Dissertations / Theses on the topic 'Catalyseurs à base des métaux non nobles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 20 dissertations / theses for your research on the topic 'Catalyseurs à base des métaux non nobles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Drault, Fabien. "Développement de catalyseurs à base de métaux de transition non nobles en remplacement du platine pour des réactions d'hydrogénation." Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT2292/document.
Full textThe use of noble metals in heterogeneous catalysis is limited by the scarcity of these metals, their cost and the supply difficulties due to the monopole of only two countries on the world market. The aim of this work consisted to study the association of platinum and cobalt in order to substitute partly Pt with Co while preserving the catalytic performances of the noble metal in hydrogenation. Various syntheses of 1%Pt- 5%Co supported bimetallic catalysts have been achieved and their performances have been compared with those of monometallic catalysts as well as (Pt + Co) mechanical mixtures for two hydrogenation’s reactions of industrial interest: the hydrogenation of acetonitrile and that of furfural. The physicochemical characterizations carried out (TEM, XPS …) and the model reactions (dehydrogenation of cyclohexane, hydrogenolysis of methylcyclopentane) studied have pointed out several results: - the presence of Pt increases the reducibility of Co for co-impregnated catalysts and mechanical mixtures leading to an enhancement of the catalytic performances in hydrogenation of acetonitrile or furfural; - the colloidal preparation favors the formation of PtCo alloy particles with a homogeneous composition, which are not very active for the reactions studied; - the redox route synthesis can accurately deposit Pt in contact with Co creating an improvement of the catalytic performances by a synergistic effect. Thus, in the hydrogenation of acetonitrile, the same activity was obtained by using a Pt-Co catalyst containing five times less noble metal’s content than the 1% Pt catalysts
Lê, Thi Kim-Chi. "Oxygen Reduction Reaction with Molybdenum-Containing Oxysulfide Nanoparticles : from Colloidal Synthesis to Surface Activity." Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS209.pdf.
Full textToday, in personal vehicles, fuel cells are competing with the Li-ion batteries to provide the next technological leap. Hence, replacing noble metal by non-noble metal catalysts is essential to make them affordable. Molybdenum can be a good candidate as some compounds (e.g. MoS2, MoO2) are showing activity for the Oxygen Reduction Reaction (ORR). Uncommon molybdenum oxysulfides could be used as electrodes for Li-ion batteries or catalysts thanks to their porous structure in amorphous forms (thin films and bulk powders). Their colloidal synthesis at low temperature, favoring the nanoscaled materials and bypassing the simple energy-consuming synthesis, is barely reported. The same goes for their ORR catalytic reactivity, which was almost never studied. Here, the well-known colloidal synthesis of lanthanide oxysulfides at low temperature (around 300 °C), producing nanoparticles such as Gd2O2S, is extended to the use of Mo molecular precursors. We studied two pathways: by a two-step protocol (adding the Mo precursor to freshly formed, unwashed Gd2O2S nanoplates) or a one-step protocol (adding simultaneously both metallic precursors). The structural analysis showed that the first method possibly leads to a deposition of isolated molybdate tetrahedrons on Gd2O2S nanoplates without changing their shape and size, while the latter one leads to a more sulfide-like environment of Mo. As observed, only molybdate-doped samples (at low dose) showed positive results in terms of electrochemical activity, which is found related directly to the Mo’s presence. Other explorative work on the syntheses without Gd is being pursued to complement the study on the structure and the formation mechanism of the interested materials. Overall, this is the first attempt to synthesize molybdenum oxysulfide by applying the synthesis method of lanthanide oxysulfide
Briot, Patrick. "Combustion du méthane sur métaux nobles supportés." Lyon 1, 1991. http://www.theses.fr/1991LYO10154.
Full textDevers, Élodie. "Catalyseurs à base de métaux nobles supportés sur zircone pour l'hydrodésazotation poussée des gazoles." Lyon 1, 2003. http://www.theses.fr/2003LYO10170.
Full textPeeters, Elisabeth. "Etude de catalyseurs thiorésistants à base de métaux nobles supportés pour des réactions d'hydrodésazotation." Lyon 1, 1998. http://www.theses.fr/1998LYO10163.
Full textDelanoe͏̈, Florence. "Oxydation de divers composés organiques par le dioxygène en milieu aqueux sur catalyseurs à base de métaux nobles." Poitiers, 1996. http://www.theses.fr/1996POIT2332.
Full textDhainaut, Fabien. "Réduction des oxydes d'azote par l'hydrogène sur des catalyseurs à base de métaux nobles supportés." Lille 1, 2006. https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/1f52f3af-74fd-4a68-b6f3-013c99de06b5.
Full textLa, Fontaine Camille. "Hydrogénation catalytique des nitriles : recherche et développement de catalyseurs sélectifs à base de métaux nobles." Poitiers, 2007. http://www.theses.fr/2007POIT2285.
Full textWidely used in industry as solvents, reaction intermediates or synthesized for pharmaceutical uses, amines are essential in modern society. A way of synthesis is the catalytic hydrogenation of nitriles but the heterogeneous catalysts developed, often based on nickel, are inappropriate for the hydrogenation of complex molecules. The main objective of this work consisted firstly in carrying out a comparative study of Ru, Ni, Pd, Pt and Rh supported over alumina for the gas phase hydrogenation of acetonitrile. The most active metals are Pt and Rh. Whatever the particle size, Pt leads to the formation of primary and tertiary amines, while over Rh a mixture of secondary and tertiary amines is obtained. During the reaction, the catalysts are sensitive to deactivation mainly due to strongly adsorbed species poisoning active sites. Regeneration can be achieved by heating up the catalyst in inert atmosphere. Further investigations were then performed to optimize the catalysts and to understand the reaction mechanisms. Adding Sn by organometallic grafting stabilizes Rh activity in agreement with an electronic effect of Sn, acting as electron donor. The use of supports such as CeO2 or MgO improves the selectivity towards the primary amine, over either Rh or Pt. The redox properties of CeO2 modify products adsorption and desorption and the absence of acid sites on MgO surface inhibits condensation reactions. So a bifunctional mechanism is confirmed
Ben, Maajouz El Mzarhrani Houssine. "Etude des catalyseurs aux métaux nobles déposés sur les zéolithes : hydrogénation sélective du butadiène." Lyon 1, 1991. http://www.theses.fr/1991LYO10201.
Full textFerrand, Laura. "Hydrofonctionnalisations de liaisons multiples carbone-carbone catalysées par des complexes à base de métaux non nobles." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066348/document.
Full textThis PhD work has focused on the development of new methodologies in catalysis based on non-noble metals: cobalt and niobium. These two metals have been used to catalyze hydrofunctionalization reactions of carbon‒carbon multiple bonds. The aim of those projects was to propose competitive catalytic systems based on non-precious metals and to promote their use compared to other rare and expensive metals. To this end, we successfully demonstrated that a well-defined cobalt complexe HCo(PMe3)4 is an efficient catalyst for regio- and stereoselective hydroboration reactions of internal alkynes, as well as diboration reactions. Also, a new catalytic system based on cationic niobium(V) has been developed and used to catalyze intramolecular hydrofunctionalization reactions leading to the synthesis of a large family of heterocycles. In order to reveal even more the potential of niobium in catalysis, we aimed to propose a chiral system able to catalyze enantioselective hydroalkoxylation of alkenes. Despite the promising results, some more efforts on the optimization of this system still need to be done
Roth, Delphine. "Catalyseurs à base de métaux nobles pour l'oxydation totale du méthane : application au traitement des effluents des moteurs fonctionnant au gaz naturel." Lyon 1, 2000. http://www.theses.fr/2000LYO10113.
Full textDathy, Corinne. "Activité et sélectivité de catalyseurs à base de métaux nobles et/ou de carbures et nitrures dans les réactions CO, NO en catalyse de post-combustion automobile." Lille 1, 1993. http://www.theses.fr/1993LIL10152.
Full textAl, Cheikh Joumada. "Étude électrochimique de complexes moléculaires à base de métaux de transition non-précieux pour applications énergétiques." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS038/document.
Full textElectrochemistry is becoming a major field in new energy storage and conversion technologies. Nowadays, the hydrogen evolution reaction (HER) is a reaction of great societal interest, which is at the heart of new technologies enabling the development of systems for the conversion of energy. However, some issues related to the use of noble metals (platinum, in particular) as catalysts have not been solved yet. This thesis is part of the scientific approach of the Research and Innovation in Electrochemistry for Energy (ERIEE) research group which has been interested for several years in the substitution of these noble metals by the use of transition metal based electro-catalysts. These molecules consist of organic compounds containing transition metals as an electro-active center for application in industrial electrolysers. This thesis focuses on the study of a family of molecular complexes based on transition metals (Co or Fe), the so-called clathrochelates, characterized by different chemical structures. The choice of the ligands constituting these complexes as well as the study of their functionalization processes on ad hoc substrates, constitute key elements in the apprehension of the resulting electro-catalytic performances.These electro-catalysts were studied both in solution (homogeneous phase) and functionalized at the surface of solid electrodes. Their physico-chemical properties as well as their electrocatalytic turnover for the hydrogen evolution reaction, have been systematically characterized.In particular, scanning electrochemical microscopy (SECM) allowed for the characterization of the electrocatalytic properties of modified electrodes at the local scale
Roulland, François. "Recherche de compositions à base de Ba(Zn1/3X2/3)O3(X=Ta ou Nb) pour la conception de condensateurs multicouches à armatures en métaux non-nobles." Caen, 2004. http://www.theses.fr/2004CAEN2033.
Full textAndré, David. "Contribution à l'étude de catalyseurs de fluoration en phase gazeuse du 1,1,1-trifluoro 2-chloroéthane à base d'oxydes de chrome non-stoechiométriques et de chromates et chromites de métaux divalents." Toulouse 3, 1996. http://www.theses.fr/1996TOU30168.
Full textQuartararo, Juliette. "Reactivite de sulfures mixtes supportes non conventionnels pour les reactions d'hydrotraitement." Paris 6, 1996. http://www.theses.fr/1996PA066673.
Full textWu, Dan. "Synergie d'effets stériques, électroniques et bifonctionnels pour la conception de catalyseurs métalliques hautement sélectifs promus par des éléments non métalliques." Thesis, Lille, 2020. http://www.theses.fr/2020LILUR056.
Full textThe depletion of fossil resources and increasing environmental concerns encourage the production of sustainable chemicals and fuels from biomass resources. Selectivity is the primary parameter for heterogeneous catalytic processes, especially for the catalytic conversion of biomass-based molecules, containing a lot of functional groups with generation of various products. Recently, rational modification towards surface chemistry of metal catalysts has attracted intensive attention to tune the activity and selectivity. In this thesis, the modification of noble metal catalysts such as Pd and Ru with various non-metallic promoters such as iodine, bromine, and amines has been developed. These modifications lead to various effects like in-situ acidity generation, selective deactivation, electronic effect, and molecular imprinting. Important industrial reactions such as reductive etherification, hydrodeoxygenation, cleavage of lignin model compounds, and aromatics hydrogenation were investigated. The thesis consists of 7 chapters and 219 pages.In Chapter 1, a literature review of the recent progress in tuning catalytic properties of metal catalysts with non-metallic modifiers will be introduced. Different modification strategies will be clarified. And a general analysis will be proposed about the effects imposed by non-metallic modifiers of metal catalysts. Various industrial important reactions with the selectivity problems are discussed to elucidate the promotion effects of the non-metallic modifiers in catalysis.Chapter 2 introduces the experimental details about the preparation, characterization, and catalytic evaluation of the catalysts. Modification of Pd catalyst with iodine and bromine was investigated in Chapter 3 ~ 4. The structure-performance relationships were studied by catalytic reactions and various in-situ and ex-situ characterizations. We found that iodine and bromine withdraw electrons from Pd, leading to negative charged iodine and bromine atoms on Pd surface. Heterolytic dissociation of hydrogen on the Pd-I and Pd-Br sites leads to the in-situ generation of Brönsted acidity. The acid-metal bifunctional Pd-I and Pd-Br catalysts exhibited high efficiency for the reductive etherification of aldehydes with alcohol and the hydrodeoxygenation of 5-hydroxymethylfurfural to dimethylfuran, respectively.In Chapter 5, the modification of metal catalysts with halogens was extended to Ru catalyst. Ru-Br catalyst has been developed and demonstrated high selectivity for the cleavage of lignin model compound diphenyl ether to mono aromatics. Further investigations indicate that the terrace sites on Ru nanoparticles, which are responsible for aromatic-rings hydrogenation, selectively deactivated by Br atoms. Moreover, Br as a strongly electronegative element withdraws electrons from Ru, leading to positively charged Ru nanoparticles. The electron-deficient Ru nanoparticles exhibited enhanced activity for hydrogenolysis of electron-rich C-O bonds. The synergy of selective deactivation and electronic effect enabled Ru-Br catalyst high efficiency for the production of phenol and benzene from diphenyl ether with high selectivity.Based on the deep understanding of the multifunctional effects of non-metallic modifiers of metal catalysts, a molecularly imprinting strategy has been proposed in Chapter 6. Molecular imprinting for the preparation of imprinted heterogeneous catalyst involves adsorption of a template molecule, deactivation with poisoners with reservation of non-poisoned active islands with pre-determined shape and size for selective transformation of the molecules corresponding to templates. We demonstrate this strategy for selective hydrogenation of aromatic molecules with different alkyl radicals by preliminary deposition of these molecules as template over Pd catalyst and deactivation using dimethylaminopropylamine (DMAPA)
Gueret, Robin. "Systèmes moléculaires pour la production d'hydrogène photo-induite dans l'eau associant des catalyseurs de cobalt à un photosensibilisateur de ruthénium ou un colorant organique." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAV074/document.
Full textThe work of this manuscript is focused on the design of molecular systems in homogeneous solution for photocatalytic production of molecular hydrogen in water using cobalt catalysts with pentadentate tetrapyridinic and tetra- and pentaza macrocyclic ligands. In association with [Ru(bpy)3]2+ as photosensitizer and sodium ascorbate as sacrificial electron donor, the macrocycle based catalysts display high performances for H2 production, far exceeding those of the polypyridine based catalysts, both in terms of activity and stability, because of the stability of their reduced state «Co(I)». Finally, [Ru(bpy)3]2+ was successfully substituted with a robust organic dye belonging to the triazatriangulenium family, leading to an even more efficient photocatalytic system. These results demonstrate well that organic dyes are a truly efficient alternative to noble metal based photosensitizers, even in acidic aqueous medium
Al-Hussaini, Louay. "Utilisation de moyens d’activation non-conventionnels pour le clivage oxydant de la lignine par le dioxygène." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS448.
Full textDue to the depletion of fossil resources, the interest of lignin as a sustainable alternative to petroleum is growing. Thus, the main purpose of this thesis was to develop a process for oxidative cleavage of lignin by dioxygen that involves unconventional methodologies like sonochemistry and ball-milling. The catalysts used here were KEGGIN molybdovanadophosphates (PMoVx). First, the operating conditions (solvent, catalytic charge and vanadium content) were optimized to afford the cleavage of two models, 2-phenoxyacetophenone (K1HH) and 2-phenoxy-1-phenylethanol (A1HH), at atmospheric O2 pressure, into phenol, benzaldehyde and benzoic acid. For A1HH, harsher conditions were found to be necessary (O2 5 bar, 120°C). The catalysts were conventionally synthesized using a hydrothermal pathway, which consists in the H3PO4 attack of MoO3 and V2O5 in reflux water. A long heating period is often required to get moderate yields of PMoVx. Ball-milling synthesis was therefore considered. It consisted in preparing a mixed oxide by grinding MoO3 and V2O5. The latter's attack by H3PO4 was then shorter, took place at a lower temperature and resulted in higher yields of PMoVx. The activity of thus obtained PMoVx for model cleavage was similar to that of their hydrothermally synthesized counterparts. Preliminary tests on an Organosolv lignin from wheat straw under optimized conditions yielded low yields of cleavage products. Sonochemical assistance was therefore tested showing, in the case of A1HH, that a low frequency in conjunction with dioxygen bubbling was the best option
Abu, Bakar Noor Hana Hanif. "Particules bimétalliques. Synthèse, caractérisation et propriétés catalytiques." Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10013/document.
Full textThe synthesis of PtNi bimetallic particles supported silica catalysts, prepared via non-classical methods using sodium borohydride (NaBH4) as a reducing agent, was studied in detail. The silica supports employed in this work is limited to crystalline silica and mesoporous aluminosilicate (MCM-41). Various preparation techniques as well as reduction parameters were investigated to gain an insight on how these factors influenced the final structure of the PtNi particles on the silica support and their catalytic reactivity towards the hydrogenation of benzene to cyclohexane. It was found that this reduction method enabled total reduction of the metal salts during the preparation stage of the catalysts. Hydrogen consumptions which were detected using H2-TPR analysis were mainly attributed to surface oxidation of the metal phase during storage. Studies on the effect of preparation techniques showed that the surface and catalytic properties of the catalysts are largely affected by the PtNi ratio as well as the method in which the metal salts are introduced onto the support. Catalysts prepared via co-impregnation technique generally exhibited better catalytic reactivity when compared to those prepared via co-precipitation and step-impregnation techniques. Further, catalysts with higher Ni content showed a tendency towards lower reactivity in contrast to those with high Pt content. Several catalysts demonstrated enhanced reactivity when compared to the monometallic Pt catalysts. Investigations showed that the improved reactivity can be attributed to alloying of the Pt and Ni accompanied by surface segregation of Pt. As a means to improve catalytic reactivity, PtNi stabilized oleic acid particles were synthesized prior to incorporation onto a silica support. The intention of this study is to allow better control of the dispersion and alloying between the PtNi particles. Results show that though better dispersed alloys were obtained, very low activity was observed. Nickel surface segregation is likely to be the cause of this due to the presence of oxygen from oleic acid. The effect of several reduction parameters was also investigated to enhance catalytic reactivity. The reduction temperature, NaBH4 concentration and medium in which reduction was carried out were varied. Variations in these parameters affected the particle morphology and dispersion of the PtNi particles. Optimum catalytic reactivity was obtained when small dispersed PtNi particles were formed at 273 K using 0.3 M NaBH4 in a medium of ethanol. Classical methods were also used for the synthesis of PtNi supported catalysts. In this study the PtNi particles were formed using H2 gas as the reducing agent. Several catalysts showed improved reactivity. Investigations show that this is attributed to the anchoring effect of Ni2+ ions which anchors Pt to the support, forming fine dispersed Pt particles available for catalytic reaction. In general, it is obvious that alloyed and non – alloyed bimetallic particles supported on silica can lead to the enhancement of hydrogenation reactions when compared to the respective monometallic catalysts. However, the PtNi ratios, preparation techniques, environment in which the particles are reduced and support influences the structure of the metallic phase of these catalysts. Therefore it is imperative to gain a thorough understanding on these parameters, in order to synthesize catalysts with desired properties