Journal articles on the topic 'Cas9-tagging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cas9-tagging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Thöne, Fabian M. B., Nina S. Kurrle, Harald von Melchner, and Frank Schnütgen. "CRISPR/Cas9-mediated generic protein tagging in mammalian cells." Methods 164-165 (July 2019): 59–66. http://dx.doi.org/10.1016/j.ymeth.2019.02.018.
Full textWang, Qiang, and Jeffrey J. Coleman. "CRISPR/Cas9-mediated endogenous gene tagging in Fusarium oxysporum." Fungal Genetics and Biology 126 (May 2019): 17–24. http://dx.doi.org/10.1016/j.fgb.2019.02.002.
Full textLin, Da-Wei, Benjamin P. Chung, Jia-Wei Huang, Xiaorong Wang, Lan Huang, and Peter Kaiser. "Microhomology-based CRISPR tagging tools for protein tracking, purification, and depletion." Journal of Biological Chemistry 294, no. 28 (May 28, 2019): 10877–85. http://dx.doi.org/10.1074/jbc.ra119.008422.
Full textBeneke, Tom, Ulrich Dobramysl, Carolina Moura Costa Catta-Preta, Jeremy Charles Mottram, Eva Gluenz, and Richard Wheeler. "Genome sequence of Leishmania mexicana MNYC/BZ/62/M379 expressing Cas9 and T7 RNA polymerase." Wellcome Open Research 7 (December 5, 2022): 294. http://dx.doi.org/10.12688/wellcomeopenres.18575.1.
Full textBeneke, Tom, Ulrich Dobramysl, Carolina Moura Costa Catta-Preta, Jeremy Charles Mottram, Eva Gluenz, and Richard J. Wheeler. "Genome sequence of Leishmania mexicana MNYC/BZ/62/M379 expressing Cas9 and T7 RNA polymerase." Wellcome Open Research 7 (February 23, 2023): 294. http://dx.doi.org/10.12688/wellcomeopenres.18575.2.
Full textHarazi, A., L. Yakovlev, and S. Mitrani-Rosenbaum. "P.248CRISPR-Cas9 tagging allows the detection of endogenous gne in mice." Neuromuscular Disorders 29 (October 2019): S139. http://dx.doi.org/10.1016/j.nmd.2019.06.362.
Full textLi, Pan, Lijun Zhang, Zhifang Li, Chunlong Xu, Xuguang Du, and Sen Wu. "Cas12a mediates efficient and precise endogenous gene tagging via MITI: microhomology-dependent targeted integrations." Cellular and Molecular Life Sciences 77, no. 19 (December 17, 2019): 3875–84. http://dx.doi.org/10.1007/s00018-019-03396-8.
Full textCalverley, Ben C., Karl E. Kadler, and Adam Pickard. "Dynamic High-Sensitivity Quantitation of Procollagen-I by Endogenous CRISPR-Cas9 NanoLuciferase Tagging." Cells 9, no. 9 (September 10, 2020): 2070. http://dx.doi.org/10.3390/cells9092070.
Full textKovářová, Julie, Markéta Novotná, Joana Faria, Eva Rico, Catriona Wallace, Martin Zoltner, Mark C. Field, and David Horn. "CRISPR/Cas9-based precision tagging of essential genes in bloodstream form African trypanosomes." Molecular and Biochemical Parasitology 249 (May 2022): 111476. http://dx.doi.org/10.1016/j.molbiopara.2022.111476.
Full textBlaeser, Anthony R., Pei Lu, and Qi Long Lu. "347. Tagging FKRP and LARGE by CRISPR/Cas9 for Monitoring Expression and Localization." Molecular Therapy 23 (May 2015): S138. http://dx.doi.org/10.1016/s1525-0016(16)33956-9.
Full textNitika and Andrew W. Truman. "Endogenous epitope tagging of heat shock protein 70 isoform Hsc70 using CRISPR/Cas9." Cell Stress and Chaperones 23, no. 3 (September 24, 2017): 347–55. http://dx.doi.org/10.1007/s12192-017-0845-2.
