Academic literature on the topic 'Cascade Refrigeration'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cascade Refrigeration.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cascade Refrigeration"
Kasi, Parthiban, and M. Cheralathan. "Review of cascade refrigeration systems for vaccine storage." Journal of Physics: Conference Series 2054, no. 1 (October 1, 2021): 012041. http://dx.doi.org/10.1088/1742-6596/2054/1/012041.
Full textGANJEHSARABI, HADI, IBRAHIM DINCER, and ALI GUNGOR. "THERMODYNAMIC ANALYSIS AND PERFORMANCE ASSESSMENT OF A CASCADE ACTIVE MAGNETIC REGENERATIVE REFRIGERATION SYSTEM." International Journal of Air-Conditioning and Refrigeration 21, no. 03 (September 2013): 1350016. http://dx.doi.org/10.1142/s2010132513500168.
Full textYANG, Y., M. W. TONG, G. YANG, and X. P. WANG. "APPLICATION OF CASCADE REFRIGERATION SYSTEM WITH MIXING REFRIGERANT IN COLD AIR CUTTING." International Journal of Modern Physics B 19, no. 01n03 (January 30, 2005): 521–23. http://dx.doi.org/10.1142/s0217979205028955.
Full textDuan, Rui, Guo Min Cui, and Qun Zhi Zhu. "Analysis of Thermodynamic Performance in NH3/CO2 Cascade Refrigeration System." Advanced Materials Research 860-863 (December 2013): 1484–88. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.1484.
Full textZheng, Da Yu, Dan Li, Jia Zheng, Li Ping Gao, and Yi Ming Zhang. "The Study of the Effects of Refrigerant Fraction on Auto-Cascade Refrigeration System of Evaporation Temperature." Advanced Materials Research 889-890 (February 2014): 321–24. http://dx.doi.org/10.4028/www.scientific.net/amr.889-890.321.
Full textRajmane, Umesh C. "A Review of Vapour Compression Cascade Refrigeration System." Asian Journal of Engineering and Applied Technology 5, no. 2 (November 5, 2016): 36–39. http://dx.doi.org/10.51983/ajeat-2016.5.2.801.
Full textYang, Shutong, Youlei Wang, and Yufei Wang. "Optimization of Cascade Cooling System Based on Lithium Bromide Refrigeration in the Polysilicon Industry." Processes 9, no. 9 (September 18, 2021): 1681. http://dx.doi.org/10.3390/pr9091681.
Full textYang, Qichao, Xiaonan Chen, Weikai Chi, Liansheng Li, Guangbin Liu, and Yuanyang Zhao. "Thermodynamic Analysis of an NH3/CO2 Cascade Refrigeration System with Subcooling in the Low-Temperature Circuit Utilizing the Expansion Work." International Journal of Energy Research 2023 (February 27, 2023): 1–17. http://dx.doi.org/10.1155/2023/5987368.
Full textJankovich, Dennis, and Kresimir Osman. "A feasibility analysis of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry." Thermal Science 19, no. 5 (2015): 1821–33. http://dx.doi.org/10.2298/tsci130611097j.
Full textFernández-Seara, José, Jaime Sieres, and Manuel Vázquez. "Compression–absorption cascade refrigeration system." Applied Thermal Engineering 26, no. 5-6 (April 2006): 502–12. http://dx.doi.org/10.1016/j.applthermaleng.2005.07.015.
Full textDissertations / Theses on the topic "Cascade Refrigeration"
Haile-Michael, Getu. "Cascade and secondary coolant supermarket refrigeration systems : modelling and new frost correlations." Thesis, University of Auckland, 2011. http://hdl.handle.net/2292/6846.
Full textSchutte, Abraham Jacobus. "Demand-side energy management of a cascade mine surface refrigeration system / A.J. Schutte." Thesis, North-West University, 2007. http://hdl.handle.net/10394/1843.
Full textThesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2008.
Sawalha, Samer. "Carbon Dioxide in Supermarket Refrigeration." Doctoral thesis, Stockholm : Energiteknik, Energy Technology, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4753.
Full textQueiroz, Marcus Vinícius Almeida. "Avaliação experimental de um sistema de refrigeração cascata subcrítico com HFCs/C02." Universidade Federal de Uberlândia, 2017. https://repositorio.ufu.br/handle/123456789/19110.
