long time series of data with a multitude of experimental methods, using the so called "multi-method approach". These methods cover as many aspects of runoff generation as possible and include not only the measurement of time series such as discharge, rainfall, soil water dynamics and groundwater dynamics, but also various short term measurements and experiments such as determination of throughfall amounts and variability, water chemistry, soil physical parameters, soil mineralogy, geo-electrical soundings and tracer techniques. Assembling the results like pieces of a puzzle produces a maybe not complete but nevertheless useful picture of the dynamic ensemble of runoff generation processes in this catchment. The employed methods were then evaluated for their usefulness vs. expenditures (labour and financial costs). Finally, the hypotheses - the perceptual model of runoff generation generated from the experimental findings - were tested with the physically based model Catflow. Additionally the process-based model Wasim-ETH was used to investigate the influence of landuse on runoff generation at the catchment scale. An initial assessment of hydrologic response of the catchment was achieved with a linear statistical model for the prediction of event runoff coefficients. The parameters identified as best predictors give a first indication of important processes. Various results acquired with the "multi-method approach" show that response to rainfall is generally fast. Preferential vertical flow is of major importance and is reinforced by hydrophobicity during the summer months. Rapid lateral water transport is necessary to produce the fast response signal, however, while lateral subsurface flow was observed at several soil moisture profiles, the location and type of structures causing fast lateral flow on the hillslope scale is still not clear and needs to be investigated in more detail. Surface runoff has not been observed and is unlikely due to the high hydraulic conductivities of the volcanic ash soils. Additionally, a large subsurface storage retains most of the incident rainfall amount during events (>90%, often even >95%) and produces streamflow even after several weeks of drought. Several findings suggest a shift in processes from summer to winter causing changes in flow patterns, changes in response of stream chemistry to rainfall events and also in groundwater-surface water interactions. The results of the modelling study confirm the importance of rapid and preferential flow processes. However, due to the limited knowledge on subsurface structures the model still does not fully capture runoff response. Investigating the importance of landuse on runoff generation showed that while peak runoff generally increased with deforested area, the location of these areas also had an effect. Overall, the "multi-method approach" of replacing long time series with a multitude of experimental methods was successful in the identification of dominant hydrological processes and thus proved its applicability for data scarce catchments under the constraint of limited resources.
Die Abflussdynamik in Mittel- und Hochgebirgen wird durch die Abflussbildungsprozesse im Einzugsgebiet bestimmt. Diese Prozesse kontrollieren damit zu großen Teilen den terrestrischen Teil des Wasserkreislaufs und beeinflussen sowohl Wasserqualität als auch -quantität. Das Verständnis von Abflussbildungsprozessen ist besonders wichtig für die Vorhersage von Hochwasser, Erosion und Massenbewegungen (z.B. Erdrutsche) da hydrologische Systeme oft Schwellenwertverhalten aufweisen. Im Falle weit reichender Umweltveränderungen, wie z.B. Klima- oder Landnutzungsänderungen kann das Verständnis der Abflussbildungsprozesse ein verantwortungsvolleres Management sowohl der Ressourcen als auch der Risiken ermöglichen. In dieser Studie wurden die Abflussbildungsprozesse in einem kleinen, anthropogen unbeeinflussten Einzugsgebiet in den Chilenischen Anden untersucht. Das Untersuchungsgebiet ist durch steile Hänge, vulkanische Ascheböden, ungestörten Naturwald und hohe Niederschlagsmengen charakterisiert. Die Erforschung von Abflussbildungsprozessen ist hier von besonderem Interesse, da a) wenig über das hydrologische Verhalten der hochporösen und hochleitfähigen jungen Ascheböden bekannt ist, b) in dieser Region bisher keine Studien auf Hang- oder Einzugsgebietsskala durchgeführt wurden, und c) das Prozessverständnis in ungestörten Einzugsgebieten als Basis zum besseren Verständnis bereits anthropogen beeinflusster Gebiete dienen kann. Das hier untersuchte Gebiet hat daher das Potential zum Referenzgebiet für zukünftige Studien und Forschungsprojekte. Bedingt durch die Kürze der vorliegenden Abfluss- und Niederschlagszeitreihen war es nötig, den bestehenden Datenmangel durch eine Vielzahl von experimentellen Methoden und Ansätzen auszugleichen. Dieser Ansatz wird im Folgenden der "Multi-Methoden-Ansatz" genannt. Die ausgewählten Methoden sollten dabei so viele Aspekte der Abflussbildung abdecken wie möglich. Es wurden daher nicht nur Zeitreihen von Abfluss, Niederschlag, Bodenfeuchte- und Grundwasserdynamik gemessen, sondern auch eine große Zahl an Kurzzeitmessungen und Experimenten durchgeführt. Diese beinhalteten u.a. Messung des Bestandesniederschlags, Bestimmung der Wasserchemie, Bestimmung bodenphysikalischer Parameter und der Bodenmineralogie, sowie geophysikalische Messungen und Tracermethoden. Die Synthese der Resultate gleicht dem Zusammensetzen eines Puzzles. Das so entstandene Bild des dynamischen Prozess-Ensembles ist trotz möglicher fehlender Puzzlestücke hochinformativ. In einem nächsten Schritt wurden die ausgewählten Methoden im Hinblick auf Erkenntnisgewinn und Kosten (d.h. finanzielle Kosten und Arbeitszeit) evaluiert. Das durch die experimentellen Ergebnisse gewonnene Bild der Abflussbildung wurde anschließend mit Hilfe des physikalisch basierten Modells Catflow überprüft. Weiterhin wurde mit dem prozessbasierten Modell Wasim-ETH der Einfluss der Landnutzung auf die Abflussbildung auf Einzugsgebietsskala untersucht. Die Ergebnisse des "Multi-Methoden-Ansatzes" zeigen, dass die Abflussreaktion in diesem Gebiet sehr schnell erfolgt. Vertikales präferenzielles Fliessen ist hier von großer Bedeutung und wird in den Sommermonaten noch durch Hydrophobizitätseffekte verstärkt. Schneller lateraler Fluss im Untergrund ist eine weitere Vorraussetzung für die schnelle Reaktion des Abflusses (Oberflächenabfluss ist hier aufgrund der hohen hydraulischen Leitfähigkeiten unwahrscheinlich). Obwohl bei der Untersuchung der Bodenfeuchtedynamik in einigen Profilen laterale Fließmuster beobachtet wurden, ist die Art und Lage der Untergrundstrukturen, die auf der Hangskala schnellen lateralen Fluss verursachen, noch unklar und sollte genauer untersucht werden. Die Tatsache, dass bei Niederschlagsereignissen der Großteil der Niederschlagsmenge nicht zum Abfluss kommt (>90%, oft auch >95%), sowie der kontinuierliche Abfluss selbst nach Wochen der Trockenheit, lassen auf einen großen unterirdischen Speicher schließen. Der Wechsel von Winter (nass) zu Sommer (trocken) scheint Veränderungen im Prozess-Ensemble hervorzurufen, die sich in der Änderung von Fließmustern, von Grundwasser-Oberflächenwasser-Interaktionen, sowie veränderter Reaktion der Wasserchemie auf Niederschlagsereignisse beobachten ließ. Die Modellstudie bestätigte die Bedeutung der schnellen Fließwege. Als Folge von Informationsdefiziten über die Strukturen des Untergrunds ließ sich jedoch die Abflussbildung noch nicht vollständig reproduzieren. Die Untersuchung zur Bedeutung der Landnutzung für die Abflussbildung mit Hilfe eines Einzugsgebietsmodells zeigte die Zunahme der maximalen Abflüsse mit zunehmender Entwaldung. Weiterhin erwies sich auch die Lage der abgeholzten Flächen als ein wichtiger Faktor für die Abflussreaktion. Der "Multi-Methoden-Ansatz" lieferte wichtige Erkenntnisse zum Verständnis der Abflussbildungspozesse in den Anden Südchiles und zeigte sich als adäquates Mittel für hydrologische Prozess-Studien in datenarmen Gebieten.
APA, Harvard, Vancouver, ISO, and other styles
28