Full textTorres-Garcia, Sito, Lorenza Di Pompeo, Luke Eivers, Baptiste Gaborieau, Sharon A. White, Alison L. Pidoux, Paulina Kanigowska, Imtiyaz Yaseen, Yizhi Cai, and Robin C. Allshire. "SpEDIT: A fast and efficient CRISPR/Cas9 method for fission yeast." Wellcome Open Research 5 (November 24, 2020): 274. http://dx.doi.org/10.12688/wellcomeopenres.16405.1.
Full textMatsuda, Takahiko, and Izumi Oinuma. "Imaging endogenous synaptic proteins in primary neurons at single-cell resolution using CRISPR/Cas9." Molecular Biology of the Cell 30, no. 22 (October 15, 2019): 2838–55. http://dx.doi.org/10.1091/mbc.e19-04-0223.
Full textRoberts, Brock, Amanda Haupt, Andrew Tucker, Tanya Grancharova, Joy Arakaki, Margaret A. Fuqua, Angelique Nelson, et al. "Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization." Molecular Biology of the Cell 28, no. 21 (October 15, 2017): 2854–74. http://dx.doi.org/10.1091/mbc.e17-03-0209.
Full textMorrow, Christopher S., Tiaira J. Porter, and Darcie L. Moore. "Fluorescent tagging of endogenous proteins with CRISPR/Cas9 in primary mouse neural stem cells." STAR Protocols 2, no. 3 (September 2021): 100744. http://dx.doi.org/10.1016/j.xpro.2021.100744.
Full textLyu, Qing, Vidhi Dhagia, Yu Han, Bing Guo, Mary E. Wines-Samuelson, Christine K. Christie, Qiangzong Yin, et al. "CRISPR-Cas9–Mediated Epitope Tagging Provides Accurate and Versatile Assessment of Myocardin—Brief Report." Arteriosclerosis, Thrombosis, and Vascular Biology 38, no. 9 (September 2018): 2184–90. http://dx.doi.org/10.1161/atvbaha.118.311171.
Full textCheng, Tian-Lin, and Zilong Qiu. "Long non-coding RNA tagging and expression manipulation via CRISPR/Cas9-mediated targeted insertion." Protein & Cell 9, no. 9 (September 5, 2017): 820–25. http://dx.doi.org/10.1007/s13238-017-0464-9.
Full textAoto, Kazushi, Shuji Takabayashi, Hiroki Mutoh, and Hirotomo Saitsu. "Generation of Flag/DYKDDDDK Epitope Tag Knock-In Mice Using i-GONAD Enables Detection of Endogenous CaMKIIα and β Proteins." International Journal of Molecular Sciences 23, no. 19 (October 7, 2022): 11915. http://dx.doi.org/10.3390/ijms231911915.
Full textLi, Weicheng, Yaoyao Zhang, Katy Moffat, Venugopal Nair, and Yongxiu Yao. "V5 and GFP Tagging of Viral Gene pp38 of Marek’s Disease Vaccine Strain CVI988 Using CRISPR/Cas9 Editing." Viruses 14, no. 2 (February 21, 2022): 436. http://dx.doi.org/10.3390/v14020436.
Full textLeonetti, Manuel D., Sayaka Sekine, Daichi Kamiyama, Jonathan S. Weissman, and Bo Huang. "A scalable strategy for high-throughput GFP tagging of endogenous human proteins." Proceedings of the National Academy of Sciences 113, no. 25 (June 6, 2016): E3501—E3508. http://dx.doi.org/10.1073/pnas.1606731113.
Full textWege, Sarah-Maria, Katharina Gejer, Fabienne Becker, Michael Bölker, Johannes Freitag, and Björn Sandrock. "Versatile CRISPR/Cas9 Systems for Genome Editing in Ustilago maydis." Journal of Fungi 7, no. 2 (February 18, 2021): 149. http://dx.doi.org/10.3390/jof7020149.
