Academic literature on the topic 'Cartilage structure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cartilage structure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cartilage structure"
Horky, D., and F. Tichy. "Submicroscopic structure of canine articular cartilage." Veterinární Medicína 49, No. 6 (March 29, 2012): 207–16. http://dx.doi.org/10.17221/5697-vetmed.
Full textSchroeder, Walter A., Margaret H. Cooper, and William H. Friedman. "The Histologic Effect of Hypervitaminosis A on Laryngeal Cartilages." Otolaryngology–Head and Neck Surgery 96, no. 6 (June 1987): 533–37. http://dx.doi.org/10.1177/019459988709600602.
Full textLi, Xue, Jin Duo Ye, Chun Qui Zhang, Qian Qian Tian, Xian Kang Wang, and Li Min Dong. "Numerical Simulation about Stretching Process in Different Layers of Cartilage." Applied Mechanics and Materials 441 (December 2013): 480–83. http://dx.doi.org/10.4028/www.scientific.net/amm.441.480.
Full textBecerra, José, José A. Andrades, Enrique Guerado, Plácido Zamora-Navas, José M. López-Puertas, and A. Hari Reddi. "Articular Cartilage: Structure and Regeneration." Tissue Engineering Part B: Reviews 16, no. 6 (December 2010): 617–27. http://dx.doi.org/10.1089/ten.teb.2010.0191.
Full textCovizi, D. Z., and H. F. Carvalho. "Aggrecan structure in amphibian cartilage." Brazilian Journal of Medical and Biological Research 33, no. 12 (December 2000): 1403–12. http://dx.doi.org/10.1590/s0100-879x2000001200002.
Full textYi, Hee-Gyeong, Yeong-Jin Choi, Jin Woo Jung, Jinah Jang, Tae-Ha Song, Suhun Chae, Minjun Ahn, Tae Hyun Choi, Jong-Won Rhie, and Dong-Woo Cho. "Three-dimensional printing of a patient-specific engineered nasal cartilage for augmentative rhinoplasty." Journal of Tissue Engineering 10 (January 2019): 204173141882479. http://dx.doi.org/10.1177/2041731418824797.
Full textHorkay, Ferenc, Peter J. Basser, Anne-Marie Hecht, and Erik Geissler. "Cartilage: Multiscale Structure and Biomechanical Properties." MRS Advances 1, no. 8 (2016): 509–19. http://dx.doi.org/10.1557/adv.2016.184.
Full textCHEN, JING, CHUNGEN GUO, HONGSHENG LI, XIAOQIN ZHU, SHUYUAN XIONG, and JIANXIN CHEN. "NONLINEAR SPECTRAL IMAGING OF ELASTIC CARTILAGE IN RABBIT EARS." Journal of Innovative Optical Health Sciences 06, no. 03 (July 2013): 1350024. http://dx.doi.org/10.1142/s1793545813500247.
Full textLawrence, Elizabeth Anna, Jessye Aggleton, Jack van Loon, Josepha Godivier, Robert Harniman, Jiaxin Pei, Niamh Nowlan, and Chrissy Hammond. "Exposure to hypergravity during zebrafish development alters cartilage material properties and strain distribution." Bone & Joint Research 10, no. 2 (February 1, 2021): 137–48. http://dx.doi.org/10.1302/2046-3758.102.bjr-2020-0239.r1.
Full textMüller, Andreas, and Friedrich P. Paulsen. "Impact of Vocal Cord Paralysis on Cricoarytenoid Joint." Annals of Otology, Rhinology & Laryngology 111, no. 10 (October 2002): 896–901. http://dx.doi.org/10.1177/000348940211101006.
Full textDissertations / Theses on the topic "Cartilage structure"
Bont, Lambert G. M. de. "Temoromandibular joint articular cartilage structure and function." Groningen : Rijksuniversiteit, 1985. http://catalog.hathitrust.org/api/volumes/oclc/38175470.html.
Full textChang, Douglas G. "Structure and function relationships of articular cartilage in osteoarthritis /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p9930892.
Full textWhittaker, Katharina Anna. "Ion transport by isolated bovine articular chondroyctes." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316916.