Shrestha, Jayandra Prasad. "Regional modelling for estimation of runoff from ungauged catchment, case study of the Saptakoshi basin, Nepal." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for vann- og miljøteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18560.

Full text
Abstract:
The accurate simulation of an ungauged basin is one of the great challenges in hydrology. In case of Nepal, most of the gauge stations are located at low level land and getting reliable hydrological data at intake sites, most of which are located at high mountains, are almost impossible. The regional model calibration attempts to make a relationship between parameters of model and characteristics of the modelling units so that the calibrated parameters can be applied to ungauged basin. The main objective of the study is to apply ENKI model system to the Saptakoshi basin and to test the reliability of the model in this area and extract the runoff at ungauged sites. The processed climatic data from 1999 to 2008 are applied to the ENKI model system, which is equipped with tools for regional model setup, for different calibration cases.In case I, all the 16 catchments are included for calibration and average Nash-Sutcliffe Efficiency R2 of -1.57 is obtained which is comparatively very low. The R2 value of Uwa Gaon basin is -27.76; the reason may be due to missing precipitation data of Tibet. Hence, this catchment is excluded for further analysis.Excluding Uwa Gaon catchment in calibration case II, the improved average R2 of 0.33 is achieved. The hydrographs of simulated runoff seem in realistic shapes and patterns. Then validation is carried out for the period from 2004 to 2008. The average R2 of the validation is equal to 0.14 which is less than calibration result. The individual R2 value of the catchments is nearly equal with calibration results except of Pachuwar Ghat basin.In case III, only 8 independent catchments are selected for calibration and rest catchments are applied for validation. The average R2 of 0.59 is achieved which is the best result among the 3 cases. The R2 is found at the range of 0.54 to 0.78 for most of the catchments. Similarly, the average R2 of validation is achieved 0.15 which is greater than calibration case II. While processing data, some errors and inconsistency in flow data were found. The results show that the R2 of independent and upstream catchments are well fitted with observed data and less with downstream basins where observed data were inconsistent. The good quality of observed data and availability of enough data governs the best simulation of the model and best value of the R2.The 30 parameter values are obtained and among these some are less sensitive to the output results which are kept constant. Finally, the obtained regional parameter sets are applied to extract the runoff data at the intake site of Tamor Hydropower project and compared with scaled data. Further improvement of simulation results can be achieved with good quality of data and thus uncertainties in parameters can be reduced.
APA, Harvard, Vancouver, ISO, and other styles
29

Bier, Anthony Friedrich. "Using artificial tracers to observe timing of runoff from different landscape units in a small headwater catchment." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2345.

Full text
Abstract:
Four artificial tracers were applied to a small headwater catchment in south western British Columbia to study runoff generated from topographically distinct landscape units. The seven hectare catchment is located in the University of British Columbia Malcolm Knapp Research Forest at low elevation (190-280 masl). A weir, multiple tipping bucket rain gauges and several piezometers were used to collect hydrological data. Three separate landscape units were identified based on topography, soil properties and proximity to the stream. The units included an area of shallow slope and deep soil, a riparian area along the intermittent stream channel and an area of very shallow soil with bedrock outcrops on a steep slope. Tracers used included rhodamine-WT, uranine, sodium chloride and potassium bromide. A suite of ion selective and fluorometric probes were used along with automated water sampling to monitor tracer breakthrough. The collected samples were analysed in the lab to validate the field measurements. Tracers were dissolved in solution and applied aerially with a backpack sprayer at the onset of forecasted precipitation events to facilitate rapid infiltration into the soil. The first application took place January 4th, 2006. Measurements were then taken continuously until March 20th, 2006, when a second round of tracers was applied to the landscape units. During the first measurement period, 532 mm of precipitation fell below the forest canopy over 75 days. During the second 78 day measurement period, 290 mm of rain fell. It was found that the overall wetness of the catchment affected travel times significantly. Large storms during the first, significantly wetter, application period exhibited similar lag times from peak event discharge to tracer arrival between the different landscape units. During small precipitation events and under dryer conditions, travel times were greatest in the area of shallow slope and deep soils. These lag times are indicative of longer pathways and perhaps the non-initiation of preferential flow below certain thresholds. In general, it was concluded that delineating catchments into groups of similar landscape units based on physical characteristics may be a promising new approach to explaining catchment runoff response.
APA, Harvard, Vancouver, ISO, and other styles
30

Wood, Andrew Charles. "Methods for rainfall-runoff continuous simulation and flood frequency estimation on an ungauged river catchment with uncertainty." Thesis, Lancaster University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547969.

