Journal articles on the topic 'Catalytic hydroamination'

To see the other types of publications on this topic, follow the link: Catalytic hydroamination.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Catalytic hydroamination.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Palchak, Zachary L., Daniel J. Lussier, Conor J. Pierce, Hoseong Yoo, and Catharine H. Larsen. "Catalytic Tandem Markovnikov Hydroamination-Alkynylation and Markovnikov Hydroamination-Hydrovinylation." Advanced Synthesis & Catalysis 357, no. 2-3 (January 30, 2015): 539–48. http://dx.doi.org/10.1002/adsc.201401037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pohlki, Frauke, and Sven Doye. "The catalytic hydroamination of alkynes." Chemical Society Reviews 32, no. 2 (January 22, 2003): 104–14. http://dx.doi.org/10.1039/b200386b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Severin, René, and Sven Doye. "The catalytic hydroamination of alkynes." Chemical Society Reviews 36, no. 9 (2007): 1407. http://dx.doi.org/10.1039/b600981f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brunet, Jean-Jacques, Ngoc Châu Chu, Ousmane Diallo, and Emmanuelle Mothes. "Catalytic intermolecular hydroamination of alkenes." Journal of Molecular Catalysis A: Chemical 198, no. 1-2 (May 2003): 107–10. http://dx.doi.org/10.1016/s1381-1169(02)00734-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Isaeva, Vera I., and Leonid M. Kustov. "Catalytic Hydroamination of Unsaturated Hydrocarbons." Topics in Catalysis 59, no. 13-14 (August 2016): 1196–206. http://dx.doi.org/10.1007/s11244-016-0640-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Smolensky, Elena, Moshe Kapon, and Moris S. Eisen. "Catalytic Intermolecular Hydroamination of Methylenecyclopropanes." Organometallics 24, no. 23 (November 2005): 5495–98. http://dx.doi.org/10.1021/om050518h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Roesky, Peter W., and Thomas E. Müller. "Enantioselective Catalytic Hydroamination of Alkenes." Angewandte Chemie International Edition 42, no. 24 (June 23, 2003): 2708–10. http://dx.doi.org/10.1002/anie.200301637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tussing, Sebastian, Miriam Ohland, Garrit Wicker, Ulrich Flörke, and Jan Paradies. "Borane-catalyzed indole synthesis through intramolecular hydroamination." Dalton Transactions 46, no. 5 (2017): 1539–45. http://dx.doi.org/10.1039/c6dt04725d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gallegos, Carlos, Ruth Camacho, Mercedes Valiente, Tomás Cuenca, and Jesús Cano. "Cyclopentadienyl-based Mg complexes in the intramolecular hydroamination of aminoalkenes: mechanistic evidence for cationic versus neutral magnesium derivatives." Catalysis Science & Technology 6, no. 13 (2016): 5134–43. http://dx.doi.org/10.1039/c5cy01040c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Palchak, Zachary L., Daniel J. Lussier, Conor J. Pierce, Hoseong Yoo, and Catharine H. Larsen. "ChemInform Abstract: Catalytic Tandem Markovnikov Hydroamination-Alkynylation and Markovnikov Hydroamination-Hydrovinylation." ChemInform 46, no. 26 (June 2015): no. http://dx.doi.org/10.1002/chin.201526044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Feng, Zhijun, Yun Wei, Shuangliu Zhou, Guangchao Zhang, Xiancui Zhu, Liping Guo, Shaowu Wang, and Xiaolong Mu. "Reactivity of functionalized indoles with rare-earth metal amides. Synthesis, characterization and catalytic activity of rare-earth metal complexes incorporating indolyl ligands." Dalton Transactions 44, no. 47 (2015): 20502–13. http://dx.doi.org/10.1039/c5dt03214h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Matsunaga, Shigeki. "Recent Progress in Catalytic Intermolecular Hydroamination." Journal of Synthetic Organic Chemistry, Japan 64, no. 7 (2006): 778–79. http://dx.doi.org/10.5059/yukigoseikyokaishi.64.778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Pahadi, Nirmal, and Jon Tunge. "Catalytic Intermolecular Hydroamination of Vinyl Ethers." Synlett 2009, no. 19 (October 21, 2009): 3135–38. http://dx.doi.org/10.1055/s-0029-1218293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ogata, Tokutaro, Atsushi Ujihara, Susumu Tsuchida, Tomoko Shimizu, Atsunori Kaneshige, and Kiyoshi Tomioka. "Catalytic asymmetric intramolecular hydroamination of aminoalkenes." Tetrahedron Letters 48, no. 38 (September 2007): 6648–50. http://dx.doi.org/10.1016/j.tetlet.2007.07.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Normand, Adrien T., Alexandre Massard, Philippe Richard, Coline Canovas, Cédric Balan, Michel Picquet, Audrey Auffrant, and Pierre Le Gendre. "Titanium imido complexes stabilised by bis(iminophosphoranyl)methanide ligands: the influence of N-substituents on solution dynamics and reactivity." Dalton Trans. 43, no. 40 (2014): 15098–110. http://dx.doi.org/10.1039/c4dt00746h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hirano, Koji, and Masahiro Miura. "Copper-catalyzed aminoboration and hydroamination of alkenes with electrophilic amination reagents." Pure and Applied Chemistry 86, no. 3 (March 20, 2014): 291–97. http://dx.doi.org/10.1515/pac-2014-5004.