Full textKwan, A. P. L. "Studies on collagen type X from embryonic chick cartilage : Structure and immunology." Thesis, University of Manchester, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377665.
Full textMcalinden, Audrey. "Structure and biosynthesis of proteoglycans and non-collagenous proteins in human meniscus." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287395.
Full textMas, Vinyals Anna. "New design proposal to mimic the joint structure between bone and hyaline cartilage." Doctoral thesis, Universitat Ramon Llull, 2018. http://hdl.handle.net/10803/664480.
Full textEn el diseño de dispositivos médicos existen numerosos casos en los que es necesaria la utilización de superficies bioactivas para lograr la integración óptima de un implante con el tejido que le rodea. La ingeniería de superficies propone diferentes soluciones, sin embargo, en determinadas aplicaciones, la obtención de una unión íntima entre el tejido y el implante aún es un reto clínico. En el presente trabajo, presentamos una técnica que permite la obtención de superficies biomiméticas en cualquier sustrato que pueda ser sometido a modificación por plasma. Como prueba de concepto, hemos aplicado la tecnología desarrollada en la obtención de un scaffold heterogéneo para la regeneración del tejido osteocondral, con un gran potencial para ser usado como terapia regenerativa. Uno de los grandes retos en la regeneración osteocondral, es lograr un grado elevado de semejanza con la estructura articular, desde el hueso subcondral hasta la superficie articular. Nuestra metodología permite la inmovilización de un hidrogel que imita el tejido cartilaginoso en la superficie de una plataforma bioceràmica, la cual reproduce el hueso. Ésta última, actuará como soporte mecánico y punto de anclaje al hueso subcondral, a la vez que proporcionará un reservorio de iones de calcio y fosfato que ayudarán en la creación del gradiente de dureza presente en las articulaciones. Así pues, en esta tesis hemos trabajado en el diseño de las diferentes partes que conformaran el scaffold. En primer lugar, para profundizar en la creación del gradiente de dureza, hemos estudiado la bioactividad de diferentes sustitutos óseos biocerámicos comerciales, los cuales son candidatos potenciales para ser utilizados en la construcción del scaffold. A continuación, hemos validado la viabilidad del recubrimiento polimérico obtenido por PECVD en sustratos biocerámicos y hemos demostrado como no compromete su bioactividad. Además, hemos demostrado como la modificación superficial permite la obtención de una interfaz estable, que no se altera por cambios fisiológicos, la cual permite el autoensamblaje del hidrogel. Los estudios in vitro realizados demuestran que la tecnología de inmovilización preserva la viabilidad celular, y que la formulación permite la migración celular además de proporcionar un entorno adecuado para la diferenciación condrogénica y osteogénica de células madre mesenquimales.
In medical device engineering, there are several cases where there is an imperative need of obtaining bioresponsive surfaces to achieve an optimal integration of a certain biomaterial with the surrounding tissue. Surface engineering has provided different approaches, however for certain applications obtaining an intimate bonding between the tissue and the implant remains a clinical challenge. In this work, we present a newly developed technique that allows the obtention of biomimetic surfaces onto any substrate that can be subject to plasma modification. As a proof of concept, we have applied the technology to obtain a heterogeneous scaffold for osteochondral repair, which has a great potential to be used as regenerative therapy. One of the great challenges in osteochondral repair is achieving a high degree of mimicry of the whole joint structure, from the subchondral bone to the surface of hyaline cartilage. Our methodology allows the immobilization of a cartilage-like hydrogel onto a bone-like bioceramic platform by means of a polymeric coating. The bioceramic acts not only as mechanical support and anchoring point to the subchondral bone, but also it acts as a reservoir of calcium and phosphate ions, which through diffusion help in the creation of the stiffness gradient present in joints. Thus, in the present thesis, we have worked on the design of the different parts that will form the osteochondral heterogeneous scaffold. First, to gain insight into the stiffness gradient creation, we have studied the bioactivity of different commercially available bioceramic bone substitutes, which are potential candidates to be used as bone-like platform. Next, we have validated the viability of the polymeric coating obtained through PECVD in this type of biomaterials and shown how it does not compromise their bioactive properties. Moreover, we have demonstrated how the designed surface modification allows the obtention of a stable interface, which is not disrupted by physiological changes, that enables the subsequent self-assembly of a cartilage-like hydrogel. In vitro studies show how our immobilizing technology preserves cell viability, and that our hydrogel formulation enables cell migration as well as it provides a suitable environment for both chondrogenic and osteogenic differentiation of mesenchymal stem cells.