Full text
Abstract:
Historic methods for time series predictions on ungauged sites in the UK have tended to focus on the regionalisation and regression of model parameters against catchment characteristics. Owing to wide variations in catchment characteristics and the (often) poor identification of model parameters, this has resulted in highly uncertain predictions on the ungauged site. However, only very few studies have sought to assess uncertainties in the predicted hydrograph. Methods from the UK Flood Estimation Handbook, that are normally applied for an event design hydrograph, are adopted to choose a pooling group of hydrologically similar gauged catchments to an ungauged application site on the River Tyne. Model simulations are derived for each pooling group catchment with a BETA rainfall-runoff model structure conditioned for the catchment. The BETA rainfall-runoff model simulations are developed using a Monte Carlo approach. For the estimation of uncertainty a modification of the GLUE methodology is applied. Gauging station errors are used to develop limits of acceptability for selecting behavioural model simulations and the final uncertainty limits are obtained with a set of performance thresholds. Prediction limits are derived from a set of calibration and validation simulations for each catchment. Methods are investigated for the carry over of data from the pooled group of models to the ungauged site to develop a weighted model set prediction with pooled prediction limits. Further development of this methodology may offer some interesting approaches for cross-validation of models and further improvements in uncertainty estimation in hydrological regionalisation.
APA, Harvard, Vancouver, ISO, and other styles
31

Badoux, Alexandre. "The influence of wind storm deforestation on the runoff generation at various scales in a torrential catchment /." [Bern] : [Geographisches Institut der Universität Bern], 2005. http://www.zb.unibe.ch/download/eldiss/05badoux_a.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Abo-Ghobar, Hussein Mohammed Ali. "The development of a mathematical model to predict runoff from a micro-catchment under high water application rates." Thesis, Cranfield University, 1988. http://dspace.lib.cranfield.ac.uk/handle/1826/7840.

Full text
Abstract:
Current trends in sprinkler irrigation to improve application uniformity and reduce energy requirements haste led to problems of water application and potential surface runoff, which in turn have highlighted the importance of the soil and cultivation practice in making best use of irrigation water. The objective of this study was to begin the development of a mathematical model, which will simulate the operation of current sprinkler-soil-crop system, in order to provide a means of predicting surface runoff and so provide a more effective approach to system design. A model has now been developed which will predict runoff from a small simple agricultural catchment in the form of a ridge and furrow cultivation system. The model is based on the kinematic wave theory involving the continuity equation and the simplified momentum equation. A four-point implicit finite difference scheme is used to solve numerically the kinematic wave equations. The model (SROFF) may be used to predict the runoff at various times from a simple catchment with different slopes, water application rates and soil infiltration rate. A further development of the model was made by the introduction of the interception loss model (INCEPT) to predict the amount of water intercepted by the crop canopy during irrigation. The validity of the model was tested and supported by the results of laboratory experiments conducted on two soil samples with different infiltration rates, using three different application rates. The performance of the model was also evaluated by statistical test. There was good agreement between experiment and model results. The results indicated that this model can provide valuable information for the effective design of sprinkler systems, particularly where runoff may be a potential problem. This is particularly the case with current low pressure irrigation systems but equally the problem is common with high pressure systems when applied to soils with low infiltration rates.
APA, Harvard, Vancouver, ISO, and other styles
33

Svensson, Teresia. "Chlorine Transport in a Small Catchment." Doctoral thesis, Linköping : Univ, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-6316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Li, Yanqiu, and 李艳秋. "Monitoring, analyzing and modeling hydrological processes over a headwater catchment in Hong Kong." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43085349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kusumastuti, Dyah Indriana. "The effects of threshold nonlinearities on the transformation of rainfall to runoff to floods in a lake dominated catchment system /." Connect to this title, 2006. http://theses.library.uwa.edu.au/adt-WU2007.0124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hajian, Farhad. "Effects of land cover and climate changes on runoff and sediment yield from a forested catchment in northern Iran." Thesis, Kingston University, 2013. http://eprints.kingston.ac.uk/27011/.

Full text
Abstract:
There have been more than 3700 recorded floods in Iran during the 50 years to around 2005, of which slightly more than half occurred during the final decade of this period. Over a longer period (1909-2004), floods in Iran caused economic losses in excess of US$3.5 billion. These floods, and associated erosion problems, have previously been attributed to land cover change and climate change. This research aimed to investigate future runoff changes in a small forested catchment in northern Iran for which appropriate and sufficient data exist to support such analyses. Approaches for estimating erosion and sediment production from the same catchment in the absence of relevant detailed data were also examined. The selected study site was the Casilian Catchment, with the town of Sangdeh at its centre. This is an elongated catchment approximately 17.8 km long with a mean catchment slope of 34.3% or 18.8°. The upstream half of the catchment is forested and, as such, could theoretically be susceptible to significant deforestation in the future. As such, it provides a suitable basis for the examination of hydrological implications – particularly runoff change – resulting from significant land cover change. To investigate the land cover change impact on runoff (volume and peak discharge of the outflow from the catchment), the approach used in this study was to use the Soil Conservation Service (SCS) curve number method with spatial catchment data using a Geographical Information System (GIS) and the SCS dimensionless unit hydrograph. The effects of rainfall characteristics and antecedent soil water content on runoff were also investigated. Runoff changes between observed period (1980-1986) and three different future periods (2011-2017, 2046-2052 and 2080-2086), for the Casilian Catchment, were estimated using the Hydrologic Engineering Centre-Hydrologic Modelling Systems (HEC-HMS) rainfall-runoff model. Thirteen climate models provided the required input variables (temperature, rainfall) to the rainfall-runoff model, under three different scenarios (A2, B1, and A1B) using the the ‘Long Ashton Research Station’ weather generator known as LARS-WG. This was used to downscale the Global Climate Model (GCM) to the Sangdeh Station to overcome the limitations of the coarse scale GCM output. Temperature was used to calculate potential evapotranspiration required for HMS rainfall-runoff model. The two empirical erosion models, known as the Erosion Potential Method (EPM) and Pacific South-West Inter-Agency Committee (PSIAC) methods, were evaluated to estimate sediment yield for the Casilian Catchment. Further, areas with high erosion intensity were identified, and factors affecting erosion were determined for the Casilian Catchment. In the EPM method, only three processes are used to prepare an erosion intensity map, but nine processes are considered in the PSIAC method. Runoff volume and the peak flow are considered to estimate erosion intensity and sediment yield in the PSIAC method, but not in the EPM method. Soil characteristics are also considered in erosion intensity and sediment yield estimation in the PSIAC method but not in the EPM method. The calculated mean annual specific sediment yield of the Casilian Catchment using the PSIAC method (482 t km-2yr-1) was closer to a measured value for the Talar Catchment (532 t km-2 y-1), of which Casilian is a subcatchment. Thus, the PSIAC-based erosion intensity map seems to be more representative of the erosion condition of the the Casilian Catchment. Slope, magnitude and intensity of rainfall, soil and land cover can be important factors affecting soil erosion of the Casilian Catchment. From this research, it was found that antecedent soil water content, magnitude and intensity of rainfall and the area affected by land cover change relative to the catchment size are important factors affecting runoff characteristics (volume of runoff and peak discharge). In the future, the mean rainfall totals (especially mean annual rainfall) and frequency of extreme rainfall events and rainfall intensity may increase due to an increase in atmospheric water vapour for the Casilian Catchment and probably other small catchments in northern Iran. Therefore, these catchments may be subjected to more flooding and erosion in the future as a result of changes in the rainfall characteristics. The findings of this research show that land cover change (e.g. deforestation and agricultural activities) should be given more consideration in the management of small catchments in northern Iran in the future, due to the consequences of climate change.
APA, Harvard, Vancouver, ISO, and other styles
37

