Academic literature on the topic 'Casimir effect'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Casimir effect.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Casimir effect"

1

Pile, David. "Giant Casimir effect." Nature Photonics 8, no. 9 (September 2014): 674–75. http://dx.doi.org/10.1038/nphoton.2014.197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fisher, D. J. "Maritime Casimir effect." American Journal of Physics 64, no. 10 (October 1996): 1228. http://dx.doi.org/10.1119/1.18354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Plunien, G. "The Casimir effect." Physics Reports 134, no. 2-3 (March 1986): 87–193. http://dx.doi.org/10.1016/0370-1573(86)90020-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kupiszewska, Dorota. "Repulsive Casimir Effect." Journal of Modern Optics 40, no. 3 (March 1993): 517–23. http://dx.doi.org/10.1080/09500349314550511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Frassino, Antonia M., Piero Nicolini, and Orlando Panella. "Unparticle Casimir effect." Physics Letters B 772 (September 2017): 675–80. http://dx.doi.org/10.1016/j.physletb.2017.07.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fabiano, Nicola. "The Casimir effect." Vojnotehnicki glasnik 71, no. 3 (2023): 740–47. http://dx.doi.org/10.5937/vojtehg71-41282.

Full text
Abstract:
Introduction/purpose: The quantization of the electromagnetic field gives rise to quantum fluctuations which in turn produce a force on macroscopic boundaries. This phenomenon is called the Casimir effect. Method: The second quantization of the electromagnetic field is employed. The Zeta function regularization technique has been applied. Results: Because of the electromagnetic field quantization, a force on macroscopic boundaries is observed. Conclusions: Vacuum fluctuations due to quantum effects give macroscopic results.
APA, Harvard, Vancouver, ISO, and other styles
7

Giné, Jaume. "Casimir effect and the uncertainty principle." Modern Physics Letters A 33, no. 24 (August 3, 2018): 1850140. http://dx.doi.org/10.1142/s0217732318501407.

Full text
Abstract:
The Casimir effect is one of the observable consequences of the vacuum fluctuations. The Casimir effect manifests itself as a force between two uncharged conductive plates in a vacuum placed a few nanometers apart. In this work, we try to deduce the Casimir effect directly from the uncertainty principle.
APA, Harvard, Vancouver, ISO, and other styles
8

MOSTEPANENKO, V. M., V. B. BEZERRA, G. L. KLIMCHITSKAYA, and C. ROMERO. "NEW CONSTRAINTS ON YUKAWA-TYPE INTERACTIONS FROM THE CASIMIR EFFECT." International Journal of Modern Physics: Conference Series 14 (January 2012): 200–214. http://dx.doi.org/10.1142/s2010194512007337.

Full text
Abstract:
Measurements of the Casimir force are used to obtain stronger constraints on the parameters of hypothetical interactions predicted in different unification schemes beyond the Standard Model. We review new strong constraints on the Yukawa-type interactions derived during the last two years from recent experiments on measuring the lateral Casimir force, Casimir force in configurations with corrugated boundaries and the Casimir-Polder force. Specifically, from measurements of the lateral Casimir force compared with the exact theory the strengthening of constraints up to a factor of 24 millions was achieved. We also discuss further possibilities to strengthen constraints on the Yukawa interactions from the Casimir effect.
APA, Harvard, Vancouver, ISO, and other styles
9

MOSTEPANENKO, V. M., V. B. BEZERRA, G. L. KLIMCHITSKAYA, and C. ROMERO. "NEW CONSTRAINTS ON YUKAWA-TYPE INTERACTIONS FROM THE CASIMIR EFFECT." International Journal of Modern Physics A 27, no. 15 (June 14, 2012): 1260015. http://dx.doi.org/10.1142/s0217751x12600159.