Bader, Daniel Lawrence. "The relationship between the mechanical properties and structure of adult human articular cartilage." Thesis, University of Southampton, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359730.
Full textSeyfried, Nicholas T. "The structure and function of hyaluronan-binding proteins in extracellular matrix assembly." Thesis, University of Oxford, 2004. http://ora.ox.ac.uk/objects/uuid:e1a2cf8f-7ac7-4c5a-bd3f-53d7653e8888.
Full textChevalier, Xavier. "Rôle des glycoprotéines de structure dans les pathologies du cartilageArthrose et polyarthrite rhumatoïde." Paris 12, 1993. http://www.theses.fr/1993PA120067.
Full textFlannelly, Joanne Katherine-Mary. "The regulation of proteoglycan structure and turnover in porcine articular cartilage by cytokines and growth factors." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338688.
Full textBooks on the topic "Cartilage structure"
name, No. Daniel's knee injuries: Ligament and cartilage structure, function, injury, and repair. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2003.
Find full text(Editor), Robert A. Pedowitz, John J. O'Connor (Editor), and Wayne H. Akeson (Editor), eds. Daniel's Knee Injuries: Ligament and Cartilage Structure, Function, Injury, and Repair. 2nd ed. Lippincott Williams & Wilkins, 2003.
Find full text1939-, Daniel Dale M., Pedowitz Robert A, O'Connor John J. 1934-, and Akeson Wayne H. 1928-, eds. Daniel's knee injuries: Ligament and cartilage : structure, function, injury, and repair. Philadelphia: Lippincott Williams & Wilkins, 2003.
Find full textInvestigations of the structure and function of chondroitin sulfate proteoglycan in chick brain and cartilage. 1989.
Find full textPap, Thomas, Adelheid Korb, Marianne Heitzmann, and Jessica Bertrand. Joint biochemistry. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0056.
Full textGoldring, Steven R. Pathophysiology of periarticular bone changes in osteoarthritis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199668847.003.0005.
Full textNaqui, Zaf, and David Warwick. Bone and joint injuries of the wrist and forearm. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198757689.003.0004.
Full textArmstrong, Leslie Ann. The development of the adult piston cartilege and the structure of the trabascular and branchial cartileges in "Petromyzon marinus L.": an ultrastructural study. 1987.
Find full textGrassi, Walter, Tadashi Okano, and Emilio Filippucci. Ultrasound in osteoarthritis and crystal-related arthropathies. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199668847.003.0017.
Full textHayashi, Daichi, Ali Guermazi, and Frank W. Roemer. Radiography and computed tomography imaging of osteoarthritis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199668847.003.0016.
Full textBook chapters on the topic "Cartilage structure"
Baumann, Charles A., Betina B. Hinckel, Chantelle C. Bozynski, and Jack Farr. "Articular Cartilage: Structure and Restoration." In Joint Preservation of the Knee, 3–24. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01491-9_1.
Full textGahunia, Harpal K., and Kenneth P. H. Pritzker. "Structure and Function of Articular Cartilage." In Articular Cartilage of the Knee, 3–70. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4939-7587-7_1.
Full textHu, Jerry C. Y., and Kyriacos A. Athanasiou. "Structure and Function of Articular Cartilage." In Handbook of Histology Methods for Bone and Cartilage, 73–95. Totowa, NJ: Humana Press, 2003. http://dx.doi.org/10.1007/978-1-59259-417-7_4.
Full textChappell, Karyn E., Ashley A. Williams, and Constance R. Chu. "Quantitative Magnetic Resonance Imaging of Articular Cartilage Structure and Biology." In Cartilage Injury of the Knee, 37–50. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78051-7_4.
Full textSteiniche, Torben, and Ellen M. Hauge. "Normal Structure and Function of Bone." In Handbook of Histology Methods for Bone and Cartilage, 59–72. Totowa, NJ: Humana Press, 2003. http://dx.doi.org/10.1007/978-1-59259-417-7_3.