Full textThis study evaluates the performance of a cascade system in subcritical operation using the pair R134a/R744, as an option to conventional systems in supermarkets, which usually uses R404A, or R22. The experimental apparatus consists of a variable speed reciprocating compressor for R744 and an electronic expansion valve that promotes direct evaporation of the CO2 inside a cold room (2,3m x 2,6m x 2,5m) to maintain the internal air temperature stable. The high-temperature cycle consists of a reciprocating compressor for R134a, an electronic expansion valve, and an air-cooled condenser. A plate heat exchanger, which is at the same time, the condenser for the R744 and evaporator to R134a completes the setup. During the experimental tests, two parameters were manipulated: The superheating degree of the R744, 5-15 K, and the R744 compressor operation frequency, 45-65 Hz. The cooling capacity values for R134a/R744 ranged between 4,30 ± 0,01 and 5,57 ± 0,02 kW, demonstrating an application to the cascade system under variable thermal load conditions. This operational flexibility also extends to the air temperature values established inside the cold room, being the lower value of -17,7 ° C and higher -0,8 ° C. In order to contribute to the improvement of the cooling processes, mainly about the energy efficiency, a drop-in has been made at the high- temperature cycle, which R134a refrigerant charge has been replaced by R438A. The comparison was done regard both systems providing similar cooling capacities and air temperature values inside the cold room. As a result, the consumption of the compressor operating with R438A was higher in all tests. The COP values for the R134a/R744 system ranged from 1,81 ± 0,01 to 2,09 ± 0,01, while with the R438A/R744 system, from 1,41 ± 0,01 to 1,66 ± 0,01. The total equivalent warming impact for the R438A/R744 system was higher compared to the original system, as a result of the higher GWP for the R438A and higher electrical power consumptions. It has been proven the proposed drop-in, at the high temperature cycle from R134a by R438A, is a less efficient choice for such specific applications.
Dissertação (Mestrado)
Coggins, Charles Lee. "Single- and Multiple-Stage Cascaded Vapor Compression Refrigeration for Electronics Cooling." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16283.
Full textСкрипник, О. В., В. В. Свяцький, O. Skrypnyk, and V. Sviatskyi. "Перспективні напрямки технологічного застосування гідратів двооксиду вуглецю." Thesis, ХНТУ, 2017. http://dspace.kntu.kr.ua/jspui/handle/123456789/6869.
Full textCipolato, Liza. "Analise exergetica de um ciclo em cascata para liquefação de gas natural." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266261.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-11T14:06:54Z (GMT). No. of bitstreams: 1 Cipolato_Liza_M.pdf: 1029854 bytes, checksum: e29def5b437d5ad6a00d8fc677c63bf5 (MD5) Previous issue date: 2008
Resumo: O comércio de gás natural liquefeito apresenta um crescente interesse por parte tanto de países exportadores como dependentes desta fonte energética. Apesar de o transporte por gasoduto ser muito menos suscetível a perdas, ele se torna inviável a longas distâncias ou a demandas variáveis. A liquefação do gás natural também proporciona o armazenamento desta fonte energética numa forma estável e de alto potencial energético,evidenciando o caráter estratégico do processo. Desde a década de 60 a tecnologia para liquefação do gás natural é utilizada, porém, apenas há alguns anos os países iniciaram o comércio desta fonte energética em larga escala e isto acarretará um aumento mundial tanto no número de terminais exportadores (plantas de liquefação) quanto importadores (terminais de regaseificação). O processo de liquefação do gás natural ocorre através de uma sequência de ciclos termodinâmicos de refrigeração, e estes, por sua vez, precisam trabalhar de forma otimizada para reduzir perdas. A análise exergética é uma ferramenta muito útil para avaliar estas perdas e pode ser essencial na instalação de uma nova planta ou melhoria de uma já existente. O presente trabalho realizou uma análise exergética de um ciclo de refrigeração utilizado para a liquefação de gás natural, o qual é do tipo multiestágio em cascata, padrão utilizado atualmente, sendo o mais conhecido e difundido entre as indústrias da área. Primeiramente, o processo foi simulado em software comercial Hysys (versão 3.2 da Aspen Technology). O resultado obtido da simulação foi validado através de comparação com dados da literatura, mostrando-se adequado. Em seguida, a simulação foi testada em diferentes condições operacionais, seguindo um planejamento fatorial completo, o qual teve como objetivo verificar a influência da variação das pressões de seis pontos específicos do ciclo sobre a variável resposta, que é a taxa de exergia total destruída no processo, visando sua minimização. Os resultados obtidos levaram a uma nova condição de operação para o ciclo de refrigeração com redução de aproximadamente 48% da taxa de exergia destruída com relação aos dados do caso obtido da literatura. Tal resultado evidencia o potencial da metodologia termodinâmica utilizada, demonstrando sua aplicação em estudos de melhoria do desempenho de ciclos de refrigeração para a indústria de liquefação de gás natural