Full text
Abstract:
Measurements of the Casimir force are used to obtain stronger constraints on the parameters of hypothetical interactions predicted in different unification schemes beyond the Standard Model. We review new strong constraints on the Yukawa-type interactions derived during the last two years from recent experiments on measuring the lateral Casimir force, Casimir force in configurations with corrugated boundaries and the Casimir–Polder force. Specifically, from measurements of the lateral Casimir force compared with the exact theory the strengthening of constraints up to a factor of 24 millions was achieved. We also discuss further possibilities to strengthen constraints on the Yukawa interactions from the Casimir effect.
APA, Harvard, Vancouver, ISO, and other styles
10

Martinez, J. C., X. Chen, and M. B. A. Jalil. "Casimir effect and graphene: Tunability, scalability, Casimir rotor." AIP Advances 8, no. 1 (January 2018): 015330. http://dx.doi.org/10.1063/1.5007787.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Casimir effect"

1

Lang, Andrew. "The casimir effect /." free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9904856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Holmes, Christopher David. "Acoustic Casimir effect." Monterey, California. Naval Postgraduate School, 1997. http://hdl.handle.net/10945/7844.

Full text
Abstract:
In 1948, Hendrick Brugt Gerhard Casimir predicted that two closely spaced uncharged conducting plates in vacuum would be mutually attracted. This attractive force is an indirect manifestation of the quantum electromagnetic zero point field (ZPF). When the indirect manifestations of the ZPF are interpreted as due to radiation pressure, acoustic noise can provide an excellent analog to investigate the Casimir effect as well as other effects due to the ZPF. Force measurements between two parallel plates are performed in an acoustic chamber with a broadband noise spectrum within a 5-15 kHz band and an intensity of 133 dB (re 20 %Pa). When the results are compared with the appropriate theory, very good agreement is obtained. Applications of the acoustic Casimir effect to noise transduction can provide new means to measure background noise. Because attractive or repulsive forces can be obtained by adjusting the noise spectrum or the plate geometry, a non-resonant method of acoustic levitation is also suggested
APA, Harvard, Vancouver, ISO, and other styles
3

Jacobs, David M. "Casimir Localization." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1396608069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rypestøl, Marianne. "Casimir effect in Randall-Sundrummodels." Thesis, Norwegian University of Science and Technology, Department of Physics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-6353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Noto, Antonio. "Non-equilibrium Casimir interactions : from dynamical to thermal effects." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT279/document.

