Academic literature on the topic 'Catabolism of mammal amino acids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Catabolism of mammal amino acids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Catabolism of mammal amino acids"
Робонен (Robonen), Елена (Elena) Вильямовна (Vil'yamovna), Надежда (Nadezhda) Петровна (Petrovna) Чернобровкина (Chernobrovkina), Оксана (Oksana) Васильевна (Vasil'evna) Чернышенко (Chernyshenko), Мария (Mariya) Игоревна (Igorevna) Зайцева (Zaytseva), Алексей (Aleksey) Рудольфович (Rudol'fovich) Унжаков (Unzhakov), and Анастасия (Anastasiya) Васильевна (Vasil'evna) Егорова (Egorova). "PERSPECTIVES OF WOOD-GREENERY BIOTECHNOLOGY ENRICHMENT WITH L-ARGININE AND INHIBITORS OF ITS CATABOLISM." chemistry of plant raw material, no. 1 (March 6, 2019): 23–37. http://dx.doi.org/10.14258/jcprm.2019014243.
Full textStewart, Gavin S., and Craig P. Smith. "Urea nitrogen salvage mechanisms and their relevance to ruminants, non-ruminants and man." Nutrition Research Reviews 18, no. 1 (June 2005): 49–62. http://dx.doi.org/10.1079/nrr200498.
Full textTeleni, E. "Catabolism and synthesis of amino acids in skeletal muscle: their significance in monogastric mammals and ruminants." Australian Journal of Agricultural Research 44, no. 3 (1993): 443. http://dx.doi.org/10.1071/ar9930443.
Full textMatthews, Dwight E. "Review of Lysine Metabolism with a Focus on Humans." Journal of Nutrition 150, Supplement_1 (October 1, 2020): 2548S—2555S. http://dx.doi.org/10.1093/jn/nxaa224.
Full textHerring, Cassandra M., Fuller W. Bazer, Gregory A. Johnson, and Guoyao Wu. "Impacts of maternal dietary protein intake on fetal survival, growth, and development." Experimental Biology and Medicine 243, no. 6 (February 22, 2018): 525–33. http://dx.doi.org/10.1177/1535370218758275.
Full textLobley, G. E. "Protein turnover—what does it mean for animal production?" Canadian Journal of Animal Science 83, no. 3 (September 1, 2003): 327–40. http://dx.doi.org/10.4141/a03-019.
Full textLiu, Yingying, Fengna Li, Lingyun He, Bie Tan, Jinping Deng, Xiangfeng Kong, Yinghui Li, Meimei Geng, Yulong Yin, and Guoyao Wu. "Dietary protein intake affects expression of genes for lipid metabolism in porcine skeletal muscle in a genotype-dependent manner." British Journal of Nutrition 113, no. 7 (March 16, 2015): 1069–77. http://dx.doi.org/10.1017/s0007114514004310.
Full textMacIver, Bryce, Craig P. Smith, Warren G. Hill, and Mark L. Zeidel. "Functional characterization of mouse urea transporters UT-A2 and UT-A3 expressed in purified Xenopus laevis oocyte plasma membranes." American Journal of Physiology-Renal Physiology 294, no. 4 (April 2008): F956—F964. http://dx.doi.org/10.1152/ajprenal.00229.2007.
Full textWallace, R. John. "Catabolism of Amino Acids by Megasphaera elsdenii LC1." Applied and Environmental Microbiology 51, no. 5 (1986): 1141–43. http://dx.doi.org/10.1128/aem.51.5.1141-1143.1986.
Full textNeinast, Michael, Danielle Murashige, and Zoltan Arany. "Branched Chain Amino Acids." Annual Review of Physiology 81, no. 1 (February 10, 2019): 139–64. http://dx.doi.org/10.1146/annurev-physiol-020518-114455.
Full textDissertations / Theses on the topic "Catabolism of mammal amino acids"
Acworth, I. N. "Studies on the role of changes in the plasma levels of aromatic and branched-chain amino acids." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375218.
Full textHou, Chunsheng 1968. "Sulfur amino acid catabolism in a piglet model." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=78381.
Full textGanesan, Balasubramanian. "Catabolism of Amino acids to Volatile Fatty Acids by Lactococcus lactis." DigitalCommons@USU, 2005. https://digitalcommons.usu.edu/etd/5509.
Full textMoyes, Christopher D. "Catabolism of osmotically-active amino acids in two groups of osmoconformers, bivalve molluscs and elasmobranchs." Thesis, University of Ottawa (Canada), 1986. http://hdl.handle.net/10393/5139.