Full textPapasavva, Panayiota L., Petros Patsali, Constantinos C. Loucari, Ryo Kurita, Yukio Nakamura, Marina Kleanthous, and Carsten W. Lederer. "CRISPR Editing Enables Consequential Tag-Activated MicroRNA-Mediated Endogene Deactivation." International Journal of Molecular Sciences 23, no. 3 (January 19, 2022): 1082. http://dx.doi.org/10.3390/ijms23031082.
Full textLi, Qingyun, Scott Barish, Sumie Okuwa, and Pelin C. Volkan. "Examination of Endogenous Rotund Expression and Function in DevelopingDrosophilaOlfactory System Using CRISPR-Cas9–Mediated Protein Tagging." G3: Genes|Genomes|Genetics 5, no. 12 (October 23, 2015): 2809–16. http://dx.doi.org/10.1534/g3.115.021857.
Full textWillems, Jelmer, Arthur P. H. de Jong, Nicky Scheefhals, Eline Mertens, Lisa A. E. Catsburg, Rogier B. Poorthuis, Fred de Winter, Joost Verhaagen, Frank J. Meye, and Harold D. MacGillavry. "ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons." PLOS Biology 18, no. 4 (April 10, 2020): e3000665. http://dx.doi.org/10.1371/journal.pbio.3000665.
Full textBeneke, Tom, Ross Madden, Laura Makin, Jessica Valli, Jack Sunter, and Eva Gluenz. "A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids." Royal Society Open Science 4, no. 5 (May 2017): 170095. http://dx.doi.org/10.1098/rsos.170095.
Full textHan, Jeong Pil, Yoo Jin Chang, Dong Woo Song, Beom Seok Choi, Ok Jae Koo, Seung Youn Yi, Tae Sub Park, and Su Cheong Yeom. "High Homology-Directed Repair Using Mitosis Phase and Nucleus Localizing Signal." International Journal of Molecular Sciences 21, no. 11 (May 26, 2020): 3747. http://dx.doi.org/10.3390/ijms21113747.
Full textHou, Yuqing, Xi Cheng, and George B. Witman. "Direct in situ protein tagging in Chlamydomonas reinhardtii utilizing TIM, a method for CRISPR/Cas9-based targeted insertional mutagenesis." PLOS ONE 17, no. 12 (December 9, 2022): e0278972. http://dx.doi.org/10.1371/journal.pone.0278972.
Full textMészár, Zoltán, Éva Kókai, Rita Varga, László Ducza, Tamás Papp, Monika Béresová, Marianna Nagy, Péter Szücs, and Angelika Varga. "CRISPR/Cas9-Based Mutagenesis of Histone H3.1 in Spinal Dynorphinergic Neurons Attenuates Thermal Sensitivity in Mice." International Journal of Molecular Sciences 23, no. 6 (March 15, 2022): 3178. http://dx.doi.org/10.3390/ijms23063178.
Full textLander, Noelia, Miguel A. Chiurillo, Melissa Storey, Anibal E. Vercesi, and Roberto Docampo. "CRISPR/Cas9-mediated endogenous C-terminal Tagging ofTrypanosoma cruziGenes Reveals the Acidocalcisome Localization of the Inositol 1,4,5-Trisphosphate Receptor." Journal of Biological Chemistry 291, no. 49 (October 28, 2016): 25505–15. http://dx.doi.org/10.1074/jbc.m116.749655.
Full textKuri, Paola, Nicole L. Schieber, Thomas Thumberger, Joachim Wittbrodt, Yannick Schwab, and Maria Leptin. "Dynamics of in vivo ASC speck formation." Journal of Cell Biology 216, no. 9 (July 12, 2017): 2891–909. http://dx.doi.org/10.1083/jcb.201703103.
Full textThakare, Swapnil S., Navita Bansal, S. Vanchinathan, G. Rama Prashat, Veda Krishnan, Archana Sachdev, Shelly Praveen, and T. Vinutha. "GFP tagging based method to analyze the genome editing efficiency of CRISPR/Cas9-gRNAs through transient expression in N. benthamiana." Journal of Plant Biochemistry and Biotechnology 29, no. 2 (November 15, 2019): 183–92. http://dx.doi.org/10.1007/s13562-019-00540-0.
Full textLeong, Shwee Khuan, Jye-Chian Hsiao, and Jiun-Jie Shie. "A Multiscale Molecular Dynamic Analysis Reveals the Effect of Sialylation on EGFR Clustering in a CRISPR/Cas9-Derived Model." International Journal of Molecular Sciences 23, no. 15 (August 6, 2022): 8754. http://dx.doi.org/10.3390/ijms23158754.
Full textNaeimi Kararoudi, Meisam, Shibi Likhite, Ezgi Elmas, Maura Schwartz, Kinnari Sorathia, Kenta Yamamoto, Nitin Chakravarti, Branden S. Moriarity, Kathrin Meyer, and Dean Anthony Lee. "CD33 Targeting Primary CAR-NK Cells Generated By CRISPR Mediated Gene Insertion Show Enhanced Anti-AML Activity." Blood 136, Supplement 1 (November 5, 2020): 3. http://dx.doi.org/10.1182/blood-2020-142494.
Full textNie, Zheng-Wen, Ying-Jie Niu, Wenjun Zhou, Dong-Jie Zhou, Ju-Yeon Kim, and Xiang-Shun Cui. "AGS3-dependent trans-Golgi network membrane trafficking is essential for compaction in mouse embryos." Journal of Cell Science 133, no. 23 (November 4, 2020): jcs243238. http://dx.doi.org/10.1242/jcs.243238.
Full textDonlin-Asp, Paul G., Claudio Polisseni, Robin Klimek, Alexander Heckel, and Erin M. Schuman. "Differential regulation of local mRNA dynamics and translation following long-term potentiation and depression." Proceedings of the National Academy of Sciences 118, no. 13 (March 26, 2021): e2017578118. http://dx.doi.org/10.1073/pnas.2017578118.
Full textWąchalska, Magda, Małgorzata Graul, Patrique Praest, Rutger D. Luteijn, Aleksandra W. Babnis, Emmanuel J. H. J. Wiertz, Krystyna Bieńkowska-Szewczyk, and Andrea D. Lipińska. "Fluorescent TAP as a Platform for Virus-Induced Degradation of the Antigenic Peptide Transporter." Cells 8, no. 12 (December 7, 2019): 1590. http://dx.doi.org/10.3390/cells8121590.
Full textWall, Richard J., Eva Rico, Iva Lukac, Fabio Zuccotto, Sara Elg, Ian H. Gilbert, Yvonne Freund, et al. "Clinical and veterinary trypanocidal benzoxaboroles target CPSF3." Proceedings of the National Academy of Sciences 115, no. 38 (September 5, 2018): 9616–21. http://dx.doi.org/10.1073/pnas.1807915115.
Full textKöhler, Simone, Michal Wojcik, Ke Xu, and Abby F. Dernburg. "Superresolution microscopy reveals the three-dimensional organization of meiotic chromosome axes in intact Caenorhabditis elegans tissue." Proceedings of the National Academy of Sciences 114, no. 24 (May 30, 2017): E4734—E4743. http://dx.doi.org/10.1073/pnas.1702312114.
Full textRaghuram, Viswanathan, Karim Salhadar, Kavee Limbutara, Euijung Park, Chin-Rang Yang, and Mark A. Knepper. "Protein kinase A catalytic-α and catalytic-β proteins have nonredundant regulatory functions." American Journal of Physiology-Renal Physiology 319, no. 5 (November 1, 2020): F848—F862. http://dx.doi.org/10.1152/ajprenal.00383.2020.
Full textGraustein, Andrew, Elizabeth A. Misch, Munyaradzi Musvosvi, Muki Shey, Javeed Shah, Rick Wells, Willem Hanekom, Mark Hatherill, Thomas Scriba, and Thomas Hawn. "HSP90B1 Regulates TLR-dependent Monocyte Signaling and its Common Variants are Associated with BCG-specific T-cell Responses and Protection from Pediatric TB Disease." Journal of Immunology 196, no. 1_Supplement (May 1, 2016): 200.18. http://dx.doi.org/10.4049/jimmunol.196.supp.200.18.
Full textAlok, Anshu, Hanny Chauhan, Santosh Kumar Upadhyay, Ashutosh Pandey, Jitendra Kumar, and Kashmir Singh. "Compendium of Plant-Specific CRISPR Vectors and Their Technical Advantages." Life 11, no. 10 (September 28, 2021): 1021. http://dx.doi.org/10.3390/life11101021.
Full textAvagyan, Serine, Jonathan E. Henninger, William P. Mannherz, Meeta Mistry, Song P. Yang, Margaret Weber, Jessica Moore, and Leonard I. Zon. "Mosaic Mutagenesis In Vivo Reveals Mutant Blood Stem Cells Intrinsically Resistant to Inflammatory Mediators in Clonal Hematopoiesis." Blood 136, Supplement 1 (November 5, 2020): 27. http://dx.doi.org/10.1182/blood-2020-140903.
Full textPantier, Raphaël, Tülin Tatar, Douglas Colby, and Ian Chambers. "Endogenous epitope-tagging of Tet1, Tet2 and Tet3 identifies TET2 as a naïve pluripotency marker." Life Science Alliance 2, no. 5 (October 2019): e201900516. http://dx.doi.org/10.26508/lsa.201900516.
Full textAvagyan, Serine, Jonathan E. Henninger, William P. Mannherz, Meeta Mistry, Song Yang, Margaret C. Weber, Jessica Moore, and Leonard I. Zon. "Loss of nr4a1 abrogates Fitness of asxl1-mutant Hematopoietic Clones." Blood 138, Supplement 1 (November 5, 2021): 3272. http://dx.doi.org/10.1182/blood-2021-149731.
Full textSnijders, Kirsten E., Anita Fehér, Zsuzsanna Táncos, István Bock, Annamária Téglási, Linda van den Berk, Marije Niemeijer, et al. "Fluorescent tagging of endogenous Heme oxygenase-1 in human induced pluripotent stem cells for high content imaging of oxidative stress in various differentiated lineages." Archives of Toxicology 95, no. 10 (September 4, 2021): 3285–302. http://dx.doi.org/10.1007/s00204-021-03127-8.
Full textKesavan, Gokul, Anja Machate, and Michael Brand. "CRISPR/Cas9-Based Split Fluorescent Protein Tagging." Zebrafish, September 7, 2021. http://dx.doi.org/10.1089/zeb.2021.0031.
Full textDewari, Pooran Singh, Benjamin Southgate, Katrina Mccarten, German Monogarov, Eoghan O'Duibhir, Niall Quinn, Ashley Tyrer, et al. "An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein." eLife 7 (April 11, 2018). http://dx.doi.org/10.7554/elife.35069.
Full textBaker, Oliver, Ashish Gupta, Mandy Obst, Youming Zhang, Konstantinos Anastassiadis, Jun Fu, and A. Francis Stewart. "RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses." Scientific Reports 6, no. 1 (May 24, 2016). http://dx.doi.org/10.1038/srep25529.
Full textLackner, Daniel H., Alexia Carré, Paloma M. Guzzardo, Carina Banning, Ramu Mangena, Tom Henley, Sarah Oberndorfer, et al. "A generic strategy for CRISPR-Cas9-mediated gene tagging." Nature Communications 6, no. 1 (December 2015). http://dx.doi.org/10.1038/ncomms10237.
Full textGutierrez-Triana, Jose Arturo, Tinatini Tavhelidse, Thomas Thumberger, Isabelle Thomas, Beate Wittbrodt, Tanja Kellner, Kerim Anlas, Erika Tsingos, and Joachim Wittbrodt. "Efficient single-copy HDR by 5’ modified long dsDNA donors." eLife 7 (August 29, 2018). http://dx.doi.org/10.7554/elife.39468.
Full text