Full textWalsh, William R., Mark Walton, Warwick Bruce, Yan Yu, Ronald M. Gillies, and Martin Svehla. "Cell Structure and Biology of Bone and Cartilage." In Handbook of Histology Methods for Bone and Cartilage, 35–58. Totowa, NJ: Humana Press, 2003. http://dx.doi.org/10.1007/978-1-59259-417-7_2.
Full textWojnar, Ryszard. "Bone and Cartilage - its Structure and Physical Properties." In Biomechanics of Hard Tissues, 1–75. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632732.ch1.
Full textNagase, Hideaki, and Gillian Murphy. "Metalloproteinases in Cartilage Matrix Breakdown: The Roles in Rheumatoid Arthritis and Osteoarthritis." In Proteases: Structure and Function, 433–69. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-7091-0885-7_13.
Full textThonar, E. J. M. A., K. Masuda, D. H. Manicourt, and K. E. Kuettner. "Structure and Function of Normal Human Adult Articular Cartilage." In Osteoarthritis, 1–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60026-5_1.
Full textAmprino, Rodolfo. "Uptake of 35S in the Differentiation and Growth of Cartilage and Bone." In Ciba Foundation Symposium - Bone Structure and Metabolism, 89–102. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470715222.ch8.
Full textConference papers on the topic "Cartilage structure"
Blum, Michelle M., and Timothy C. Ovaert. "Synthesis and Characterization of Boundary Lubricant-Functionalized PVA Gels for Biotribological Applications." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19281.
Full textLi, Anlin, and Shuangli Xiong. "Preparation and Structure Analysis of Chondroitin Sulfate from Pig Laryngeal Cartilage." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5515812.
Full textLi, Xing D., Jurgen Herrmann, Ravi K. Ghanta, Constantinos Pitris, Wolfgang Drexler, Christine Jesser, Debra L. Stamper, et al. "OCT imaging of osteoarthritic cartilage: structure, polarization sensitivity, and clinical feasibility." In BiOS '99 International Biomedical Optics Symposium, edited by Valery V. Tuchin and Joseph A. Izatt. SPIE, 1999. http://dx.doi.org/10.1117/12.347484.
Full textHradilova, Jana, Martin Schone, Kay Raum, Vassiliki T. Potsika, Dimitrios I. Fotiadis, and Demosthenes Polyzos. "Numerical simulation of high-frequency ultrasound scattering on articular cartilage cellular structure." In 2015 6th European Symposium on Ultrasonic Characterization of Bone (ESUCB). IEEE, 2015. http://dx.doi.org/10.1109/esucb.2015.7169913.
Full textBevill, Scott L., Ashvin Thambyah, and Neil D. Broom. "Altered Micromechanical Function Precedes Overt Surface Roughening in Early Cartilage Degeneration." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53139.
Full textChen, Howard, and Ibrahim T. Ozbolat. "Development of a Multi-Arm Bioprinter for Hybrid Tissue Engineering." In ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1025.
Full textMotavalli, Mostafa, Chen-Yuan Chung, Mark Schluchter, and Joseph M. Mansour. "A Continuous Shear Deflection Function for Articular Cartilage." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80146.
Full textPalomares, Kristy T. S., Thomas A. Einhorn, Louis C. Gerstenfeld, and Elise F. Morgan. "Hyaline Characteristics of Mechanically Induced Cartilaginous Tissues." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176519.
Full textVahdati, Ali, and Diane R. Wagner. "Influence of Calcified Cartilage Zone Permeability in Mechanical Behavior of Articular Cartilage: A Finite Element Study." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206512.
Full textBonnevie, Edward D., Laura Barito, Matthew Aldridge, Liyun Wang, David L. Burris, and X. Lucas Lu. "Frictional Coefficient of TMJ Disc and Condylar Cartilage." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80643.
Full textReports on the topic "Cartilage structure"
Riveros, Guillermo, Felipe Acosta, Reena Patel, and Wayne Hodo. Computational mechanics of the paddlefish rostrum. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41860.
Full text