Kabeya, Naoki. "Characterization of catchment runoff processes using seasonal variations of stable isotope ratios in water in the Asian monsoon region." Kyoto University, 2009. http://hdl.handle.net/2433/124035.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・論文博士
博士(農学)
乙第12349号
論農博第2711号
新制||農||973(附属図書館)
学位論文||H21||N4475(農学部図書室)
UT51-2009-D564
京都大学大学院農学研究科地域環境科学専攻
(主査)教授 谷 誠, 教授 舟川 晋也, 教授 水山 高久
学位規則第4条第2項該当
APA, Harvard, Vancouver, ISO, and other styles
38

Gannon, John P. "A Hydropedological Approach to Describing Runoff Generation, Lateral Podzolization, and Spatial and Temporal Patterns of DOC in a Headwater Catchment." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/48418.

Full text
Abstract:
The variations in discharge and water chemistry among and within headwater catchments are not well understood. Developing a better understanding of the processes that control these variations is crucial to determining how headwater catchments will respond to changes in climate and land use. This dissertation explores how hydrologic processes in headwater catchments may be better understood by utilizing a hydropedological framework, where similar soils are grouped together and considered to be representative of and developed by similar hydrologic and biogeochemical processes. In the first chapter, soil groups, called hydropedological units (HPUs) are found to be indicative of distinct water table regimes characterized by the interquartile range and median of shallow groundwater levels, the percent time water table exists in the soil, and the level of catchment storage at which groundwater responds. The second chapter explores the hydrological processes that may lead to the formation of HPUs in the catchment. By examining water table records and unsaturated water potential from tensiometers we found that lateral unsaturated flow regimes may be partially responsible for the patterns of lateral translocation observed in HPUs. Finally, the third chapter identifies two HPUs in the catchment as sources of streamwater dissolved organic carbon (DOC). While near-stream areas have typically been found to be DOC sources in headwater catchments, the HPUs identified as sources occur at high elevations in the catchment, near channel heads. Overall, these findings will be useful to better explain runoff generation, soil formation, and DOC export from headwater catchments. Headwater streams source water to larger bodies of water that are valuable natural resources. Therefore, explaining these processes is critical to predicting and responding to changes in climate and land use that may affect important water supplies.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
39

Stovold, Matthew R. "Modeling urban stormwater disposal systems for their future management and design." University of Western Australia. School of Environmental Systems Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0111.

Full text
Abstract:
[Truncated abstract]This thesis investigates aspects of urban stormwater modeling and uses a small urban catchment (NE38) located in the suburb of Nedlands in Perth, Western Australia to do so. The MUSIC (Model for Urban Stormwater Improvement Conceptualisation) model was used to calibrate catchment NE38 using measured stormwater flows and rainfall data from within the catchment. MUSIC is a conceptual model designed to model stormwater flows within urban environments and uses a rainfall-runoff model adapted to generate results at six minute time steps. Various catchment scenarios, including the use of porous asphalt as an alternative road surface, were applied to the calibrated model to identify effective working stormwater disposal systems that differ from the current system. Calibrating catchment NE38 using the MUSIC model was attempted and this involved matching modeled stormwater flows to stormwater flows measured at the catchment drainage point. This was achieved by measuring runoff contributing areas (roads) together with rainfall data measured from within the catchment and altering the seepage constant parameter for all roadside infiltration sumps. ... The MUSIC model generated future scenario outcomes for alternative stormwater disposal systems that displayed similar or improved levels of performance with respect to the current system. The following scenarios listed in increasing order of effectiveness outline future stormwater disposal systems that may be considered in future urban design. 1. 35% porous asphalt application with no sumps in 2036 2. 35% porous asphalt application with no sumps in 2064 3. 68% porous asphalt application with no sumps in 2036 4. 68% porous asphalt application with no sumps in 2064. Future scenarios using the current stormwater disposal system (with roadside infiltration sumps) with porous asphalt were also run. These scenarios reduced stormwater runoff and contaminant loading on the catchment drainage point however the inclusion of a roadside infiltration sump system may not appeal to urban designers due to the costs involved with this scenario. Climate change will affect the design of future stormwater disposal systems and thus, the design of these systems must consider a rainfall reducing future. Based on the findings of this thesis, current stormwater runoff volumes entering catchment drainage points can be reduced together with contaminant loads in urban environments that incorporate porous asphalt with a stormwater disposal design system that is exclusive of roadside infiltration sumps.
APA, Harvard, Vancouver, ISO, and other styles
40

Kusumastuti, Dyah Indriana. "The effects of threshold nonlinearities on the transformation of rainfall to runoff to floods in a lake dominated catchment system." University of Western Australia. School of Environmental Systems Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0124.

Full text
Abstract:
[Truncated abstract] Runoff generation behaviour and flooding in a lake dominated catchment are nonlinear, threshold-driven processes that result from the interactions between climate and various catchment characteristics. A complicating feature of the rainfall to runoff transformation, which may have implications for the flood frequency, is that the various surface and subsurface flow pathways are dynamic, heterogeneous and highly nonlinear, consisting of distinct thresholds. To understand the impact of threshold nonlinearities on the rainfall-runoff transformation in such catchments, a systematic examination was carried out to investigate runoff generation behaviour of the catchment itself, the overflow behaviour of a lake in combination with the catchment draining into it, as well as the lake organisation within a lake chain network. Three storage based thresholds were considered: the catchment field capacity storage governing catchment subsurface stormflow, total storage capacity governing catchment surface runoff, and lake storage capacity governing lake-overflow. ... Through these investigations, this thesis has provided valuable insights into the process controls of lake-overflow events and the associated flood frequency behaviour in lake dominated catchments. In particular, the relative roles of climate, soil depth, the soil?s drainage capacity, as well as the relative geometry of the lake vis a vis the contributing catchment, in the determination of the dynamic characteristics of lake-overflow events and associated flood frequency behaviour have been highlighted. In addition, the importance of lake organization, as expressed in terms of the average ratio of catchment area to lake area and the spatial variability of this ratio from upstream to downstream, and their impact upon connectivity and flood frequency have also been explored. The outcomes of this study highlight the importance of thresholds governing flood frequency, and provide insights into the complex interactions between rainfall variability and the various threshold nonlinearities in the rainfall-runoff process, which are shown to have a significant impact on the resulting flood frequency curves. The improved understanding of these process controls will be useful in assisting the 1 management of the catchment-lake system in the study region, and in regions elsewhere. In particular, the outcome of this study can provide guidance towards the adoption of various management strategies for lake chain systems by illustrating the effects of potential flow interruption and retardation as ways to assist in flood prevention and mitigation, whether it is aimed at decreasing the frequency of occurrence of lake overflows, or merely decreasing the flow magnitude for a given return period.
APA, Harvard, Vancouver, ISO, and other styles
41

Reusser, Dominik, Theresa Blume, Bettina Schaefli, and Erwin Zehe. "Analysing the temporal dynamics of model performance for hydrological models." Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2010/4511/.

Full text
Abstract:
The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or model structure. Dealing with a set of performance measures evaluated at a high temporal resolution implies analyzing and interpreting a high dimensional data set. This paper presents a method for such a hydrological model performance assessment with a high temporal resolution and illustrates its application for two very different rainfall-runoff modeling case studies. The first is the Wilde Weisseritz case study, a headwater catchment in the eastern Ore Mountains, simulated with the conceptual model WaSiM-ETH. The second is the Malalcahuello case study, a headwater catchment in the Chilean Andes, simulated with the physicsbased model Catflow. The proposed time-resolved performance assessment starts with the computation of a large set of classically used performance measures for a moving window. The key of the developed approach is a data-reduction method based on self-organizing maps (SOMs) and cluster analysis to classify the high-dimensional performance matrix. Synthetic peak errors are used to interpret the resulting error classes. The final outcome of the proposed method is a time series of the occurrence of dominant error types. For the two case studies analyzed here, 6 such error types have been identified. They show clear temporal patterns, which can lead to the identification of model structural errors.
APA, Harvard, Vancouver, ISO, and other styles
42

au, H. Kobryn@murdoch edu, and Halina T. Kobryn. "Land use changes and the properties of stormwater entering a wetland on a sandy coastal plain in Western Australia." Murdoch University, 2001. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20040519.165016.

Full text
Abstract:
This study investigated the catchment of an urban wetland on sandy soils in Perth, Western Australia. The wetland is of high conservation value but is currently used as a stormwater-compensating basin. The three main aims of this work were to: 1. determine the importance of stormwater drains in the water and pollutant balance of the lake; 2. evaluate pollutant retention rates by the wetland; and 3. identify current land uses in the catchment, determine their impacts on the wetland and identify tolerable levels of urbanisation for a wetland of this type. Stormwater flowing in and out of the lake subcatchments was monitored for two years for background flows and storm events. Water discharge, physical and chemical characteristics —including nutrients and heavy metals — were measured. Water and pollutant mass balances were determined. There was year-round flow at all sites, except from the smallest subcatchment. Flow characteristics differed between sites and were more influenced by catchment characteristics than rain intensity or duration. More water entered than left the lake in spring. In autumn more water left the lake via the overflow than entered. Due to poor maintenance, many drains overflowed during storm events. When compared to Australian and New Zealand Environment and Conservation Council (ANZECC) water quality guidelines for receiving waters, only pH and conductivity met the recommended criteria. The nutrient and heavy metal loads varied with rainfall during both years of study. Suspended solids, total nitrogen and total phosphorus concentrations were proportional to rainfall, while concentrations of dissolved forms of nutrients were not. Background flows contributed significantly to the pollutant load. More than 85% of total suspended solids, nutrients and heavy metals were retained by the wetland — the only exceptions being copper and some forms of dissolved nutrients. An evaluation of the performance of the lake as a pollutant sink, using published data from constructed wetlands, identified phosphorus as the pollutant that requires the largest area for treatment.
APA, Harvard, Vancouver, ISO, and other styles
43

Damons, Matthew. "An assessment of the contribution of surface and subsurface flows to river flows of the Sandspruit in the Berg River Catchment, South Africa." University of the Western Cape, 2018. http://hdl.handle.net/11394/6415.

Full text
Abstract:
Magister Scientiae - MSc (Environ & Water Science)
Studies have shown that the primary origin of salinity in river flows of the Sandspruit in the Berg Catchment located in the Western Cape Province of South Africa was mainly a result of atmospheric deposition of salts. The salts are transported to rivers through surface runoff and subsurface flow (i.e. through flow and groundwater flow). The purpose of this study was to determine the contributions of subsurface and surface flows to the total flows in the Sandspruit, Berg Catchment. Three rain events were studied. Water samples for two rain events were analysed for environmental tracers ?18O, Silica or Silicon dioxide (SiO2), Calcium (Ca2+) and Magnesium (Mg2+). Tracers used for two component hydrograph separation were ?18O and SiO2. The tracers, Ca2+ and Mg2+, revealed inconsistent contributions of both subsurface flow and surface flow. Two component hydrograph separations indicated is that groundwater is the dominant contributor to flow, while surface runoff mainly contributes during the onset of the storm event. Groundwater response to precipitation input indicated that boreholes near the river have a quicker response than boreholes further away from the river. Boreholes nearer to the river also indicate higher water levels in response to precipitation, in comparison to boreholes further from the river.
APA, Harvard, Vancouver, ISO, and other styles
44

com, rxysharma76@gmail, and Rajesh Sharma. "Soil and Landscape Factors Affecting Phosphorus Loss from the Fitzgerald River Catchment in South West of Western Australia." Murdoch University, 2009. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20100331.90105.

Full text
Abstract:
Following over 100 years of agriculture and continuous phosphorus (P) fertilizer application in the south west of Western Australia, there is a growing risk of P transport from cropping and pasture land to streams. However, soil and landscape factors affecting the likelihood of P losses and of stream water contamination have not yet been assessed for the South coast region of Western Australia. The present investigation was conducted in the Fitzgerald River catchment located ~ 400 km south east of Perth, to identify risk of P losses from agricultural land to streams, through an understanding of how P is retained within complex landscapes and released via surface and subsurface flow paths. The 104,000 ha catchment is in a moderately dissected landscape (average annual rainfall 450 mm) and discharges into the World Heritage listed Fitzgerald Biosphere. The main use of cleared land in the catchment is broad-scale agriculture, primarily winter grain cropping and pasture for livestock. The aim of an initial study was to identify the areas with high soil P concentrations and their relationship to factors such as soil type, topography, management (e.g. fertilizer and manure inputs, and uptake by crops or forage) and how variations in soil P concentrations were related to soil physico-chemical properties, P fertilizer management and landscape position. A wide variation in P concentrations was observed across the catchment, but few of the samples exceeded Colwell extractable P levels of 30 mg/kg in the 0-10 cm layer which is regarded as a critical level for crop and pasture productivity. The western area of the catchment, which was cleared earlier (before 1966) than the eastern area had a greater prevalence of loam soils, and higher Colwell-extractable P concentrations (average)22 mg/kg vs. 13 mg P/kg) due to soil type effects and higher P accumulation over time. Risk of P loss from the east and west of the catchment is expected to vary due to textural and topographic differences and P history (P fertilizer input and uptake by crops). The CaCl2-extractable P in the catchment was negatively correlated with oxalate extractable Fe (Feox) in soils. This suggests that P may be transported as particulate P (PP) on loam and clay soils due to sorption of P on oxides surfaces, while on sand soil leaching losses may be more likely. On loam and clay soils, higher sodicity and the dispersive nature of subsoils may increase the risk of both dissolved P (DP) and PP loss due to the effects on hydraulic conductivity of the profile. Hedley's fractionation scheme was used to quantify P fractions in the order of decreasing lability, viz: resin-P > NaOH-Pi > NaOH-Po > acid-P (H2SO4-P) > residual-P. Surface soil had higher resin and NaOH-Pi, which are regarded as water-soluble and readily exchangeable P forms, respectively and expected to contribute to DP in the runoff losses. The residual P was the largest fraction followed by the hydroxide extractable organic-P fraction (NaOH-Po): the former was positively correlated (r) with clay content, organic carbon (OC) and pyrophosphate extractable Fe and Al (0.48**, 0.61**, 0.69** and 0.58**, P < 0.01). A relatively higher value of NaOH-Po in the subsurface layer and positive correlation with OC (r = 0.45**, P < 0.01) suggests potential mobility of P as soluble organic P in run-off, throughflow and leachate. Phosphorus sorption and its relationship to soil properties was used to assess the potential P release from the catchment soils. Values of P sorption maxima varied from 1111-3333 mg/kg for surface soils and 1010-2917 mg/kg for subsoils. The P sorption isotherms conformed better to the Freundlich equation than the Langmuir equation. A highly significant negative correlation between CaCl2 extractable P and Feox in surface soils (r = -0.65**, P < 0.01) suggests that P was bound to hydrated Fe oxide surfaces and this may determine the concentration and dynamics of loosely bound P equilibrating with leachates and eroded particulate materials. On the other hand, high surface organic matter and the high proportion of total dissolved P in organically bound form may inhibit P sorption on clays and sesquioxides, which would increase P mobility through leaching or runoff losses. The relationship between soil P concentration and degree of P stratification in the top 0-10 cm of soils along five toposequences was examined to predict the effect on runoff P losses. The total Colwell-P content of the 0-10 cm layer of soils in the catchment was very low in comparison to other studies on P losses from agricultural soils, but soils showed higher P concentration at 0-1 cm depth compared to 5-10 cm (average 37 mg/kg vs. 19 mg/kg). The higher extractable P concentration in the 0-1 cm layer will create a greater P mobilization risk in surface runoff and leachate than analysis of the 0-10 cm layer might suggest. Assessment of P risk using the 0-10 cm data would still be reliable as P concentration in the 0-1 cm layer was linearly related (R2 = 0.59) with concentration in the 0-10 cm layer. The sampling at varied soil depths will result in different critical P levels for estimating the risk of P enrichment in runoff. In a glasshouse study with intact soil columns, initial high P concentrations in leachate decreased with leaching events suggesting that macropore flow dominated in initial leaching events changing later to matrix flow. The hydraulic behavior of clay and loam soil below 10 cm depends largely on structure and the type of clay minerals and exchangeable Na. Higher levels of exchangeable Na in the subsoil might increase dispersion of clay particles resulting in low permeability leading to ponding of surface water or lateral movement of water at the interface of sand A and clay B horizons. Lateral water movements increase the risk of P losses in the form of DP, dissolved organic P (DOP) or PP. The P concentration in all the P forms (DRP, DOP and TDP) increased significantly with P rates of application (P < 0.01). The DRP concentration was < 2 mg/l in unfertilized columns but an increase to 11 mg/l was observed with P application at 40 kg P/ha. The higher proportion of DOP relative to DRP and its correlation with TDP indicates that the DOP was the major form of P in leachate. However, the estimation of DOP which was by subtraction of DRP from TDP generally overestimates OP concentration. The TDP load from unfertilized soil was < 0.20 mg/l in runoff and < 2.40 mg/l in throughflow but increased with P application (20, 40 kg P/ha) for both packed box and field studies. Under field conditions, higher P loss was found with broadcast P application compared to drill placement. The higher load of DOP as a proportion of TDP and its significant relationship with TDP in runoff (R2sand = 0.81; R2clay = 0.79) and throughflow (R2sand = 0.94; R2clay = 0.98) in field and box studies also suggests DOP was the major form of P loss from soil. Dissolved OP concentration increased significantly with increase in soluble organic carbon (SOC) in soil solution at 5 cm depth (P < 0.05). Consequently, the amount of organic matter dissolved in soil solution may influence P sorption and mobility. Relatively higher affinity of soil for sorption of DRP compared to DOP might allow DOP to be more mobile through the profile. Higher PP load in clay soil in throughflow indicates subsurface lateral flow along the interface with the horizon of dispersive clay might be an additional risk factor regarding P mobility in clay soils of the catchment. The runoff, throughflow and leachate were dominated by eroded particles of clay and colloidal organic materials. However, the soil solution collected though 0.1 m pores in the Rhizon samplers had a similar dominance of DOP to the < 0.45 jum filtered samples in runoff and throughflow. This reduces the likelihood that the so-called DOP fraction was mostly P associated with PP in the 0.1 to 0.45 jum size fraction. The composition of DOP in soil solution collected through Rhizon samplers (< 0.1 jum) might provide important insights for P mobility since this more effectively excluded PP than in the < 0.45 jum filtrate used for runoff and throughflow samples. The DOP in soil solution (< 0.1 jum) might be associated with fine colloidal compound such as silicates, metallic hydroxides, humic acids, polysaccharides, fulvic acids and proteins. If so, then most, but not all of the DOP fraction would be organically bound. However, this requires verification. In conclusion, soil P levels across the catchment were never very high when assessed in the 0-10 cm layer, but levels in the 0-1 cm layer were more than twice as high. Overall, < 1 % of land area of the upper Fitzgerald River catchment had Colwell-P levels > 30 mg/kg (0-10 cm) and hydrological connection to streams. In addition, another 7 % of land had Colwell-P levels > 15 mg/kg, which appears to be a change point in soils for the release of CaCl2 extractable P. These areas, which are predicted to represent critical source areas of the catchment, need careful management. The high proportions of TDP as DOP in runoff, throughflow and soil solution suggest DOP was the major form of P loss from soil. Phosphorus losses from the catchments are also likely in the form of PP in clay and loam soil but leaching losses are more likely in sand. High exchangeable Na in the subsoil of loam and clay soils increases dispersion of clay particles resulting in low permeability of subsoil and greater lateral P mobility as throughflow at the interface of sand and clay textured horizons. In general, soils of Fitzgerald River catchment had low soil P, but nevertheless significant risk of P loss at Colwell-P > 15 mg/kg. This study provides baseline information for P loss risks in the wheatbelt of WA. Stream water quality monitoring instruments were installed in the upper Fitzgerald River Catchment at 5 stream locations by CSIRO to measure base line concentrations of P. The measured P concentrations were higher than ANZECC trigger values (> 0.05 mg P/l) for management response over the three-year monitoring period (2005-07). Hence this and many other catchments on the south coast and wheatbelt of south west Western Australia need assessment for P loss risks. Previous emphasis in south west Western Australia on P losses from sandy coastal soils under pasture may need to be reconsidered. In the South coast region, cropping land in the medium rainfall zone may still represent a risk of P loss to waterways and risk to water quality. The present study evaluated the risk of P loss based on soil P forms and their mobility. It suggests greater attention needs to be given to the difference between clay and loam soils with dispersive or non-dispersive sub-soils, and to the composition and mobility of DOP. However, a more complete understanding of P loss risks depends on follow-up studies on hydrological flow and connectivity in the upper Fitzgerald River catchment and similar landscapes of south west Western Australia.
APA, Harvard, Vancouver, ISO, and other styles
45