Abstract: The liquefied natural gas trade shows a growing interest either from countries which are exporters or countries which depend on this kind of energetic source. Although gas pipelines are less susceptible of transportation losses, they become impracticable when distances are too long or when demands are highly variable. The liquefaction of natural gas also enables its storage in a stable way, in which energetic potential is high, expressing the strategic purpose of the process. Since the 1960 decade natural gas liquefying technology is been used, but only a few years ago countries have started the trade of this kind of energetic source on a large scale. Consequently, the number of exporter terminals (liquefaction industries) and importer terminals (regasification plants) will increase worldwide. The natural gas liquefaction process is based on a sequence of refrigeration thermodynamics cycles, which need to work in an optimized way in order to reduce losses. The exergy analysis is a very useful tool to evaluate these losses and can be crucial in a new plant installation or in a current one improvement. This dissertation performed an exergy analysis of a multistage cascade refrigeration cycle applied in natural gas liquefaction. The multistage cascade cycle is currently the standard type, being the most known and diffused among industries. Firstly, the process was simulated in commercial software Hysys (version 3.2 of Aspen Technology). The result obtained from the simulation was validated by comparison with the literature data and showed a very adequate similarity. After that, the simulation was checked in different operational conditions, according to the complete factorial design of experiments. The design of experiments¿ objective was to verify the pressure influence of six specific points of the cycle over the response variable, which is the rate of total exergy destroyed in the cycle, in order to reach its minimal value. The results showed a new operational condition to the refrigeration cycle, in which the destroyed exergy rate was reduced by approximately 48% in comparison with literature data. This result provides evidence of the high potential of the thermodynamic tool used, showing its application in studies of performance improvements for refrigeration cycles in industries of natural gas liquefaction
Mestrado
Sistemas de Processos Quimicos e Informatica
Mestre em Engenharia Química
Goloubev, Dmitri. "Kühlung eines resistiven HTSL-Kurzschlussstrombegrenzers mit einer Gemisch-Joule-Thomson-Kältemaschine." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2004. http://nbn-resolving.de/urn:nbn:de:swb:14-1095838519812-78347.
Full textGoloubev, Dmitri. "Kühlung eines resistiven HTSL-Kurzschlussstrombegrenzers mit einer Gemisch-Joule-Thomson-Kältemaschine." Doctoral thesis, Technische Universität Dresden, 2003. https://tud.qucosa.de/id/qucosa%3A24374.
Full textKUMAR, PRAKASH. "CASCADE REFRIGERATION CYCLE." Thesis, 2017. http://dspace.dtu.ac.in:8080/jspui/handle/repository/16002.
Full textBooks on the topic "Cascade Refrigeration"
Fulkerson, Frank. Simplified cascade system servicing. Troy, Mich: Business News Pub. Co., 1988.
Find full textBook chapters on the topic "Cascade Refrigeration"
Ganjehsarabi, Hadi, Ibrahim Dincer, and Ali Gungor. "Exergoeconomic Analysis of a Cascade Active Magnetic Regenerative Refrigeration System." In Progress in Exergy, Energy, and the Environment, 69–80. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04681-5_6.
Full textGhosh, Ayan, Aditya Sharma, Bharat Varshney, Chirag, and Pawan Kumar Kashyap. "A Theoretical Thermodynamic Analysis of R1234yf/CO2 Cascade Refrigeration System." In Lecture Notes in Mechanical Engineering, 57–69. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8517-1_5.
Full textTan, Hüsamettin, and Ali Erişen. "Exergy Analysis of Cascade Refrigeration System for Different Refrigerant Couples." In Springer Proceedings in Energy, 633–42. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30171-1_68.
Full textDas, Ipsita, and Samiran Samanta. "Comparative Energetic and Exergetic Analyses of a Cascade Refrigeration System Pairing R744 with R134a, R717, R1234yf, R600, R1234ze, R290." In Advances in Air Conditioning and Refrigeration, 221–34. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6360-7_20.
Full textAmin, Mihir H., Hetav M. Naik, Bidhin B. Patel, Prince K. Patel, and Snehal N. Patel. "Exergy and Energy Analyses of Half Effect–Vapor Compression Cascade Refrigeration System." In Information and Communication Technology for Intelligent Systems, 55–75. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7078-0_6.
Full textKumar, Sachin, and Virender Chahal. "A Review of Various Kinds of Cascade Refrigeration Cycle and Application of Ejector Mechanism." In Advances in Materials and Mechanical Engineering, 245–65. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0673-1_20.
Full textSingh, Harvendra, Kaushalendra Kumar Singh, and Harshit Bahri. "Performance Analysis and Optimization of Ammonia-CO2 and Ammonia–Propylene Refrigerant Pairs for Cascade Refrigeration." In Lecture Notes in Mechanical Engineering, 15–25. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3428-4_2.
Full textKaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamics of Cascaded Refrigeration and Heat Pump Cycles." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 181–201. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_8.
Full textLiu, Ying, Ming Zhao, Ying Rong, and Guang Jin. "Thermodynamic analysis of different CO2 cascade refrigeration cycles." In Architectural, Energy and Information Engineering, 117–20. CRC Press, 2015. http://dx.doi.org/10.1201/b19197-29.
Full textAlmeida-Trasvina, Fernando, and Robin Smith. "Design and Optimisation of Novel Cascade Refrigeration Cycles for LNG Production." In Computer Aided Chemical Engineering, 621–26. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-444-64235-6.50111-x.
Full textConference papers on the topic "Cascade Refrigeration"
Quack, Hans H. "Theory of cascade refrigeration." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC, Volume 57. AIP, 2012. http://dx.doi.org/10.1063/1.4706991.
Full textALMEIDA QUEIROZ, MARCUS VINICIUS, Arthur Antunes, and ENIO BANDARRA FILHO. "EXPERIMENTAL EVALUATION OF A CASCADE REFRIGERATION SYSTEM." In 16th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2016. http://dx.doi.org/10.26678/abcm.encit2016.cit2016-0069.
Full textXie, Yingbai, Kuikui Cui, Luxiang Zong, and Zhichao Wang. "The Entropy Analysis on NH3/CO2 Cascade Refrigeration Cycle." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40121.
Full textLiu, Yingfu, Yingzheng Rong, and Guangya Jin. "Thermodynamic Analysis of Different CO2 Cascade Refrigeration Cycles." In 2018 7th International Conference on Energy, Environment and Sustainable Development (ICEESD 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/iceesd-18.2018.227.
Full textShyam, Hasanabada, Sunnam Nagaraju, Mallepalli Venkateswar Reddy, Ravi Kiran Chintalapudi, and Anil Kumar Reddy Padidam. "Performance evaluation of cascade refrigeration system using different refrigerants." In PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON FRONTIER OF DIGITAL TECHNOLOGY TOWARDS A SUSTAINABLE SOCIETY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0114064.
Full textKilicarslan, Ali, and Norbert Mu¨ller. "Irreversibility Analysis of a Vapor Compression Cascade Refrigeration Cycle." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66363.
Full textJoão Gabriel de Oliveira Marques and Paulo Eduardo Lopes Barbieri. "EXERGETIC ANALYSIS OF A R717/R744 CASCADE REFRIGERATION SYSTEM." In 23rd ABCM International Congress of Mechanical Engineering. Rio de Janeiro, Brazil: ABCM Brazilian Society of Mechanical Sciences and Engineering, 2015. http://dx.doi.org/10.20906/cps/cob-2015-0420.
Full textYang Shi, XueLi Nie, Bei Zhang, Dan Zhou, Jiakai Wang, and Zhimin Wang. "Design and experimental investigation on a 150K auto-cascade refrigeration system." In Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930561.
Full textNinković, Dimitrije, Uroš Milovančević, Milena Otović, and Vladimir Černicin. "Comparative Analysis of Electric Energy Consumption of Cascade System R134a/CO2 with Single Stage R404a and Two-Stage CO2 Installation." In 50th International HVAC&R Congress and Exhibition. SMEITS, 2020. http://dx.doi.org/10.24094/kghk.019.50.1.287.
Full textRupesh, P. L., J. M. Babu, D. Surryaprakash, and R. D. Misra. "Experimental and computational evaluation of temperature difference of a cascade condenser of R134a-R23 cascade refrigeration system." In 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM). IEEE, 2015. http://dx.doi.org/10.1109/icstm.2015.7225494.
Full text