Full text
Abstract:
Dans cette thèse, après une introduction où nous présentons brièvement la physique des forces de Casimir, nous montrons nos résultats obtenus pendant le doctorat. D'abord, nous montrons notre travail sur les interactions de van der Waals / Casimir-Polder lorsque le système est dans une configuration hors équilibre à cause du mouvement uniformément accéléré des atomes. Nous étudions le système de deux atomes uniformément accélérés dans le vide quantique quand ils sont dans leur état fondamental ou dans un état corrélé (un atome excité et un atome dans son état fondamental). Nous analysons ce système avec un modèle heuristique semi-classique et une méthode plus rigoureuse qui nous avons étendu à partir d'une procédure générale développée dans la littérature. Nous trouvons un changement de la dépendance de l'interaction de la distance en raison de l'accélération. Nous montrons que les forces de Casimir-Polder entre deux atomes uniformément accélérés en mouvement relativiste, qui interagissent avec le champ scalaire, présentent une transition à partir d'un comportement thermique à courtes distances, comme prédit par l'effet Unruh, à un comportement non thermique à longues distances, associé à la rupture de la description inertielle et locale du système. En plus, lorsque le cas d'atomes qui interagissent avec le champ électromagnétique quantique est considéré, on constate que de nouvelles caractéristiques apparaissent dans l'interaction.Ensuite, nous présentons notre travail sur un nouveau couplage opto-mécanique d'un miroir oscillant de façon efficace avec un gaz d'atomes de Rydberg, médié par la force atome-miroir dynamique de Casimir-Polder. Nous constatons que ce couplage peut produire une excitation de résonance atomique de champ proche, qui n'est pas liée à l'excitation des atomes par les quelques photons réels attendus de l'effet Casimir dynamique. Dans des conditions expérimentales accessibles, cette probabilité d'excitation est importante (environ 20 %) et rend possible l'observation de ce nouvel effet Casimir-Polder dynamique. Donc nous proposons une configuration expérimentale réaliste pour réaliser ce système fait d'un gaz d'atomes froids piégés mis en face d'un substrat semi-conducteur, dont les propriétés diélectriques sont modulées dans le temps.Enfin, nous nous concentrons sur nos résultats obtenus pour le calcul de la pression Casimir-Lifshitz entre deux réseaux lamellaires diélectriques différents. Ce système est supposé dans une configuration hors équilibre thermique. En fait, les deux réseaux présentent deux températures différentes et ils sont immergés dans un bain thermique ayant une troisième température. Le calcul de la pression est basé sur une méthode qui exploite les opérateurs de diffusion des réseaux, déduits en utilisant la méthode modale de Fourier. Nous présentons nos résultats numériques caractérisant en détail le comportement de la pression, en faisant varier les trois températures et en modifiant les paramètres géométriques des réseaux. Cette variation des paramètres du système permet de régler la force de répulsive à attractive ou de réduire fortement la pression pour des intervalles de températures. En outre, on montre que la combinaison des effets de non-équilibre et géométriques rend ce système particulièrement intéressant pour l'observation de la force de Casimir répulsive
In this thesis, after an introduction where we briefly present the general context of Casimir physics, we present the results obtained during the PhD. At first, we show our work about the van der Waals/Casimir-Polder interactions between two atoms in an out-of-equilibrium condition due to their uniformly accelerated motion. We study the system of two uniformly accelerated atoms in vacuum space, when they are in their ground-state and when they are in a correlated state (one excited and one ground-state atom). We analyze this system both with an heuristic semiclassical model and with a more rigorous method, based on a separation of radiation reaction and vacuum fluctuations contributions, that we extend starting from a general procedure known in literature. We find a change of the distance-dependence of the interaction due to the acceleration. We show that Casimir-Polder forces between two relativistic uniformly accelerated atoms, interacting with the scalar field, exhibit a transition from the short-distance thermal-like behavior predicted by the Unruh effect to a long-distance nonthermal behavior, associated with the breakdown of a local inertial description of the system. In addition, we obtain new features of the resonance interaction in the case of atoms interacting with the quantum electromagnetic field.Next, we present our work about a new optomechanical coupling of an effectively oscillating mirror with a Rydberg atoms gas, mediated by the dynamical atom-mirror Casimir-Polder force. We find that this coupling may produce a near-field resonant atomic excitation not related to the excitation of atoms by the few real photons expected by dynamical Casimir effect. In accessible experimental conditions, this excitation probability is significant (about 20%) making the observation of this new dynamical Casimir-Polder effect possible. For this reason, we propose a realistic experimental configuration to realize this system made of a cold atom gas trapped in front of a semiconductor substrate, whose dielectric properties are periodically modulated in time.Finally, we focus on our results obtained for the Casimir-Lifshitz pressure between two different dielectric lamellar gratings. This system is assumed to be in an out-of-thermal-equilibrium configuration, i.e. the two gratings have two different temperatures and they are immersed in a thermal bath having a third temperature. The computation of the pressure is based on a method exploiting the scattering operators of the bodies, deduced using the Fourier modal method. In our numerical results we characterize in detail the behavior of the pressure, both by varying the three temperatures and by changing the geometrical parameters of the gratings. In this way we show that it is possible to tune the force from attractive to repulsive or to strongly reduce the pressure for large ranges of temperatures. Moreover, we stress that the interplay between nonequilibrium effects and geometrical periodicity make this system particularly interesting for the observation of the repulsive Casimir force
APA, Harvard, Vancouver, ISO, and other styles
6

Haakh, Harald Richard. "Cavity QED with superconductors and its application to the Casimir effect." Master's thesis, Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2009/3256/.