Full textAgnelli, Silvia. "Regulation of amino acid catabolism in rats fed diets with different protein content." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/400005.
Full textL’estil de vida actual amb les dietes d'alt contingut energètic, i caracteritzat pel sedentarisme, està provocant un creixement alarmant de l'obesitat. L'obesitat, juntament amb les comorbiditats relacionades amb la síndrome metabòlica (és a dir, resistència a la insulina, aterosclerosi, apnea del son, depressió, asma, la hipertensió i l'alteració del transport de lípids en la sang) són la conseqüència més evident de l'excés d’energia. En condicions d'excés d'energia de la dieta, el cos no pot eliminar ràpidament l'excés d'amino-N contra els esquemes adaptats evolutivament i que impedeixin el seu deteriorament; així, la formació d'amoníac i de glutamina i l'excreció d'urea disminueixen. Els elevats nivells de lípids i de la disponibilitat d'energia limiten la utilització de la glucosa, i nivells elevats de glucosa estalvia la producció d'amoni a partir dels aminoàcids, disminuint la síntesi de glutamina i la seva utilització per l'intestí i el ronyó. En contrast, les dietes d’elevat contingut en proteïnes incrementen la síntesi de proteïnes i el creixement, i la síntesi de compostos que contenen N i no són proteïnes. Però aquests mecanismes no són suficients i en conseqüència, s'activen mecanismes menys convencionals, com ara augment de la síntesi de NO ∙ seguides per l’augment del nitrit (i nitrat) i la seva excreció, juntament amb canvis en la microbiota. En aquest treball es va estudiar com la fase inicial de desenvolupament de la síndrome metabòlica pot afectar la funció del fetge com lloc principal del metabolisme d'amino-N, i per determinar si la duplicació del contingut de proteïnes en la dieta induïa canvis significatius en els enzims del metabolisme d'aminoàcids al llarg intestí i al fetge. El resultat genèric obtingut per aquests estudis és que, tant en el cas de que la dieta sigui hiperlipídica o hiperproteica, l'eliminació de l'excés de N és necessària, però no es pot dur a terme fàcilment a través de les vies metabòliques / teixits que avaluem, tot i les possibles vies alternatives s'han tingut en consideració.
Radkov, Atanas D. "UNVEILING NOVEL ASPECTS OF D-AMINO ACID METABOLISM IN THE MODEL BACTERIUM PSEUDOMONAS PUTIDA KT2440." UKnowledge, 2015. http://uknowledge.uky.edu/pss_etds/67.
Full textWeiwei, Dai. "Amino acids regulate hepatic intermediary metabolism-related gene expression via mTORC1-dependent manner in rainbow trout (Oncorhynchus mykiss)." Thesis, Pau, 2015. http://www.theses.fr/2015PAUU3042/document.
Full textDuring my doctoral study, we used rainbow trout, a representative carnivorous fish and relevant diabetic model, to study the mechanisms underlying the regulation of hepatic intermediary metabolism by nutrients (amino acids (AAs) and glucose), and determine the potential involvement of insulin/Akt and mTORC1 signaling pathways in these regulations. Using acute administration of rapamycin, a pharmacological inhibitor of TOR, we first identified that mTORC1 activation promotes the expression of genes related to fatty acid biosynthesis, glycolysis and amino acid catabolism, while Akt negatively regulates gluconeogenic gene expression in rainbow trout liver and primary hepatocytes. Furthermore, we demonstrated hepatic fatty acid biosynthetic gene expression is more responsive to dietary protein intake/AAs than dietary carbohydrate intake/glucose during acute stimulations in vivo and in vitro. Moreover, we further showed that high levels of AAs up-regulate hepatic fatty acid biosynthetic gene expression through an mTORC1-dependent manner, while excessive AAs attenuate insulin-mediated repression of gluconeogenesis through elevating IRS-1 Ser302 phosphorylation, which in turn impairs Akt phosphorylation and dampens insulin action. Finally, using glucose tolerance test and acute inhibition of rapamycin, we concluded that hepatic gluconeogenesis probably plays a major role in controlling glucose homeostasis, which maybe account for the prolonged hyperglycemia and glucose intolerance phenotype of carnivorous fish. The present thesis brings forward our understandings about the roles of protein/AAs in the regulation of hepatic intermediary metabolism in trout and identifies relevant cellular signaling pathways mediating the action of amino acids on metabolism. It also clarifies some nutritional characteristics of the trout
Hanselius, Anne, and Karoline Eldemark. "Regulations of catabolic and anabolic mechanisms; the interactions between exercise, carbohydrates and an excessive intake of amino acids : A review of some of the metabolic pathways that affects the homeostasis of the body, as well as β-oxidation and protein synthesis." Thesis, Halmstad University, Halmstad University, Halmstad University, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-4933.
Full textInsulin as well as glucagon are important hormones in maintaining glucose homeostasis and regulating the metabolism in the body. Insulin receptors (IR) are transmembrane receptors that promote a signal transduction when activated by insulin. This can for example cause an increased influx of glucose into the cell performed by so called glucose transporters (GLUTs). These membrane proteins facilitate the transport of glucose from the blood into the cells, so the cell always has a constant supply of energy. Peroxisome proliferator-activated receptors (PPAR) are nuclear fatty acid receptors. They are activated by lipids and regulate fatty acid transcription. PPARδ/β is located in skeletal muscle and can promote fatty acid catabolism as well as cause a switch in fuel preference from glucose to fatty acids. It has been suggested that ligands for PPARδ could act as insulin sensitizers. The PPARγ coactivator-1α can increase mitochondrial content in skeletal muscle if over expressed. The same is true for endurance exercise.
Hormones released from adipose tissue can cause hyperphagia and obesity if over- or under expressed. They can also work in the opposite way by decreasing appetite with weight loss as an effect. Impaired signalling or dysfunctional receptor can cause insulin resistance, obesity and diabetes. Lipolysis occurs in adipose tissues and is conducted by three enzymes, namely adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL). There are some factors that can increase lipolysis such as caffeine, a low glycemic index, high protein intake and training.
The enzyme PEPCK is involved in the gluconeogensis in the liver and kidney cortex, and also in the glyceroneogenesis in the liver, as well as in brown and white adipose tissue. When overexpressed in skeletal muscle the enzyme increases the muscle activity. The overexpression of the enzyme did promote the β-oxidation as energy source for the muscles during exercise, instead of muscle glycogen as fuel.
The processes of protein synthesis and breakdown are together called protein turnover. Muscle grows when synthesis is greater than breakdown, and withers if breakdown exceeds the level of synthesis. Acute effects of training is catabolic, but long time exercise causes however an increased protein synthesis. Leucine, an essential amino acid, has an important role in the initiation phase of translation. Glutamine is probably important in the regulation of muscle protein synthesis and breakdown. Together with glutamate, aspartate and asparagine, these are responsible for the amino acid metabolism that occurs in the muscles. Protein synthesis reaches its maximum in the recovery phase after intense training.
Kiyota, Eduardo 1977. "Identificação e caracterização da enzima aminoadípico semialdeído desidrogenase em plantas = Identification and characterization of the aminoadipic semialdehyde dehydrogenase enzyme in plants." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/317201.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-26T17:19:31Z (GMT). No. of bitstreams: 1 Kiyota_Eduardo_D.pdf: 12985637 bytes, checksum: 423c7614185847e8e3a4c43acbef92fe (MD5) Previous issue date: 2015
Resumo: O amino ácido lisina é catabolizado em plantas e animais pela via da sacaropina. Nesta via, a lisina é convertida a ?-aminoadipato-?-semialdeído (AASA) pela ação da enzima bifuncional lisina-cetoglutarato redutase/sacaropina desidrogenase (LKR/SDH). O intermediário AASA é então convertido a ?-aminoadipato (AAA) pela enzima ?-aminoadipato-?-semialdeído desidrogenase (AASADH). A LKR/SDH já foi bem caracterizada em plantas e animais, mas a atividade enzimática bem como o possível papel fiiológico da AASADH ainda não foi demonstrada em plantas. A via da sacaropina, além do seu importante papel na regulação dos níveis de lisina, está também envolvida em processos de resposta a estresses. Este trabalho está dividido em dois capítulos. No capítulo I descrevemos a identificação do gene que codifica a AASADH em milho e a caracterização da atividade enzimática da enzima em endosperma imaturo de milho. Mostramos que a AASADH é codificada pelo gene Aldh7b1, um gene muito conservado em eucariotos. A enzima codificada pelo gene Aldh7b1 foi parcialmente purificada de endosperma imaturo de milho e através de eletroforese em condições denaturantes e cromatografia em coluna de gel filtração mostramos que a enzima, na sua forma nativa, apresenta-se como um tetrâmero constituído por quatro subunidades de 55 kDa. A AASADH isolada de endosperma imaturo de milho converte o semi-aldeido AASA em AAA. O produto da reação catalisada pela AASADH foi confirmado por cromatografia em camada delgada. No capítulo II discutimos o papel da via sacaropina no desenvolvimento da semente e na resposta de planas jovens de milho a estresses abióticos. As enzimas LKR/SDH e AASADH são co-expressos nas células das camadas da sub-aleurona do endosperma de milho nas fases intermediarias do desenvolvimento. No entanto, embora a proteína AASADH seja produzida no endosperma e no embrião de sementes imaturas e nos tecidos de plantas jovens, a proteína LKR/SDH é detectada unicamente nas células da sub-aleurona das sementes imaturas. A AASADH mostrou atividade máxima a pH 7,4 e Kms para AASA e NAD+ na ordem de micromolar. Em endosperma imaturo a via da sacaropina é induzida por lisina e reprimida por estresse salino, enquanto prolina e ácido pipecólico são significativamente reprimidos por lisina. Em coleóptiles jovens as enzimas LKR/SDH e AASADH são induzidas transcricionalmente por estresses salino, osmótico e oxidativo, mas enquanto que a proteína AASADH acumula nos tecidos sob estresse, a proteína LKR/SDH não é detectada. Nossos resultados indicam que os genes que codificam as enzimas LKR/SDH e AASADH são co-expressos a nível transcricional, mas não a nível traducional. A ausência da proteína LKR/SDH em plantas jovens sob estresses e os altos níveis do seu transcrito serem detectados mostra um desacoplamento transcrição/tradução que podem ter consequências regulatórias ainda desconhecidas
Abstract: Lysine is catabolized in developing plant tissues through the saccharopine pathway. In this pathway, lysine is converted into ?-aminoadipate-?-semialdehyde (AASA) by the bifunctional enzyme lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH). AASA is then converted into ?-aminoadipate (AAA) by aminoadipic semialdehyde dehydrogenase (AASADH). LKR/SDH was characterized in higher eukaryotes, but AASADH has not been demonstrated in plants. Furthermore, studies have shown that besides the degradation of lysine, the saccharopine pathway is involved in stress response processes in plants, animals and bacteria. This work was divided into two chapters. Chapter I describes the identification of the gene encoding AASADH and the partial purification and characterization of the enzyme from developing maize endosperm. The enzyme AASADH is encoded by the Aldh7b1 gene, a gene highly conserved among eukaryotes. The enzyme partially purified from developing endosperm and analyzed by SDS-PAGE and gel filtration chromatography behaved, in its native form, as a tetramer constituted by four monomers of 55 kDa. The enzymatic convertion of AASA into AAA was verified by thin layer chromatography. In Chapter II the role of the saccharopine pathway in seed development and stress responses is discussed. LKR/SDH and AASADH are co-expressed in the sub-aleurone cell layers of the developing endosperm; however, although AASADH protein is produced in reproductive and vegetative tissues, the LKR/SDH protein is detectable only in the developing seeds. AASADH showed an optimum pH of 7.4 and Kms for AASA and NAD+ in the micromolar range. In the developing endosperm the saccharopine pathway is induced by exogenous lysine and repressed by salt stress, whereas proline and pipecolic acid synthesis are significantly repressed by lysine. In young coleoptiles the LKR/SDH and AASADH transcriptions are induced by abiotic stress, but while the AASADH protein accumulates in stressed tissues, LKR/SDH does not. Our results indicate that the genes encoding the LKR/SDH and AASADH enzymes are co-expressed at the transcriptional level, but not the translational level. The absence of LKR/SDH protein in young plants under stress despite of the high levels of transcripts being detected suggests a decoupling transcription/translation that may have regulatory consequences yet unknown
Doutorado
Genetica Vegetal e Melhoramento
Doutor em Genetica e Biologia Molecular
Liang, Yuanxue. "Etude des sources de carbone et d'énergie pour la synthèse des lipides de stockage chez la microalgue verte modèle Chlamydomonas reinhardtii." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0080.
Full textAlgal triacylglycerols (TAG) represent a promising source for biofuel. The major steps for fatty acid synthesis and TAG metabolism have been deduced based on that of land plants, but little is known about carbon and energy sources. To address this question, we investigated fatty acid synthesis in algal cells using a combination of genetic, biochemical and microscopic approaches in the model microalga Chlamydomonas reinhardtii. Specifically, I first examined subcellular localization of lipid droplets in algal cells exposed to high light, a condition favoring production of reducing power. Secondly, I contributed to put on evidence that the beta-oxidation of fatty acids is a peroxisomal process, and that during photoautotrophic nitrogen starvation, knock-out mutants of the peroxisomal malate dehydrogenase 2 (mdh2) made 50% more TAG than parental strains, highlighting the importance of cellular redox context on lipid synthesis. This study also revealed for the first time the occurrence of an energy trafficking pathway from peroxisome to chloroplast. And finally, by characterizing mutants defected in degradation of branched-chain amino acids (BCAAs), I showed that BCAA catabolism plays a dual role in TAG synthesis via providing carbon precursors and ATP. Taken together, this work highlighted the complex interplay between carbon and energy metabolism in green photosynthetic cells, and pointed future directions for genetic improvement of algal strains for biofuel productions
Books on the topic "Catabolism of mammal amino acids"
Gluckman, Sir Peter, Mark Hanson, Chong Yap Seng, and Anne Bardsley. Vitamin B7 (biotin) in pregnancy and breastfeeding. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780198722700.003.0011.
Full textMottram, Linda-Jayne, and Gavin G. Lavery. The metabolic and nutritional response to critical illness. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0202.
Full textCasaer, Michael P., and Greet Van den Berghe. Nutrition support in acute cardiac care. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199687039.003.0032.
Full textCasaer, Michael P., and Greet Van den Berghe. Nutrition support in acute cardiac care. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199687039.003.0032_update_001.
Full textCasaer, Michael P., and Greet Van den Berghe. Nutrition support in acute cardiac care. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199687039.003.0032_update_002.
Full textBook chapters on the topic "Catabolism of mammal amino acids"
Wu, Guoyao. "Synthesis and Catabolism of Special Substances from Amino Acids." In Amino Acids, 255–332. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003092742-5.
Full textWallin, Reidar, Timothy R. Hall, and Susan M. Hutson. "Regulation of branched chain amino acid catabolism in mammalian tissues: Characterization of the mitochondrial aminotransferase." In Amino Acids, 881–86. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-2262-7_108.
Full textBevington, A., and J. Walls. "Defective Glycolysis and Catabolism of Protein and Amino Acids in Skeletal Muscle during Metabolic Acidosis." In Contributions to Nephrology, 149–55. Basel: KARGER, 1997. http://dx.doi.org/10.1159/000059865.
Full text"Synthesis and Catabolism of Special Nitrogenous Substances from Amino Acids." In Amino Acids, 168–217. CRC Press, 2013. http://dx.doi.org/10.1201/b14661-9.
Full textRichard Dickinson, J. "Pathways of Leucine and Valine Catabolism in Yeast." In Branched-Chain Amino Acids, Part B, 80–92. Elsevier, 2000. http://dx.doi.org/10.1016/s0076-6879(00)24221-3.
Full textCurtin, Á. C., and P. L. H. McSweeney. "Catabolism of Amino Acids in Cheese during Ripening." In Cheese: Chemistry, Physics and Microbiology, 435–54. Elsevier, 2004. http://dx.doi.org/10.1016/s1874-558x(04)80077-0.
Full textTraut, Thomas W. "β-Alanine Synthase an Enzyme Involved in Catabolism of Uracil and Thymine." In Branched-Chain Amino Acids, Part B, 399–410. Elsevier, 2000. http://dx.doi.org/10.1016/s0076-6879(00)24249-3.
Full text"Insulin and the regulation of amino acid catabolism and protein turnover." In Metabolic & Therapeutic Aspects of Amino Acids in Clinical Nutrition, 205–20. CRC Press, 2003. http://dx.doi.org/10.1201/9780203010266-23.
Full text"Cellular metabolism." In Oxford Assess and Progress: Medical Sciences, edited by Jade Chow, John Patterson, Kathy Boursicot, and David Sales. Oxford University Press, 2012. http://dx.doi.org/10.1093/oso/9780199605071.003.0014.
Full textCasaer, Michael P., and Greet Van den Berghe. "Nutrition support in acute cardiac care." In The ESC Textbook of Intensive and Acute Cardiovascular Care, edited by Marco Tubaro, Pascal Vranckx, Eric Bonnefoy-Cudraz, Susanna Price, and Christiaan Vrints, 360–72. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780198849346.003.0030.
Full textConference papers on the topic "Catabolism of mammal amino acids"
Takizawa, Yuko. "Intra-trophic isotopic discrimination of15N/14N associated with the catabolism of amino acids in plants." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.116197.
Full text