Ng, Warren Heng Wan. "Identification, transport and treatment of adhered deleterious substances of stormwater in an urban catchment thesis submitted in fulfilment of the degree of Doctor of Philosophy, Earth & Oceanic Sciences Research Institute, Auckland University of Technology, August 2004 /." Full thesis. Abstract, 2004. http://puka2.aut.ac.nz/ait/theses/NgW.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Dhlembeu, Ratidzo. "Testing the use of the BASINS PLOAD model to simulate the quality of stormwater runoff from the Kuils River catchment, Cape Town." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/12637.

Full text
Abstract:
Includes bibliographical references.
The interaction between land use and water quality in urban catchments is closely linked. As pollutants accumulate on land surfaces they are carried in runoff. This has led to increasing concerns that stormwater is responsible for adversely affecting the quality of freshwater resources. Total phosphorus and total suspended solids represent two forms of pollutants that are commonly found in non point source discharge...This study evaluated water quality modelling as an alternative monitoring technique. The study was aimed at determining the potential use of a simple water quality model to evaluate pollution in stormwater runoff. The study was conducted in the Kuils River catchment using the BASINS PLOAD model (PLOAD) to estimate pollutant loads of total suspended solids (TSS) and total phosphorus (TP) in runoff...
APA, Harvard, Vancouver, ISO, and other styles
47

Burke, Amy R. "A Comparison of Soil Moisture and Hillslope-Stream Connectivity Between Aspen and Conifer-Dominated Hillslopes of a First Order Catchment in Northern Utah." DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/493.

Full text
Abstract:
Mountain headwater catchments in the semi-arid Intermountain West are important sources of surface water because these high elevations receive more precipitation than neighboring lowlands. The hydrology of these mountain catchments is especially important as the region faces water shortages and conflicts. Conifer encroachment on aspen stands has been observed across the western US and can result in a decline in water yield. The overall objective of this study was to further our understanding of hillslope-stream connectivity in a headwater catchment of Northern Utah and any observable differences in this connection between aspen and conifer hillslopes. Hillslopes are the fundamental unit of a watershed. Therefore understanding processes at the hillslope scale is pertinent to managing valuable water resources. However, hillslope hydrology is understudied in the snow-driven, semi-arid west, leaving a gap in our knowledge of how watersheds function. This thesis focuses on how and when hillslope water contributes to stream water: hillslope-stream connectivity. Its specific objectives are (1) to compare peak snow accumulation under aspen and conifer stands, (2) to determine if shallow soil moisture shows organized patterns, indicating hillslope-connectivity and compare these patterns between vegetation types, (3) to examine hillslope-stream connectivity within deep layers of the soil profile and compare times of connectivity between vegetation types and (4) to find any thresholds past which hillslope-stream connectivity begins.
APA, Harvard, Vancouver, ISO, and other styles
48

Valencia, Gudiño Ricardo. "Modeling copper pollution from road Runoff in a peri-urban catchment in Portugal by using MIKE SHE, and MIKE 11 coupled with ECO Lab." Thesis, KTH, Mark- och vattenteknik (flyttat 20130630), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210918.

Full text
Abstract:
Economic development in an area attracts more people to live in it. This increment drives the necessity to improve available infrastructure, like roads for instance, to satisfy a higher demand. Bigger roads and higher number of vehicles have raised the concern about possible pollution coming from these sources In this thesis, copper coming from road runoff in a peri-urban catchment in Portugal was analyzed. The catchment is located in the Coimbra region, center of Portugal. In order to model copper pollution in road runoff, it is necessary to couple a hydrological model and a water quality Based on a previous study (Kalantari, Ferreira, Walsh, Ferreira, & Destouni, 2017) a physical based hydrological model  MIKE SHE  coupled with the hydraulic model MIKE 11was updated and further coupled with  ECO Lab to simulate water quality and ecological processes. The results show an improvement of the hydrological model compared with the original one, nash-sutcliffe efficiency was raised from 0.59 to 0.77 and the coefficient of determination varied from 0.64 to 0.79. For copper the model behavior for punctual and distributed sources was analyzed. For punctual sources, highest concentrations were present in the grid points where the incoming sources were located in the tributaries, and these concentrations are rapidly reduced downstream. On the other hand, distributed sources approach gives higher concentrations near the end of the river than in the tributaries upstream. Comparing time-averaged model results along the river, with fresh water quality criteria according to U.S. EPA (2004), for punctual sources an extension of 978 meters (7,6% of the river) presents a concentration above CCC or CMC, on the contrary, for distributed sources the extension is lower with 494 meters (3,8%). The organic carbon partitioning coefficient have bigger influence on the results than other factors, nevertheless this influence is not marked. Modeled copper values do not agree well with the mesured values specially for periods with higher discharge as the model simulates lower concentration with higher discharge and viceversa. Copper boundary values for the model represent a big challenge considering limited data available. This thesis gives good overview about the coupling process between MIKE 11 and ECO Lab, as well as analyzes the importance of some factors as well as model limitations and uncertainties.
APA, Harvard, Vancouver, ISO, and other styles
49

Umakhanthan, Kanagaratnam Civil &amp Environmental Engineering Faculty of Engineering UNSW. "Estimation of the spatio-temporal heterogeneity of rainfall and its importance towards robust catchment simulation, within a hydroinformatic environment." Awarded by:University of New South Wales. School of Civil and Environmental Engineering, 2002. http://handle.unsw.edu.au/1959.4/18668.

Full text
Abstract:
Rainfall is a natural process, which has a high degree of variability in both space and time. Information on the spatial and temporal variability of rainfall plays an important role in the process of surface runoff generation. Hence it is important for a variety of applications in hydrology and water resources management. The spatial variability of rainfall can be substantial even for very small catchments and an important factor in the reliability of rainfall-runoff simulations. Catchments in urban areas usually are small, and the management problems often require the numerical simulation of catchment processes and hence the need to consider the spatial and temporal variability of rainfall. A need exists, therefore, to analyse the sensitivity of rainfall-runoff behaviour of catchment modelling systems (CMS) to imperfect knowledge of rainfall input, in order to judge whether or not they are reliable and robust, especially if they are to be used for operational purposes. Development of a methodology for identification of storm events according to the degree of heterogeneity in space and time and thence development of a detailed spatial and temporal rainfall model within a hydroinformatic environment utilising real-time data has been the focus of this project. The improvement in runoff prediction accuracy and hence the importance of the rainfall input model in runoff prediction is then demonstrated through the application of a CMS for differing variability of real storm events to catchments with differing orders of scale. The study identified both spatial and temporal semi-variograms, which were produced by plotting the semi-variance of gauge records in space and time against distance and time respectively. These semi-variograms were utilised in introducing estimators to measure the degree of heterogeneity of each individual storm events in their space and time scale. Also, the proposed estimators use ground based gauge records of the real storm events and do not rely on delicate meteorological interpretations. As the results of the investigation on the developed semi-variogram approach, real storm events were categorised as being High Spatial-High Temporal (HS-HT); High Spatial-Low Temporal; (HS-LT); Low Spatial-High Temporal (LS-HT); and Low Spatial-Low Temporal variability.A comparatively detailed rainfall distribution model in space and time was developed within the Geographical Information Systems (GIS). The enhanced rainfall representation in both space and time scale is made feasible in the study by the aid of the powerful spatial analytic capability of GIS. The basis of this rainfall model is an extension of the rainfall model developed by Luk and Ball (1998) through a temporal discretisation of the storm event. From this model, improved estimates of the spatially distributed with smaller time steps hyetographs suited for especially the urban catchments could be obtained. The importance of the detailed space-time rainfall model in improving the robustness of runoff prediction of CMS was investigated by comparing error parameters for predictions from CMS using alternate rainfall models, for various degrees of spatiotemporal heterogeneity events. Also it is appropriate to investigate whether the degree of this improvement to be dependent on the variability of the storm event which is assessed by the adopted semi-variogram approach. From the investigations made, it was found that the spline surface rainfall model, which considered the spatial and temporal variability of the rainfall in greater detail than the Thiessen rainfall model resulted in predicted hydrographs that more closely duplicated the recorded hydrograph for the same parameter set. The degree of this improvement in the predicted hydrograph was found to be dependent on the spatial and temporal variability of the storm event as measured by the proposed semi-variogram approach for assessing this feature of a storm event. The analysis is based on forty real events recorded from the Centennial Park Catchment (1.3km2) and the Upper Parramatta River Catchment (110km2) in Sydney, Australia. These two case study catchments were selected to ensure that catchment scale effects were incorporated in the conclusions developed during the study.
APA, Harvard, Vancouver, ISO, and other styles
50

Krpo, Ana. "GIS model for assessment of land use and urban development effects on stormwater runoff Puhinui Catchment case study : thesis submitted in fulfilment of the degree of Master of Applied Science, Auckland University of Technology, February 2004." Full thesis. Abstract, 2004. http://puka2.aut.ac.nz/ait/theses/KrpoA.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography