Academic literature on the topic 'Cascade of turbulent cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cascade of turbulent cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cascade of turbulent cells"
Medina, Socorro, Ellen Sukovich, and Robert A. Houze. "Vertical Structures of Precipitation in Cyclones Crossing the Oregon Cascades." Monthly Weather Review 135, no. 10 (October 1, 2007): 3565–86. http://dx.doi.org/10.1175/mwr3470.1.
Full textBudiarso, Ahmad Indra Siswantara, Steven Darmawan, and Harto Tanujaya. "Inverse-Turbulent Prandtl Number Effects on Reynolds Numbers of RNG k-ε Turbulence Model on Cylindrical-Curved Pipe." Applied Mechanics and Materials 758 (April 2015): 35–44. http://dx.doi.org/10.4028/www.scientific.net/amm.758.35.
Full textHouze, Robert A., and Socorro Medina. "Turbulence as a Mechanism for Orographic Precipitation Enhancement." Journal of the Atmospheric Sciences 62, no. 10 (October 1, 2005): 3599–623. http://dx.doi.org/10.1175/jas3555.1.
Full textPetukhov, E. P., Y. B. Galerkin, and A. F. Rekstin. "A Study of Testing Procedures of Vaned Diffusers of a Centrifugal Compressor Stage in a Virtual Wind Tunnel." Proceedings of Higher Educational Institutions. Маchine Building, no. 8 (713) (August 2019): 51–64. http://dx.doi.org/10.18698/0536-1044-2019-8-51-64.
Full textHwang, C. J., and J. L. Liu. "Inviscid and Viscous Solutions for Airfoil/Cascade Flows Using a Locally Implicit Algorithm on Adaptive Meshes." Journal of Turbomachinery 113, no. 4 (October 1, 1991): 553–60. http://dx.doi.org/10.1115/1.2929114.
Full textYang, Yan-Tao, and Jie-Zhi Wu. "Channel turbulence with spanwise rotation studied using helical wave decomposition." Journal of Fluid Mechanics 692 (December 16, 2011): 137–52. http://dx.doi.org/10.1017/jfm.2011.500.
Full textDay, Steven W., and James C. McDaniel. "PIV Measurements of Flow in a Centrifugal Blood Pump: Steady Flow." Journal of Biomechanical Engineering 127, no. 2 (November 18, 2004): 244–53. http://dx.doi.org/10.1115/1.1865189.
Full textAbhari, R. S., and M. Giles. "A Navier–Stokes Analysis of Airfoils in Oscillating Transonic Cascades for the Prediction of Aerodynamic Damping." Journal of Turbomachinery 119, no. 1 (January 1, 1997): 77–84. http://dx.doi.org/10.1115/1.2841013.
Full textDüben, Peter D., and Peter Korn. "Atmosphere and Ocean Modeling on Grids of Variable Resolution—A 2D Case Study." Monthly Weather Review 142, no. 5 (April 30, 2014): 1997–2017. http://dx.doi.org/10.1175/mwr-d-13-00217.1.
Full textHe, W., R. S. Gioria, J. M. Pérez, and V. Theofilis. "Linear instability of low Reynolds number massively separated flow around three NACA airfoils." Journal of Fluid Mechanics 811 (December 15, 2016): 701–41. http://dx.doi.org/10.1017/jfm.2016.778.
Full textDissertations / Theses on the topic "Cascade of turbulent cells"
Kovaľová, Alžbeta. "Kvantifikace turbulence pomocí ekvivalentního teplotního gradientu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442412.
Full textAlves, Portela Felipe. "Turbulence cascade in an inhomogeneous turbulent flow." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/63233.
Full textCleve, Jochen. "Data-driven theoretical modelling of the turbulent energy cascade." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2004. http://nbn-resolving.de/urn:nbn:de:swb:14-1103125565484-63361.
Full textModelling the turbulent energy cascade gives valuable insight into the dynamics of a turbulent flow. In this work, random multiplicative cascade processes are studied and compared with dissipation time series obtained from various experiments. The emphasis of this comparison is laid on the two-point correlation function because the unavoidable surrogacy of the dissipation field, i.e.the substitution of the multi-component expression by a single component of the velocity signal, corrupts the scaling behaviour of other observables such as integral moments. Finite-size expressions for the two-point correlation function are derived, which make it possible to fit data obtained at moderate or low Reynolds numbers and extract accurate values of scaling exponents. A comprehensive data analysis attempts to determine the free parameters of the cascade generator. The statistics are too limited to claim more than that the cascade generator will be close to having a log-normal distribution. The most basic scaling exponent of the dissipation field is called intermittency exponent and can be used to characterise the data. The investigated data fall into two groups. One set of data obtained from measurements with air show an increasing intermittency exponent with an increasing Reynolds number and saturate for high Reynolds numbers to a value of 0.2. The other set, obtained in a helium jet is best characterised with a constant intermittency exponent of 0.1. The differences are not fully understood. To investigate this issue further, a new construction is suggested, that translates the Kramers-Moyal coefficients of the velocity field into a dissipation field in order to calculate the intermittency exponent from different perspective. Finally, a dynamical generalisation of the cascade process, introduced recently, is tested. The dynamical model makes predictions for point correlation functions. The analytical expressions for three-point correlation functions are compared with their counterparts obtained from experimental data and show remarkable agreement
Kishi, Tatsuro. "Scaling laws for turbulent relative dispersion in two-dimensional energy inverse-cascade turbulence." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263445.
Full textMicklow, Gerald J. "Turbomachinery cascade and wake calculation for two-dimensional compressible laminar and turbulent flow." Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54244.
Full textPh. D.
Wakefield, Bryce Edwin. "Hotwire measurements of the turbulent flow into a cascade of controlled-diffusion compressor blades." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA277297.
Full textTang, Genglin. "Measurements of the Tip-gap Turbulent Flow Structure in a Low-speed Compressor Cascade." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/11178.
Full textPh. D.
Togni, Riccardo. "A numerical study of turbulent Rayleigh-Bénard convection." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/6280/.
Full textLapeyre, Guillaume. "Topologie du mélange dans un fluide turbulent géophysique." Paris 6, 2000. https://hal.archives-ouvertes.fr/tel-01475960.
Full textKahalerras, Henda. "Etude expérimentale de la profondeur de la cascade de l'intermittence." Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10119.
Full textBooks on the topic "Cascade of turbulent cells"
Le, Thuyanh. Regulation of the MAP kinase cascade by ACTH in Y1 adrenal cells. Ottawa: National Library of Canada, 1999.
Find full textRyan, Martyn J. The effect of hydrodynamic stress on plant cell cultures in turbulent jet flows. Dublin: University College Dublin, 1997.
Find full textA, Shibukawa, Yamaguchi M, and United States. National Aeronautics and Space Administration., eds. Monolithic cascade-type solar cells. Washington DC: National Aeronautics and Space Administration, 1986.
Find full textA, Shibukawa, Yamaguchi M, and United States. National Aeronautics and Space Administration., eds. Monolithic cascade-type solar cells. Washington DC: National Aeronautics and Space Administration, 1986.
Find full textA, Shibukawa, Yamaguchi M, and United States. National Aeronautics and Space Administration., eds. Monolithic cascade-type solar cells. Washington DC: National Aeronautics and Space Administration, 1986.
Find full textBlakeslee, E. Tunnel Diode Interconnect Junctions for Cascade Solar Cells. Amer Solar Energy Society, 1985.
Find full textKaragiannis, George S., and Panagiota S. Filippou, eds. Revisiting the Metastatic Cascade: Putting Myeloid Cells Into Context. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88966-467-2.
Full textK, Swartz Clifford, Hart Russell E, and United States. National Aeronautics and Space Administration., eds. Radiation performance of AlGaAs and InGaAs concentrator cells and expected performance of cascade structure. [Washington, DC]: National Aeronautics and Space Administration, 1987.
Find full textModelling of multijunction cascade photovoltaics for space applications. [Cleveland, Ohio?: NASA Lewis Research Center, 1987.
Find full textCenter, Lewis Research, ed. Modelling of multijunction cascade photovoltaics for space applications. [Cleveland, Ohio?: NASA Lewis Research Center, 1987.
Find full textBook chapters on the topic "Cascade of turbulent cells"
Jiménez, Javier, José I. Cardesa, and Adrián Lozano-Durán. "The Turbulence Cascade in Physical Space." In Turbulent Cascades II, 45–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12547-9_6.
Full textFuchs, André, Nico Reinke, Daniel Nickelsen, and Joachim Peinke. "A Rigorous Entropy Law for the Turbulent Cascade." In Turbulent Cascades II, 17–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12547-9_3.
Full textSivashinsky, G. I. "Cascade Model for Turbulent Flame Propagation." In Dissipative Structures in Transport Processes and Combustion, 30–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84230-6_4.
Full textBrandenburg, Axel. "The Inverse Cascade in Turbulent Dynamos." In Dynamo and Dynamics, a Mathematical Challenge, 125–32. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0788-7_15.
Full textGoto, Susumu. "Turbulent energy cascade caused by vortex stretching." In Springer Proceedings in Physics, 269–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03085-7_65.
Full textMelander, M. V., and F. Hussain. "Reconnection of Two Antiparallel Vortex Tubes: A New Cascade Mechanism." In Turbulent Shear Flows 7, 9–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76087-7_2.
Full textCampagne, Antoine, Roumaissa Hassaini, Ivan Redor, Joel Sommeria, and Nicolas Mordant. "The Energy Cascade of Surface Wave Turbulence: Toward Identifying the Active Wave Coupling." In Turbulent Cascades II, 239–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12547-9_25.
Full textGogichaishvili, D., G. Mamatsashvili, G. Chagelishvili, and W. Horton. "Nonlinear Transverse Cascade—A Key Factor of Sustenance of Subcritical Turbulence in Shear Flows." In Turbulent Cascades II, 103–11. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12547-9_12.
Full textCantarella, Laura, Fabrizia Pasquarelli, Agata Spera, Ludmila Martínková, and Maria Cantarella. "Key-Study on the Kinetic Aspects of theIn SituNHase/AMase Cascade System ofM. imperialeResting Cells for Nitrile Bioconversion." In Cascade Biocatalysis, 283–96. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527682492.ch13.
Full textJiménez, Javier. "Self-Similarity and Coherence in the Turbulent Cascade." In IUTAM Symposium on Geometry and Statistics of Turbulence, 57–66. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9638-1_7.
Full textConference papers on the topic "Cascade of turbulent cells"
Tınaztepe, H. Tug˘rul, Ahmet S¸ U¨c¸er, and I˙ Sinan Akamandor. "Performance Evaluation of an Internal Flow Navier-Stokes Solver for Compressible Viscous Flow Simulations." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30681.
Full textMin, Byung-Young, Jongwook Joo, Jomar Mendoza, Jin Lee, Guoping Xia, and Gorazd Medic. "Large-Eddy Simulation of Corner Separation in a Compressor Cascade." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-77144.
Full textBertolini, Ettore, Paul Pieringer, and Wolfgang Sanz. "Large Eddy Simulation of a Transonic Linear Cascade With Synthetic Inlet Turbulence." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14461.
Full textMedic, Gorazd, and Om Sharma. "Large-Eddy Simulation of Flow in a Low-Pressure Turbine Cascade." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68878.
Full textPasinato, Hugo D., Zan Liu, Ramendra P. Roy, W. Jeffrey Howe, and Kyle D. Squires. "Prediction and Measurement of the Flow and Heat Transfer Along the Endwall and Within an Inlet Vane Passage." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30189.
Full textHwang, C. J., and J. L. Liu. "Inviscid and Viscous Solutions for Airfoil/Cascade Flows Using a Locally Implicit Algorithm on Adaptive Meshes." In ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-262.
Full textMovva, Jagadeesh, Dimitrios Papadogiannis, and Stéphane Hiernaux. "Assessment of Wall Modelling for Large Eddy Simulations of Turbomachinery." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75773.
Full textBertolini, Ettore, Paul Pieringer, and Wolfgang Sanz. "Prediction of Separated Flow Transition Using LES and Transitional RANS Model." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90214.
Full textTieghi, Lorenzo, Alessandro Corsini, Giovanni Delibra, and Gino Angelini. "Assessment of a Machine-Learnt Adaptive Wall-Function in a Compressor Cascade With Sinusoidal Leading Edge." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91238.
Full textAbharl, Reza S., and Michael Giles. "A Navier Stokes Analysis of Airfoils in Oscillating Transonic Cascades for the Prediction of Aerodynamic Damping." In ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-182.
Full textReports on the topic "Cascade of turbulent cells"
Yang, Rui Q., Michael B. Santos, and Matthew B. Johnson. Interband Cascade Photovoltaic Cells. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1157586.
Full textEaton, John K., Christopher J. Elkins, and Sayuri D. Yapa. Turbulent Dispersion of Film Coolant and Hot Streaks in a Turbine Vane Cascade. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ada625654.
Full textBirkmire, R. W., B. E. McCandless, and J. E. Phillips. Two-terminal CuInSe/sub 2/-based cascade cells: Annual subcontract report, 16 January 1987--15 January 1988. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/6108038.
Full textCohick, Wendie S. Phosphorylation of Intracellular IGF Binding Protein-3 by the IGF Signaling Cascade is Essential for its Growth-Enhancing Effect in Mammary Epithelial Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada418987.
Full textCohick, Wendie S. Phosphorylation of Intracellular IGF Binding Protein-3 by the IGF Signaling Cascade is Essential for Its Growth-Enhancing Effect in Mammary Epithelial Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada409764.
Full text