Full text
Abstract:
Abstract A copper-catalyzed regioselective, stereospecific, and enantioselective aminoboration reaction of alkenes with bis(pinacolato)diboron and O-acylated hydroxylamines has been developed to deliver the corresponding β-aminoalkylboranes, which can be important building blocks in organic synthesis. In addition, this methodology has been applied to a formal regioselective hydroamination of styrenes by replacement of the diboron reagent with polymethylhydrosiloxane (PMHS). The catalytic asymmetric hydroamination is also possible by using an appropriate chiral biphosphine ligand.
APA, Harvard, Vancouver, ISO, and other styles
17

Zhang, Dexing, Ruiting Liu, and Xigeng Zhou. "Intramolecular alkene hydroamination and degradation of amidines: divergent behavior of rare earth metal amidinate intermediates." Catalysis Science & Technology 8, no. 21 (2018): 5573–81. http://dx.doi.org/10.1039/c8cy01481g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kazeminejad, Neda, Luca Münzfeld, Michael T. Gamer, and Peter W. Roesky. "Mono- and bimetallic amidinate samarium complexes – synthesis, structure, and hydroamination catalysis." Dalton Transactions 48, no. 23 (2019): 8153–60. http://dx.doi.org/10.1039/c9dt01418g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Das, Suman, Jayeeta Bhattacharjee, and Tarun K. Panda. "Guanylation/cyclisation of amino acid esters using an imidazolin-2-iminato titanium initiator." Dalton Transactions 48, no. 21 (2019): 7227–35. http://dx.doi.org/10.1039/c8dt04630a.

Full text
Abstract:
Catalytic hydroamination of amino acid esters with carbodiimides and isocyanates to furnish corresponding quinazolinone and urea derivatives using two TiIV complexes under mild conditions is reported.
APA, Harvard, Vancouver, ISO, and other styles
20