Full text
Abstract:
Diese Diplomarbeit untersucht den Casimir-Effekt zwischen normal- und supraleitenden Platten über einen weiten Temperaturbereich, sowie die Casimir-Polder-Wechselwirkung zwischen einem Atom und einer solchen Oberfläche. Hierzu wurden vorwiegend numerische und asymptotische Rechnungen durchgeführt. Die optischen Eigenschaften der Oberflächen werden dann aus dielektrischen Funktionen oder optischen Leitfähigkeiten erhalten. Wichtige Modellen werden vorgestellt und insbesondere im Hinblick auf ihre analytischen und kausalen Eigenschaften untersucht. Es wird vorgestellt, wie sich die Casimir-Energie zwischen zwei normalleitenden Platten berechnen lässt. Frühere Arbeiten über den in allen metallischen Kavitäten vorhandenen Beitrag von Oberflächenplasmonen zur Casimir-Wechselwirkung wurden zum ersten mal auf endliche Temperaturen erweitert. Für Supraleiter wird eine analytische Fortsetzung der BCS-Leitfähigkeiten zu rein imaginären Frequenzen, sowohl innerhalb wie außerhalb des schmutzigen Grenzfalles verschwindender mittlerer freier Weglänge vorgestellt. Es wird gezeigt, dass die aus dieser neuen Beschreibung erhaltene freie Casimir-Energie in bestimmten Bereichen der Materialparameter hervorragend mit der im Rahmen des Zwei-Fluid-Modells für den Supraleiter berechneten übereinstimmt. Die Casimir-Entropie einer supraleitenden Kavität erfüllt den Nernstschen Wärmesatz und weist einen charakteristischen Sprung beim Erreichen des supraleitenden Phasenübergangs auf. Diese Effekte treten ebenfalls in der magnetischen Casimir-Polder-Wechselwirkung eines Atoms mit einer supraleitenden Oberfläche auf. Es wird ferner gezeigt, dass die magnetische Dipol-Wechselwirkung eines Atomes mit einem Metall sehr stark von den dissipativen Eigenschaften und insbesondere von den Oberflächenströmen abhängt. Dies führt zu einer starken Unterdrückung der magnetischen Casimir-Polder-Energie bei endlichen Temperaturen und Abständen oberhalb der thermischen Wellenlänge. Die Casimir-Polder-Entropie verletzt in einigen Modellen den Nernstschen Wärmesatz.Ähnliche Effekte werden für den Casimir-Effekt zwischen Platten kontrovers diskutiert. In den entsprechenden elektrischen Dipol-Wechselwirkungen tritt keiner dieser Effekte auf. Die Ergebnisse dieser Arbeit legen nahe, das bekannte Plasma-Modells als Grenzfall eines Supraleiters bei niedrigen Temperaturen (bekannt als London-Theorie) zu betrachten, statt als Beschreibung eines normales Metalles. Supraleiter bieten die Möglichkeit, die Dissipation der Oberflächenströme in hohem Maße zu steuern. Dies könnte einen experimentellen Zugang zu den optischen Eigenschaften von Metallen bei niedrigen Frequenzen erlauben, die eng mit dem thermischen Casimir-Effekt verknüpft sind. Anders als in entsprechenden Mikrowellen-Experimenten sind hierbei die Energien und Impulse unabhängige Größen. Die Messung der Oberflächenwechselwirkung zwischen Atomen und Supraleitern ist mit den heute verfügbaren Atomfallen auf Mikrochips möglich und der magnetische Anteil der Wechselwirkung sollte spektroskopischen Techniken zugänglich sein
This thesis investigates the Casimir effect between plates made of normal and superconducting metals over a broad range of temperatures, as well as the Casimir-Polder interaction of an atom to such a surface. Numerical and asymptotical calculations have been the main tools in order to do so. The optical properties of the surfaces are described by dielectric functions or optical conductivities, which are reviewed for common models and have been analyzed with special weight on distributional properties and causality. The calculation of the Casimir energy between two normally conducting plates (cavity) is reviewed and previous work on the contribution to the Casimir energy due to the surface plasmons, present in all metallic cavities, has been generalized to finite temperatures for the first time. In the field of superconductivity, a new analytical continuation of the BCS conductivity to to purely imaginary frequencies has been obtained both inside and outside the extremely dirty limit of vanishing mean free path. The Casimir free energy calculated from this description was shown to coincide well with the values obtained from the two fluid model of superconductivity in certain regimes of the material parameters. The Casimir entropy in a superconducting cavity fulfills the third law of thermodynamics and features a characteristic discontinuity at the phase transition temperature. These effects were equally encountered in the Casimir-Polder interaction of an atom with a superconducting wall. The magnetic dipole coupling of an atom to a metal was shown to be highly sensible to dissipation and especially to the surface currents. This leads to a strong quenching of the magnetic Casimir-Polder energy at finite temperature. Violations of the third law of thermodynamics are encountered in special models, similar to phenomena in the Casimir-effect between two plates, that are debated controversely. None of these effects occurs in the analog electric dipole interaction. The results of this work suggest to reestablish the well-known plasma model as the low temperature limit of a superconductor as in London theory rather than use it for the description of normal metals. Superconductors offer the opportunity to control the dissipation of surface currents to a great extent. This could be used to access experimentally the low frequency optical response of metals, which is strongly connected to the thermal Casimir-effect. Here, differently from corresponding microwave experiments, energy and momentum are independent quantities. A measurement of the total Casimir-Polder interaction of atoms with superconductors seems to be in reach in today’s microchip-based atom-traps and the contribution due to magnetic coupling might be accessed by spectroscopic techniques
APA, Harvard, Vancouver, ISO, and other styles
7

Hassan, Arkan Mahmood. "Dynamical Casimir Effect Using Two Photon Absorber." Miami University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=miami1533948476369766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

van, Caspel Moos. "The topological Casimir effect on a torus." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44948.

Full text
Abstract:
The conventional Casimir effect manifests itself as a quantum mechanical force between two plates, that arises from the quantization of the electromagnetic field in the enclosed vacuum. In this thesis the existence is discussed of an extra, topological term in the Casimir energy at finite temperatures. This topological Casimir effect emerges due to the nontrivial topological features of the gauge theory: the extra energy is the result of tunneling transitions between states that are physically the same but topologically distinct. It becomes apparent when examining, for instance, periodic boundary conditions. I explicitly calculate the new term for the simplest example of such a system, a Euclidean 4-torus. By dimensional reduction, this system is closely related to two dimensional electromagnetism on a torus, which is well understood. It turns out that the topological term is extremely small compared to the conventional Casimir energy, but that the effect is very sensitive to an external magnetic field. The external field plays the role of a topological theta parameter, analogous to the theta vacuum in Yang-Mills theory. The topological Casimir pressure and the induced magnetic field show a distinctive oscillation as a function of the external field strength, something that can hopefully be observed experimentally.
APA, Harvard, Vancouver, ISO, and other styles
9

McCutcheon, Robert A. "Hybrid Optomechanics and the Dynamical Casimir Effect." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1501191323617929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fialkovskiy, Ignat. "Efeito Casimir e as propriedades óticas do grapheno." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-11032013-151501/.

Full text
Abstract:
Este trabalho é dedicado à investigação de diferentes aspectos da física de monocamadas de grafeno suspenso e epitaxial. A descrição do grafeno é baseada no modelo quase-relativístico de Dirac. Isso permite a aplicação dos métodos da Teoria Quântica de Campos (TQC) na investigação dos efeitos de interação entre o grafeno e o campo eletromagnético (EM). Usando o formalismo de integral de trajetória, nós formulamos uma teoria efetiva do campo EM na presença de monocamadas de grafeno. Esta teoria é governada pelo operador de polarização das quase-partículas de Dirac. Dois fenômenos importantes são investigados: as propriedades óticas do grafeno (o efeito Faraday em particular) e a interação de Casimir entre uma camada de grafeno e um metal paralelo. Em primeiro lugar, estudamos a propagação de ondas eletromagnéticas na presença de camadas de grafeno. A dinâmica de ondas é governada pelas equações modificadas de Maxwell obtidas a partir da teoria efetiva para o campo EM. Nós calculamos os coeficientes de reflexão e transmissão de luz polarizada linearmente e investigamos detalhadamente o efeito quântico de Faraday no campo magnético externo. Em particular, mostramos que as previsões do modelo de Dirac estão em boa concordância com os recentes resultados experimentais sobre a transmissão de luz e rotação de Faraday gigante em regime de ressonância cíclotron. Novos regimes também são previstos. Em segundo lugar, investigamos a interação de Casimir entre filmes suspensos de grafeno com um condutor ideal. O efeito é investigado tanto no caso ideal (temperatura nula, amostras ideais) quanto para configurações mais realistas (temperatura não nula e a presença de potencial químico). No caso de temperatura nula, a força de Casimir entre grafeno e condutor ideal é aproximadamente 2.6% da força entre dois condutores ideais. Ao mesmo tempo, no limite de temperatura elevada, o efeito mostra-se ser muito forte cerca de 50% de efeito entre metais ideais.
This research is devoted to investigation of several aspects of the physics of suspended and epitaxial graphene monolayers. The description of graphene is based on the quasi--relativistic Dirac model which permits application of the methods of the Quantum Field Theory to investigation of the interaction of graphene with electromagnetic field. Basing on the path integral formalism we formulate the effective theory for EM field in presence of graphene monolayers which is governed by the polarization operator of the Dirac quasi-particles in graphene. The two main phenomena in the interaction of graphene with electromagnetic field are studied: the optical properties of graphene (the Faraday rotation in particular), and Casimir interaction between graphene samples and parallel metal. First, we study the propagation of electromagnetic waves in presence of suspended and epitaxial graphene layers. Their dynamics is governed by the modified Maxwell equations obtained from the effective theory for EM field. We calculate the reflection and transmission coefficient for linearly polarized light and investigate in detail the quantum Faraday effect in external magnetic field. In particular it is showed that the prediction of the Dirac model are in good agreement with recent experimental results on transmission and giant Faraday rotation in cyclotron resonance. New regimes are also predicted Secondly, we investigate Casimir interaction between suspended graphene films with ideal conductor. The effect is investigated both in the idealistic case (zero temperature, ideal samples) and for realistic configurations (non zero temperature and/or presence of impurities and chemical potential). For zero temperature the Casimir force between graphene and a conductor is about 2.7% of that between two ideal conductors. At the same time in the high temperature limit the effect is showed to be greatly enhanced being about 50% of that between ideal metals.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Casimir effect"

1

Holmes, Christopher David. Acoustic Casimir effect. Monterey, Calif: Naval Postgraduate School, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Advances in the Casimir effect. Oxford: Oxford University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bordag, Michael. Advances in the Casimir effect. Oxford: Oxford University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mostepanenko, Vladimir Mikhaĭlovich. The Casimir effect and its applications. Oxford: Clarendon Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

The Casimir effect: Physical manifestations of zero-point energy. Singapore: World Scientific, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Workshop on Quantum Field Theory Under the Influence of External Conditions (4th 1998 University of Leipzig). The Casimir effect 50 years later: Proceedings of the Fourth Workshop on Quantum Field Theory Under the Influence of External Conditions : 14-18 September 1998, Leipzig, Germany. Edited by Bordag Michael 1952-. Singapore: World Scientific, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1933-, Levin F. S., and Micha David, eds. Long-range Casimir forces: Theory and recent experiments on atomic systems. New York: Plenum Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1945-, Berman Paul R., ed. Cavity quantum electrodynamics. Boston: Academic Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bertrand, Duplantier, and Rivasseau Vincent 1955-, eds. Poincaré Seminar 2002: Vacuum energy-renormalization. Basel: Birkhäuser Verlag, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Conference on Quantum Field Theory Under the Influence of External Conditions (9th 2009 University of Oklahoma). Proceedings of the Ninth Conference on Quantum Field Theory Under the Influence of External Conditions (QFEXT09): Devoted to the Centenary of H.B.G. Casimir, University of Oklahoma, USA, 21-25 September 2009. Edited by Casimir, H. B. G. (Hendrik Brugt Gerhard), 1909-2000, Milton K. A, and Bordag Michael 1952-. New Jersey: World Scientific, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Casimir effect"

1

Milonni, Peter, and Umar Mohideen. "Casimir Effect." In Compendium of Quantum Physics, 87–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Connes, Alain, Bernard de Wit, Antoine Van Proeyen, Sergey Gukov, Rafael Hernandez, Pablo Mora, Anatoli Klimyk, Anatoli Klimyk, and Iver Brevik. "Casimir Effect." In Concise Encyclopedia of Supersymmetry, 83. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dalvit, Diego A. R., Paulo A. Maia Neto, and Francisco Diego Mazzitelli. "Fluctuations, Dissipation and the Dynamical Casimir Effect." In Casimir Physics, 419–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20288-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Balian, Roger. "Casimir Effect and Geometry." In Poincaré Seminar 2002, 71–92. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8075-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lambrecht, Astrid, Antoine Canaguier-Durand, Romain Guérout, and Serge Reynaud. "Casimir Effect in the Scattering Approach: Correlations Between Material Properties, Temperature and Geometry." In Casimir Physics, 97–127. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20288-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Elizalde, Emilio. "Physical Application: The Casimir Effect." In Ten Physical Applications of Spectral Zeta Functions, 95–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29405-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Law, C. K. "Resonance in Non-Stationary Casimir Effect." In Coherence and Quantum Optics VII, 579–80. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Plunien, Günter, Berndt Müller, and Walter Greiner. "Temperature Corrections to the Casimir Effect." In Physics of Strong Fields, 899–906. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1889-7_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Villarreal, Carlos, R. Jáuregui, and S. Hacyan. "Dynamical Casimir Effect, “Particle Emission” and Squeezing." In Quantum Field Theory Under the Influence of External Conditions, 46. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-01204-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brevik, Iver. "Casimir Effect for the Piecewise Uniform String." In Springer Proceedings in Physics, 57–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19760-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Casimir effect"

1

Villarreal, C., and W. L. Mochá. "The Casimir Effect." In PARTICLES AND FIELDS: X Mexican Workshop on Particles and Fields. AIP, 2006. http://dx.doi.org/10.1063/1.2359408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Storti, Riccardo C. "The extraterrestrial Casimir Effect." In SPIE Optical Engineering + Applications, edited by Chandrasekhar Roychoudhuri, Andrei Yu Khrennikov, and Al F. Kracklauer. SPIE, 2011. http://dx.doi.org/10.1117/12.890500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

SERNELIUS, BO E. "THE THERMAL CASIMIR EFFECT: SATURATION." In Proceedings of the Ninth Conference. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814289931_0026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

MÜLLER, DANIEL. "CASIMIR EFFECT IN COMPACT UNIVERSES." In Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF). World Scientific Publishing Company, 2006. http://dx.doi.org/10.1142/9789812704030_0175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Burda, Philipp. "Cosmological Constant and Casimir Effect." In Proceedings of the International School of Subnuclear Physics. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814522519_0019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Elizalde, Emilio. "Cosmological Casimir Effect and Beyond." In THE DARK SIDE OF THE UNIVERSE: 2nd International Conference on The Dark Side of the Universe DSU 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2409092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marachevsky, Valery N. "Casimir effect for fermion layers." In STATISTICAL PHYSICS: MODERN TRENDS AND APPLICATIONS: The 3rd Conference on Statistical Physics Dedicated to the 100th Anniversary of Mykola Bogolyubov. American Institute of Physics, 2014. http://dx.doi.org/10.1063/1.4891154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Caruntu, Dumitru I., Martin Knecht, and Roberto J. Zapata. "Casimir Effect Influence on NEMS Cantilever Resonators." In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-5966.

Full text
Abstract:
This paper investigates electrostatically actuated nanoelectromechanical (NEMS), to include Casimir effect, resonator response near natural frequency. Both electrostatic force and Casimir force are nonlinear. The method of multiple scales is used in a direct approach of the problem in the case of small actuation, damping, and Casimir effect. Two approximation problems resulting from the direct approach are solved. The phase-amplitude relationship is obtained. Numerical results for uniform NEMS cantilever resonators for possible sensing applications are provided.
APA, Harvard, Vancouver, ISO, and other styles
9

Altaisky, Mikhail V., and Natalia E. Kaputkina. "Scale-dependent corrections to Casimir effect." In Days on Diffraction 2011 (DD). IEEE, 2011. http://dx.doi.org/10.1109/dd.2011.6094357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chattopadhyay, Rik, and Shyamal Kumar Bhadra. "Fiber-optical analogue of Casimir effect." In Optics and Photonics Japan. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/opj.2018.31ppj15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Casimir effect"

1

Chen, P. CASIMIR Effect in a Supersymmetry-Breaking Brane-World as Dark Energy. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/833100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography