Journal articles on the topic 'Catalytic cracking Data processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Catalytic cracking Data processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Shi, Meirong, Xin Zhao, Qi Wang, and Le Wu. "Comparative Life Cycle Assessment of Co-Processing of Bio-Oil and Vacuum Gas Oil in an Existing Refinery." Processes 9, no. 2 (January 20, 2021): 187. http://dx.doi.org/10.3390/pr9020187.
Full textShakiyeva, Tatyana V., Larissa R. Sassykova, Anastassiya A. Khamlenko, Ulzhan N. Dzhatkambayeva, Albina R. Sassykova, Aigul A. Batyrbayeva, Zhanar M. Zhaxibayeva, Akmaral G. Ismailova, and Subramanian Sendilvelan. "Catalytic cracking of M-100 fuel oil: relationships between origin process parameters and conversion products." Chimica Techno Acta 9, no. 3 (July 4, 2022): 20229301. http://dx.doi.org/10.15826/chimtech.2022.9.3.01.
Full textOrazbayev, Batyr, Dinara Kozhakhmetova, Ryszard Wójtowicz, and Janusz Krawczyk. "Modeling of a Catalytic Cracking in the Gasoline Production Installation with a Fuzzy Environment." Energies 13, no. 18 (September 11, 2020): 4736. http://dx.doi.org/10.3390/en13184736.
Full textDolomatova, M. M., A. I. Bystrov, R. I. Khairudinov, R. S. Manapov, N. A. Zhuravleva, R. Z. Bakhtizin, and I. G. Kuzmin. "The Possibility of Estimating the Characteristics for the Fractional Composition of Heavy Oils by Optical Absorption Spectra." Chemistry and Technology of Fuels and Oils 631, no. 3 (2022): 10–13. http://dx.doi.org/10.32935/0023-1169-2022-631-3-10-13.
Full textKerssens, M. M., A. Wilbers, J. Kramer, P. de Peinder, G. Mesu, B. J. Nelissen, E. T. C. Vogt, and B. M. Weckhuysen. "Photo-spectroscopy of mixtures of catalyst particles reveals their age and type." Faraday Discussions 188 (2016): 69–79. http://dx.doi.org/10.1039/c5fd00210a.
Full textHe, Wei, Jufeng Li, Zhihe Tang, Beng Wu, Hui Luan, Chong Chen, and Huaqing Liang. "A Novel Hybrid CNN-LSTM Scheme for Nitrogen Oxide Emission Prediction in FCC Unit." Mathematical Problems in Engineering 2020 (August 17, 2020): 1–12. http://dx.doi.org/10.1155/2020/8071810.
Full textTowner, Tyler W., and Donald G. Plumlee. "Design and Fabrication of LTCC Catalyst Chambers." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, CICMT (September 1, 2011): 000037–42. http://dx.doi.org/10.4071/cicmt-2011-ta15.
Full textKrymets, G. V., M. I. Litynska, and O. V. Melnychuk. "Catalytic processing of the acid tars." Catalysis and Petrochemistry, no. 33 (2022): 84–88. http://dx.doi.org/10.15407/kataliz2022.33.084.
Full textShakiyeva, Tatyana, Larissa Sassykova, Anastassiya Khamlenko, Binara Dossumova, Albina Sassykova, Albina Muratova, Madina Zhumagali, Nurbubi Zhakirova, and Tleutai Abildin. "Composite catalysts for the catalytic processing of fuel oil." MATEC Web of Conferences 340 (2021): 01017. http://dx.doi.org/10.1051/matecconf/202134001017.
Full textKoledin, O. S., M. Yu Dolomatov, E. A. Kovaleva, R. V. Garipov, and M. R. Valeev. "THE QSPR MODEL FOR PREDICTION OF OCTANE NUMBERS OF HYDROCARBONS OF A SERIES OF ALKENES BY TOPOLOGICAL CHARACTERISTICS OF MOLECULES." Electrical and data processing facilities and systems 17, no. 3-4 (2021): 92–102. http://dx.doi.org/10.17122/1999-5458-2021-17-3-4-92-102.
Full textUlfiati, Ratu. "CATALYTIC PERFORMANCE OF ZSM-5 ZEOLITE IN HEAVY HYDROCARBON CATALYTIC CRACKING: A REVIEW." Scientific Contributions Oil and Gas 42, no. 1 (August 6, 2020): 29–34. http://dx.doi.org/10.29017/scog.42.1.384.
Full textFal’kevich, G. S., M. V. Baril’chuk, E. A. Tarabrina, A. M. Klychmuradov, N. N. Rostanin, and B. K. Nefedov. "New technology in processing olefin-containing gases from catalytic cracking." Chemistry and Technology of Fuels and Oils 35, no. 2 (March 1999): 55–56. http://dx.doi.org/10.1007/bf02694143.
Full textWang, Gang, Jing Sun, Dong Fang, Jun Xiao, Jie Nan, and Jinsen Gao. "Molecular-refining oriented strategy of catalytic cracking for processing heavy oil." SCIENTIA SINICA Chimica 48, no. 4 (February 13, 2018): 362–68. http://dx.doi.org/10.1360/n032017-00169.
Full textVechi, Thiago, Camila da Silva Maschio, Julia Kleis, Luana Marcele Chiarello, Vanderleia Botton, Vinicyus Rodolfo Wiggers, and Laercio Ender. "Potential of poultry residual fat biofuels from thermo-catalytic cracking." Research, Society and Development 11, no. 15 (November 18, 2022): e323111536458. http://dx.doi.org/10.33448/rsd-v11i15.36458.
Full textRahmawati, Rahmawati, Hutwan Syarifuddin, and Nazarudin Nazarudin. "Processing Mixture Of Polyethylene Terephthalate (PET) Plastic Waste and Oil Palm Empty Fruit Bunches by The Cracking Method." Jurnal Pembangunan Berkelanjutan 5, no. 2 (December 26, 2022): 11–20. http://dx.doi.org/10.22437/jpb.v5i2.19852.
Full textMa, Zi Qin, Jin Chao Gao, Zuo Qian Zhang, and Da Li Kang. "Application of Wavelet Envelope Spectrum Analysis in Air Blower Rotating Stall Failure Diagnosis." Advanced Materials Research 328-330 (September 2011): 132–35. http://dx.doi.org/10.4028/www.scientific.net/amr.328-330.132.
Full textBenjamin, Moreno-Montiel, Moreno-Montiel Carlos-Hiram, Moreno-Montiel Miriam-Noemi, and MacKinney-Romero René. "Data Mining on Data of Catalytic Cracking Microactivity Reactors Using PCEM." International Journal of Environmental Science and Development 10, no. 11 (2019): 380–88. http://dx.doi.org/10.18178/ijesd.2019.10.11.1203.
Full textAncheyta, J., and S. Rodríguez. "Results of Processing VGO-LCO Blends in a Fluid Catalytic Cracking Commercial Unit." Energy & Fuels 16, no. 3 (May 2002): 718–23. http://dx.doi.org/10.1021/ef0102263.
Full textOlaremu, Abimbola G., Williams R. Adedoyin, Odunayo T. Ore, and Adedapo O. Adeola. "Sustainable development and enhancement of cracking processes using metallic composites." Applied Petrochemical Research 11, no. 1 (January 23, 2021): 1–18. http://dx.doi.org/10.1007/s13203-021-00263-1.
Full textKairbekov, Zh K., A. S. Maloletnev, V. S. Yemelyanova, Zh K. Myltykbaeva, and B. B. Baizhomartov. "The New Methods of Deep Processing of Oil Residues in Conjunction with Shales." Advanced Materials Research 1079-1080 (December 2014): 103–9. http://dx.doi.org/10.4028/www.scientific.net/amr.1079-1080.103.
Full textStratiev, Dicho Stoyanov, Ivelina Kostova Shishkova, Rosen Kocev Dinkov, Ivan Petrov Petrov, Iliyan Venkov Kolev, Dobromir Yordanov, Sotir Sotirov, et al. "Crude Slate, FCC Slurry Oil, Recycle, and Operating Conditions Effects on H-Oil® Product Quality." Processes 9, no. 6 (May 27, 2021): 952. http://dx.doi.org/10.3390/pr9060952.
Full textYevdokymenko, V. O., N. Y. Khimach, T. V. Tkachenko, D. S. Kamensky, V. I. Kashkovsky, O. B. Korotun, and I. V. Kyselov. "Improving the quality of low octane hydrocarbon fractions under conditions of catalytic processing on aluminum-silicon catalysts." Catalysis and petrochemistry, no. 30 (2020): 66–72. http://dx.doi.org/10.15407/kataliz2020.30.066.
Full textMaya-Yescas, R., E. León-Becerril, and D. Salazar-Sotelo. "Translation of MAT Kinetic Data to Model Industrial Catalytic Cracking Units." Chemical Engineering & Technology 27, no. 7 (July 2004): 777–80. http://dx.doi.org/10.1002/ceat.200401971.
Full textPotapenko, O. V., A. S. Lutchenko, V. P. Doronin, T. P. Sorokina, M. A. Plekhanov, S. Yu Gurievskikh, and D. V. Khrapov. "Control of Contribution of Cracking and Intermolecular Hydrogen Transfer in Cracking of Gasoline Fractions in Fixed and Circulating Catalyst Bed Reactors." Kataliz v promyshlennosti 18, no. 6 (November 20, 2018): 48–54. http://dx.doi.org/10.18412/1816-0387-2018-6-48-54.
Full textShimada, Iori, Yoshitaka Nakamura, Haruhisa Ohta, Kengo Suzuki, and Toru Takatsuka. "Co-processing of Saturated and Unsaturated Triglycerides in Catalytic Cracking Process for Hydrocarbon Fuel Production." JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 51, no. 9 (September 20, 2018): 778–85. http://dx.doi.org/10.1252/jcej.17we187.
Full textGuo, Ji, Yujia Lou, Wanyi Wang, and Xianhua Wu. "Optimization Modeling and Empirical Research on Gasoline Octane Loss Based on Data Analysis." Journal of Advanced Transportation 2021 (May 11, 2021): 1–16. http://dx.doi.org/10.1155/2021/5553069.
Full textVjunov, Aleksei, Karl C. Kharas, Vasileios Komvokis, Amy Dundee, and Bilge Yilmaz. "Practical Approaches towards NOx Emission Mitigation from Fluid Catalytic Cracking (FCC) Units." Catalysts 11, no. 10 (September 24, 2021): 1146. http://dx.doi.org/10.3390/catal11101146.
Full textSmagulova, Nazym, Zhaxyntay Kairbekov, and Nurlan Ussenov. "Catalytic processing of distillate fractions of a resin in the presence of finely dispersed catalysts." MATEC Web of Conferences 340 (2021): 01036. http://dx.doi.org/10.1051/matecconf/202134001036.
Full textDragomir, Raluca, Paul Rosca, and Cristina Popa. "Five-Lump Kinetic Model for the Catalytic Cracking Process\." Revista de Chimie 69, no. 10 (November 15, 2018): 2633–37. http://dx.doi.org/10.37358/rc.18.10.6595.
Full textSu, Jianping, Liang Cao, Gary Lee, Bhushan Gopaluni, Don O'Connor, Susan Dyk, Robert Pinchuk, and Jack Saddler. "Determining the amount of ‘green’ coke generated when co‐processing lipids commercially by fluid catalytic cracking." Biofuels, Bioproducts and Biorefining 16, no. 2 (December 17, 2021): 325–34. http://dx.doi.org/10.1002/bbb.2325.
Full textNakazato, Tsutomu, Kiyoshiro Umeo, Takami Kai, and Toshio Tsutsui. "Time-Series Analysis for Kinetic Interpretation of Catalytic Cracking of 1-Octene with a Model Involving Dominant Reactions." Applied Mechanics and Materials 625 (September 2014): 315–19. http://dx.doi.org/10.4028/www.scientific.net/amm.625.315.
Full textQiang, Xiao Dan, Feng Fu, Dan Jun Wang, and Li Guo. "Investigation of Photocatalytic Oxidative-Extraction Desulfurization of Simulation Gasoline." Advanced Materials Research 518-523 (May 2012): 750–54. http://dx.doi.org/10.4028/www.scientific.net/amr.518-523.750.
Full textAlvira, José, Idoia Hita, Elena Rodríguez, José Arandes, and Pedro Castaño. "A Data-Driven Reaction Network for the Fluid Catalytic Cracking of Waste Feeds." Processes 6, no. 12 (November 27, 2018): 243. http://dx.doi.org/10.3390/pr6120243.
Full textThambiyapillai, Selvaganapathy, and Muthuvelayudham Ramanujam. "An Experimental Investigation and Aspen HYSYS Simulation of Waste Polystyrene Catalytic Cracking Process for the Gasoline Fuel Production." International Journal of Renewable Energy Development 10, no. 4 (July 5, 2021): 891–900. http://dx.doi.org/10.14710/ijred.2021.33817.
Full textPapuga, Saša, Milica Djurdjevic, Andrea Ciccioli, and Stefano Vecchio Ciprioti. "Catalytic Pyrolysis of Plastic Waste and Molecular Symmetry Effects: A Review." Symmetry 15, no. 1 (December 23, 2022): 38. http://dx.doi.org/10.3390/sym15010038.
Full textAlvarez-Castro, H. C., E. M. Matos, M. Mori, W. Martignoni, and R. Ocone. "Analysis of Process Variables via CFD to Evaluate the Performance of a FCC Riser." International Journal of Chemical Engineering 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/259603.
Full textPuviyarasi, B., C. Murukesh, and M. Alagiri. "Design and implementation of gain scheduling decentralized PI/PID controller for the fluid catalytic cracking unit." Biomedical Signal Processing and Control 77 (August 2022): 103780. http://dx.doi.org/10.1016/j.bspc.2022.103780.
Full textRowe, Scott C., Taylor A. Ariko, Kaylin M. Weiler, Jacob T. E. Spana, and Alan W. Weimer. "Reversible Molten Catalytic Methane Cracking Applied to Commercial Solar-Thermal Receivers." Energies 13, no. 23 (November 26, 2020): 6229. http://dx.doi.org/10.3390/en13236229.
Full textBuzayev, Nurdaulet, Yermek Aubakirov, Firuza Akhmetova, Manshuk Ibrayeva, Shynar Sanyazova, and Zhazira Mukazhanova. "Investigation of the parameters of the process of obtaining low-sulfur coke from heavy oil residues in the presence of a recycling agent." MATEC Web of Conferences 340 (2021): 01005. http://dx.doi.org/10.1051/matecconf/202134001005.
Full textZhang, Jin Hong, Hong Hong Shan, Chao He Yang, Xiao Bo Chen, and Chun Yi Li. "Catalytic Cracking of Coker Gas Oil at High Reaction Temperature and Catalyst to Oil Ratio." Advanced Materials Research 724-725 (August 2013): 1112–15. http://dx.doi.org/10.4028/www.scientific.net/amr.724-725.1112.
Full textNi, Peng, Bin Liu, and Ge He. "An online optimization strategy for a fluid catalytic cracking process using a case-based reasoning method based on big data technology." RSC Advances 11, no. 46 (2021): 28557–64. http://dx.doi.org/10.1039/d1ra03228c.
Full textMiddleton, Ceri A., John P. McCrory, Richard J. Greene, Karen Holford, and Eann A. Patterson. "Detecting and Monitoring Cracks in Aerospace Materials Using Post-Processing of TSA and AE Data." Metals 9, no. 7 (July 4, 2019): 748. http://dx.doi.org/10.3390/met9070748.
Full textEschenbacher, Andreas, Trond Myrstad, Niels Bech, Hang Dao Thi, Miloš Auersvald, Kevin M. Van Geem, and Anker D. Jensen. "Fluid catalytic co-processing of bio-oils with petroleum intermediates: Comparison of vapour phase low pressure hydrotreating and catalytic cracking as pretreatment." Fuel 302 (October 2021): 121198. http://dx.doi.org/10.1016/j.fuel.2021.121198.
Full textZhang, Jinhong, Honghong Shan, Xiaobo Chen, Wenjing Liu, and Chaohe Yang. "Fluid Catalytic Cracking Study of Coker Gas Oil: Effects of Processing Parameters on Sulfur and Nitrogen Distributions." Energy & Fuels 28, no. 2 (December 17, 2013): 1362–71. http://dx.doi.org/10.1021/ef401990s.
Full textSamolada, M. C., W. Baldauf, and I. A. Vasalos. "Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking." Fuel 77, no. 14 (November 1998): 1667–75. http://dx.doi.org/10.1016/s0016-2361(98)00073-8.
Full textLi, Nan, Chen Chen, Bin Wang, Shaojie Li, Chaohe Yang, and Xiaobo Chen. "Retardation effect of nitrogen compounds and condensed aromatics on shale oil catalytic cracking processing and their characterization." Applied Petrochemical Research 5, no. 4 (August 23, 2015): 285–95. http://dx.doi.org/10.1007/s13203-015-0131-0.
Full textCORMA, A., G. HUBER, L. SAUVANAUD, and P. OCONNOR. "Processing biomass-derived oxygenates in the oil refinery: Catalytic cracking (FCC) reaction pathways and role of catalyst." Journal of Catalysis 247, no. 2 (April 25, 2007): 307–27. http://dx.doi.org/10.1016/j.jcat.2007.01.023.
Full textUsmanov, M. P., P. P. Gimaletdinov, S. F. Valeev, F. P. Zainullov, A. B. Sulimov, and M. B. Zheleznov. "Involvement of products of thermal processing of polymer waste into the raw material pool of oil refinery plants." World of petroleum products 05 (2021): 42–49. http://dx.doi.org/10.32758/2782-3040-2021-0-5-42-49.
Full textNazarudin, Nazarudin, Ira Galih Prabasari, Agus Ari Setiawansyah, and Ulyarti Ulyarti. "Catalytic Cracking of Crude Palm Oil Using Ni-Carbon with Ion Exchange Method." Jurnal Penelitian Pendidikan IPA 8, no. 5 (November 30, 2022): 2493–98. http://dx.doi.org/10.29303/jppipa.v8i5.2322.
Full textTuktin, B. T., A. M. Temirova, and A. A. Omarova. "Processing of propane-butane fraction on zeolite-containing catalysts." MATEC Web of Conferences 340 (2021): 01016. http://dx.doi.org/10.1051/matecconf/202134001016.
Full text