Fukumoto, Yoshiya. "Catalytic Hydroamination of C-C Multiple Bonds." Journal of Synthetic Organic Chemistry, Japan 67, no. 7 (2009): 735–50. http://dx.doi.org/10.5059/yukigoseikyokaishi.67.735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hultzsch, Kai C. "Catalytic asymmetric hydroamination of non-activated olefins." Organic & Biomolecular Chemistry 3, no. 10 (2005): 1819. http://dx.doi.org/10.1039/b418521h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bytschkov, Igor, and Sven Doye. "Microwave-Assisted Catalytic Intermolecular Hydroamination of Alkynes." European Journal of Organic Chemistry 2001, no. 23 (December 2001): 4411–18. http://dx.doi.org/10.1002/1099-0690(200112)2001:23<4411::aid-ejoc4411>3.0.co;2-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Shen, Yi, Scott M. Shepard, Christopher J. Reed, and Paula L. Diaconescu. "Zirconium complexes supported by a ferrocene-based ligand as redox switches for hydroamination reactions." Chemical Communications 55, no. 39 (2019): 5587–90. http://dx.doi.org/10.1039/c9cc01076a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bano, Kulsum, Srinivas Anga, Archana Jain, Hari Pada Nayek, and Tarun K. Panda. "Hydroamination of isocyanates and isothiocyanates by alkaline earth metal initiators supported by a bulky iminopyrrolyl ligand." New Journal of Chemistry 44, no. 22 (2020): 9419–28. http://dx.doi.org/10.1039/d0nj01509a.

Full text
Abstract:
Synthesis of heteroleptic and homoleptic alkaline earth metal complexes supported by bulky bis-iminopyrrolyl ligands are reported. The catalytic hydroamination of isocyanates and isothiocyanates with aryl amines using calcium complex is presented.
APA, Harvard, Vancouver, ISO, and other styles
25

Younis, Fadi M., Sven Krieck, Helmar Görls, and Matthias Westerhausen. "Hydroamination of diphenylbutadiyne with secondary N-methyl-anilines using the dipotassium tetrakis(2,6-diisopropylanilino)calciate precatalyst." Dalton Transactions 45, no. 14 (2016): 6241–50. http://dx.doi.org/10.1039/c5dt03818a.

Full text
Abstract:
The s-block metal complex [K2Ca{N(H)Dipp}4] represents a suitable catalyst for the regioselective catalytic single and two-fold hydroamination of diphenylbutadiyne with N-methyl-anilines.
APA, Harvard, Vancouver, ISO, and other styles
26

Kissel, Alexander A., Tatyana V. Mahrova, Dmitry M. Lyubov, Anton V. Cherkasov, Georgy K. Fukin, Alexander A. Trifonov, Iker Del Rosal, and Laurent Maron. "Metallacyclic yttrium alkyl and hydrido complexes: synthesis, structures and catalytic activity in intermolecular olefin hydrophosphination and hydroamination." Dalton Transactions 44, no. 27 (2015): 12137–48. http://dx.doi.org/10.1039/c5dt00129c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Trifonov, A. A., I. V. Basalov, and A. A. Kissel. "Use of organolanthanides in the catalytic intermolecular hydrophosphination and hydroamination of multiple C–C bonds." Dalton Transactions 45, no. 48 (2016): 19172–93. http://dx.doi.org/10.1039/c6dt03913h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sha, Fanrui, Emily A. Shimizu, Hannah S. Slocumb, Sydney E. Towell, Yi Zhen, Hanna Z. Porter, Michael K. Takase, and Adam R. Johnson. "Catalytic intramolecular hydroamination of aminoallenes using titanium and tantalum complexes of sterically encumbered chiral sulfonamides." Dalton Transactions 49, no. 35 (2020): 12418–31. http://dx.doi.org/10.1039/d0dt02557g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Krieck, Sven, Diana Kalden, Ansgar Oberheide, Lydia Seyfarth, Hans-Dieter Arndt, Helmar Görls, and Matthias Westerhausen. "Synthesis and catalytic activity of tridentate N-(2-pyridylethyl)-substituted bulky amidinates of calcium and strontium." Dalton Transactions 48, no. 7 (2019): 2479–90. http://dx.doi.org/10.1039/c8dt04905j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Schmid, Bernhard, Sibylle Frieß, Alberto Herrera, Anthony Linden, Frank W. Heinemann, Harald Locke, Sjoerd Harder, and Romano Dorta. "Chiral amino-phosphine and amido-phosphine complexes of Ir and Mg. Catalytic applications in olefin hydroamination." Dalton Transactions 45, no. 30 (2016): 12028–40. http://dx.doi.org/10.1039/c6dt01146b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sha, Fanrui, Benjamin S. Mitchell, Christopher Z. Ye, Chase S. Abelson, Eric W. Reinheimer, Pierre LeMagueres, Joseph D. Ferrara, Michael K. Takase, and Adam R. Johnson. "Catalytic intramolecular hydroamination of aminoallenes using titanium complexes of chiral, tridentate, dianionic imine-diol ligands." Dalton Transactions 48, no. 26 (2019): 9603–16. http://dx.doi.org/10.1039/c8dt05156a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tomioka, Kiyoshi, Tokutaro Ogata, Tetsutaro Kimachi, Ken-ichi Yamada, and Yasutomo Yamamoto. "Catalytic Asymmetric Synthesis of (S)-Laudanosine by Hydroamination." HETEROCYCLES 86, no. 1 (2012): 469. http://dx.doi.org/10.3987/com-12-s(n)44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sitha, Sanyasi, and Linda L. Jewell. "Non-catalytic hydroamination of alkenes: a computational study." Tetrahedron 66, no. 16 (April 2010): 3030–36. http://dx.doi.org/10.1016/j.tet.2010.02.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Knight, David, Thomas Wirth, and Abdul Hadi Aldmairi. "Morpholin-2-one Derivatives via Intramolecular Acid-Catalyzed Hydroamination." Synthesis 51, no. 07 (January 7, 2019): 1643–48. http://dx.doi.org/10.1055/s-0037-1610674.

Full text
Abstract:
Substituted morpholin-2-one derivatives were readily obtained in two steps starting from commercially available N-protected amino acids. In a metal-free and practical method, a catalytic amount of trifluoromethanesulfonic acid was sufficient to generate morpholinones under mild reaction conditions in an intramolecular hydroamination reaction in good to excellent yields.
APA, Harvard, Vancouver, ISO, and other styles
35

Obora, Yasushi, Tatsuki Nagata, and Yurina Adachi. "Thiolate-Protected Au25(SC2H4Ph)18 Nanoclusters as a Catalyst for Intermolecular Hydroamination of Terminal Alkynes." Synlett 29, no. 20 (November 16, 2018): 2655–59. http://dx.doi.org/10.1055/s-0037-1610671.

Full text
Abstract:
Au25(SC2H4Ph)18 nanoclusters have high catalytic activity for hydroamination of terminal alkynes. This reaction proceeds under O2 or air. The presence of molecular oxygen has a profound effect on the Au25(SC2H4Ph)18 reactivity. The catalysts can be separated from the mixture after the reaction and reused.
APA, Harvard, Vancouver, ISO, and other styles
36

Shibuya, Masatoshi, Shoji Fujita, and Yoshihiko Yamamoto. "Intramolecular Hydroalkoxylation/Reduction and Hydroamination/Reduction of Unactivated Alkynes Using a Silane–Iodine Catalytic System." Synthesis 49, no. 18 (May 24, 2017): 4199–204. http://dx.doi.org/10.1055/s-0036-1588436.

Full text
Abstract:
A transition-metal-free silane–iodine catalytic system comprising I2 and Et3SiH promotes intramolecular hydroalkoxylation/reduction and hydroamination/reduction of unactivated alkynes. This system allows the reaction to proceed at room temperature affording 2,4- and 2,5-disubstituted pyrrolidines as well as a 2,3-disubstituted tetrahydrofuran with high diastereoselectivity.
APA, Harvard, Vancouver, ISO, and other styles
37

Valle, Henry U., Gopalakrishna Akurathi, Joon Cho, Wesley D. Clark, Amarraj Chakraborty, and T. Keith Hollis. "CCC-NHC Pincer Zr Diamido Complexes: Synthesis, Characterisation, and Catalytic Activity in Hydroamination/Cyclisation of Unactivated Amino-Alkenes, -Alkynes, and Allenes." Australian Journal of Chemistry 69, no. 5 (2016): 565. http://dx.doi.org/10.1071/ch15795.

Full text
Abstract:
2-(1,3-Bis-3′-butylimidazol-1′-yl-2′-ylidene)phenylene)bis(dimethylamido) iodo zirconium(iv) (3) and 2-(1,3-bis-3′-butylimidazol-1′-yl-2′-ylidene)phenylene)bis (dimethylamido) bromo zirconium(iv) (4), have been prepared via a modification of the solvent and stoichiometry from the previously reported methodology. The reactivity of 3 and 4 in hydroamination/cyclisation is reported. Both diamido complexes have been found to improve catalytic activity as compared with the previously reported mono-amido analogues. Complexes 3 and 4 were observed to be selective for primary amines over secondary amines in hydroamination/cyclisation. The lack of reactivity with secondary amines is consistent with a mechanism involving requisite formation of a Zr-imido intermediate.
APA, Harvard, Vancouver, ISO, and other styles
38

Xiao, Yuanyuan, Zijuan Yi, Xianyong Yu, and Fang Xiao. "Copper-catalyzed synthesis of α-ketoamides using water and dioxygen as the oxygen source." RSC Advances 10, no. 49 (2020): 29114–18. http://dx.doi.org/10.1039/d0ra05921h.

Full text
Abstract:
The reaction employing H2O and O2 as the co-oxygen source in the catalytic synthesis of α-ketoamides is described. This Cu-catalyzed reaction is carried out in a tandem manner constituted by hydroamination of alkyne, hydration of vinyl–Cu complex and subsequent oxidation.
APA, Harvard, Vancouver, ISO, and other styles
39

Davin, Laia, Alberto Hernán-Gómez, Calum McLaughlin, Alan R. Kennedy, Ross McLellan, and Eva Hevia. "Alkali metal and stoichiometric effects in intermolecular hydroamination catalysed by lithium, sodium and potassium magnesiates." Dalton Transactions 48, no. 23 (2019): 8122–30. http://dx.doi.org/10.1039/c9dt00923j.

Full text
Abstract:
Cooperative catalytic hydroamination of diphenylacetylene and styrene is accomplished by magnesiates with efficiency dependent on the alkali metal and monoanionic or dianionic nature of the ate with dianionic [(PMDETA)2K2Mg(CH2SiMe3)4] performing best.
APA, Harvard, Vancouver, ISO, and other styles
40

Karmakar, Himadri, Srinivas Anga, Tarun K. Panda, and Vadapalli Chandrasekhar. "Aluminium alkyl complexes supported by imino-phosphanamide ligand as precursors for catalytic guanylation reactions of carbodiimides." RSC Advances 12, no. 8 (2022): 4501–9. http://dx.doi.org/10.1039/d2ra00242f.

Full text
Abstract:
Three aluminium alkyl complexes, [κ2-{ImRNP(Ph)NDipp}AlMe2] (2a–2c), supported by unsymmetrical imino-phosphanamide were synthesised and utilised as competent precatalysts for the hydroamination of carbodiimides under ambient conditions.
APA, Harvard, Vancouver, ISO, and other styles
41

Liu, Lian-jun, Feijun Wang, Wenfeng Wang, Mei-xin Zhao, and Min Shi. "Synthesis of chiral mono(N-heterocyclic carbene) palladium and gold complexes with a 1,1'-biphenyl scaffold and their applications in catalysis." Beilstein Journal of Organic Chemistry 7 (May 4, 2011): 555–64. http://dx.doi.org/10.3762/bjoc.7.64.

Full text
Abstract:
Axially chiral mono(NHC)–Pd(II) and mono(NHC)–Au(I) complexes with one side shaped 1,1'-biphenyl backbone have been prepared from chiral 6,6'-dimethoxybiphenyl-2,2'-diamine. The complexes were characterized by X-ray crystal structure diffraction. The Pd(II) complex showed good catalytic activities in the Suzuki–Miyaura and Heck–Mizoroki coupling reactions, and the (S)-Au(I) complexes also showed good catalytic activities in the asymmetric intramolecular hydroamination reaction to give the corresponding product in moderate ee.
APA, Harvard, Vancouver, ISO, and other styles
42

Yang, Yang, Shi-Liang Shi, Dawen Niu, Peng Liu, and Stephen L. Buchwald. "Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines." Science 349, no. 6243 (July 2, 2015): 62–66. http://dx.doi.org/10.1126/science.aab3753.

Full text
Abstract:
Catalytic assembly of enantiopure aliphatic amines from abundant and readily available precursors has long been recognized as a paramount challenge in synthetic chemistry. Here, we describe a mild and general copper-catalyzed hydroamination that effectively converts unactivated internal olefins—an important yet unexploited class of abundant feedstock chemicals—into highly enantioenriched α-branched amines (≥96% enantiomeric excess) featuring two minimally differentiated aliphatic substituents. This method provides a powerful means to access a broad range of advanced, highly functionalized enantioenriched amines of interest in pharmaceutical research and other areas.
APA, Harvard, Vancouver, ISO, and other styles
43

Molander, Gary A., and Eric D. Dowdy. "Catalytic Intramolecular Hydroamination of Hindered Alkenes Using Organolanthanide Complexes." Journal of Organic Chemistry 63, no. 24 (November 1998): 8983–88. http://dx.doi.org/10.1021/jo981345r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Haak, Edgar, and Sven Doye. "ChemInform Abstract: The Catalytic Hydroamination of Alkenes and Alkynes." ChemInform 31, no. 28 (June 7, 2010): no. http://dx.doi.org/10.1002/chin.200028253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Fadini, Luca, and Antonio Togni. "Asymmetric Catalytic Hydroamination of Activated Olefins in Ionic Liquids." Helvetica Chimica Acta 90, no. 2 (February 2007): 411–24. http://dx.doi.org/10.1002/hlca.200790048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lavallo, Vincent, Guido D Frey, Bruno Donnadieu, Michele Soleilhavoup, and Guy Bertrand. "Homogeneous Catalytic Hydroamination of Alkynes and Allenes with Ammonia." Angewandte Chemie 120, no. 28 (June 27, 2008): 5302–6. http://dx.doi.org/10.1002/ange.200801136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bytschkov, Igor, and Sven Doye. "ChemInform Abstract: Microwave-Assisted Catalytic Intermolecular Hydroamination of Alkynes." ChemInform 33, no. 18 (May 21, 2010): no. http://dx.doi.org/10.1002/chin.200218073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kozintsev, S. I., L. I. Basalaeva, L. V. Gladkikh, and N. S. Kozlov. "Catalytic hydroamination of furfuryl and tetrahydrofurfuryl alcohols with nitriles." Chemistry of Heterocyclic Compounds 24, no. 1 (January 1988): 19–22. http://dx.doi.org/10.1007/bf00475557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lavallo, Vincent, Guido D Frey, Bruno Donnadieu, Michele Soleilhavoup, and Guy Bertrand. "Homogeneous Catalytic Hydroamination of Alkynes and Allenes with Ammonia." Angewandte Chemie International Edition 47, no. 28 (June 27, 2008): 5224–28. http://dx.doi.org/10.1002/anie.200801136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Eisenberger, Patrick, and Laurel L. Schafer. "Catalytic synthesis of amines and N-containing heterocycles: Amidate complexes for selective C–N and C–C bond-forming reactions." Pure and Applied Chemistry 82, no. 7 (May 31, 2010): 1503–15. http://dx.doi.org/10.1351/pac-con-09-11-27.

Full text
Abstract:
The direct, 100 % atom-economic, and selective synthesis of amines is a challenging task that can be achieved, making use of early transition-metal catalysts. Here we report the synthesis and application of group 4 and 5 high-oxidation-state metal amidate complexes in catalytic C–N (hydroamination) and C–C (hydroaminoalkylation) bond-forming reactions to access substituted amines.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography