Journal articles on the topic 'Cartan's moving frames'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 26 journal articles for your research on the topic 'Cartan's moving frames.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kogan, Irina A. "Two Algorithms for a Moving Frame Construction." Canadian Journal of Mathematics 55, no. 2 (April 1, 2003): 266–91. http://dx.doi.org/10.4153/cjm-2003-013-2.
Full textYavari, Arash, and Alain Goriely. "The geometry of discombinations and its applications to semi-inverse problems in anelasticity." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2169 (September 8, 2014): 20140403. http://dx.doi.org/10.1098/rspa.2014.0403.
Full textYavari, Arash, and Alain Goriely. "Weyl geometry and the nonlinear mechanics of distributed point defects." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, no. 2148 (September 5, 2012): 3902–22. http://dx.doi.org/10.1098/rspa.2012.0342.
Full textPolyakova, K. V. "On some extension of the second order tangent space for a smooth manifold." Differential Geometry of Manifolds of Figures, no. 53 (2022): 94–111. http://dx.doi.org/10.5922/0321-4796-2022-53-9.
Full textUshakov, Vitaly. "Developable surfaces in Euclidean space." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 66, no. 3 (June 1999): 388–402. http://dx.doi.org/10.1017/s1446788700036685.
Full textBracken, Paul. "Delaunay surfaces expressed in terms of a Cartan moving frame." Journal of Applied Analysis 26, no. 1 (June 1, 2020): 153–60. http://dx.doi.org/10.1515/jaa-2020-2012.
Full textVargas, José G., and Douglas G. Torr. "Finslerian structures: The Cartan–Clifton method of the moving frame." Journal of Mathematical Physics 34, no. 10 (October 1993): 4898–913. http://dx.doi.org/10.1063/1.530331.
Full textASADI, E., and J. A. SANDERS. "INTEGRABLE SYSTEMS IN SYMPLECTIC GEOMETRY." Glasgow Mathematical Journal 51, A (February 2009): 5–23. http://dx.doi.org/10.1017/s0017089508004746.
Full textDhas, Bensingh, Jamun Kumar N., Debasish Roy, and J. N. Reddy. "A mixed variational principle in nonlinear elasticity using Cartan’s moving frames and implementation with finite element exterior calculus." Computer Methods in Applied Mechanics and Engineering 393 (April 2022): 114756. http://dx.doi.org/10.1016/j.cma.2022.114756.
Full textFERNÁNDEZ, V. V., A. M. MOYA, and W. A. RODRIGUES. "GEOMETRIC AND EXTENSOR ALGEBRAS AND THE DIFFERENTIAL GEOMETRY OF ARBITRARY MANIFOLDS." International Journal of Geometric Methods in Modern Physics 04, no. 07 (November 2007): 1117–58. http://dx.doi.org/10.1142/s0219887807002478.
Full textEvtushik, L. E. "Cartan connections and Kawaguchi geometry of spaces obtained by the moving Frame method." Journal of Mathematical Sciences 89, no. 3 (April 1998): 1279–300. http://dx.doi.org/10.1007/bf02414872.
Full textRaffaelli, Matteo, Jakob Bohr, and Steen Markvorsen. "Cartan ribbonization and a topological inspection." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, no. 2220 (December 2018): 20170389. http://dx.doi.org/10.1098/rspa.2017.0389.
Full textCERCHIAI, B. L., J. MADORE, and G. FIORE. "FRAME FORMALISM FOR THE N-DIMENSIONAL QUANTUM EUCLIDEAN SPACES." International Journal of Modern Physics B 14, no. 22n23 (September 20, 2000): 2305–14. http://dx.doi.org/10.1142/s0217979200001849.
Full textImpelluso, Thomas J. "The moving frame method in dynamics: Reforming a curriculum and assessment." International Journal of Mechanical Engineering Education 46, no. 2 (August 30, 2017): 158–91. http://dx.doi.org/10.1177/0306419017730633.
Full textYANG, YUN, and YANHUA YU. "AFFINE MAURER–CARTAN INVARIANTS AND THEIR APPLICATIONS IN SELF-AFFINE FRACTALS." Fractals 26, no. 04 (August 2018): 1850057. http://dx.doi.org/10.1142/s0218348x18500573.
Full textVACARU, SERGIU I. "FINSLER AND LAGRANGE GEOMETRIES IN EINSTEIN AND STRING GRAVITY." International Journal of Geometric Methods in Modern Physics 05, no. 04 (June 2008): 473–511. http://dx.doi.org/10.1142/s0219887808002898.
Full textBelova, Е., and O. Belova. "About an analogue of Neifeld’s connection on the space of centred planes with one-index basic-fibre forms." Differential Geometry of Manifolds of Figures, no. 50 (2019): 41–47. http://dx.doi.org/10.5922/0321-4796-2019-50-6.
Full textAlexander Jacobsen Jardim, Paulo, Jan Tore Rein, Øystein Haveland, Thorstein R. Rykkje, and Thomas J. Impelluso. "Modeling Crane-Induced Ship Motion Using the Moving Frame Method." Journal of Offshore Mechanics and Arctic Engineering 141, no. 5 (February 18, 2019). http://dx.doi.org/10.1115/1.4042536.
Full textCoiffier, Guillaume, and Etienne Corman. "The Method of Moving Frames for Surface Global Parametrization." ACM Transactions on Graphics, June 10, 2023. http://dx.doi.org/10.1145/3604282.
Full textN., Jamun Kumar, Bensingh Dhas, Arun R. Srinivasa, J. N. Reddy, and Debasish Roy. "A novel four-field mixed FE approximation for Kirchhoff rods using Cartan’s moving frames." Computer Methods in Applied Mechanics and Engineering, May 2022, 115094. http://dx.doi.org/10.1016/j.cma.2022.115094.
Full textArbind, A., A. R. Srinivasa, and J. N. Reddy. "A Higher-Order Theory for Open and Closed Curved Rods and Tubes Using a Novel Curvilinear Cylindrical Coordinate System." Journal of Applied Mechanics 85, no. 9 (June 14, 2018). http://dx.doi.org/10.1115/1.4040335.
Full textErdoğdu, Melek, and Ayşe Yavuz. "On Backlund transformation and motion of null Cartan curves." International Journal of Geometric Methods in Modern Physics 19, no. 01 (November 18, 2021). http://dx.doi.org/10.1142/s0219887822500141.
Full textFlatlandsmo, Josef, Torbjørn Smith, Ørjan O. Halvorsen, and Thomas J. Impelluso. "Modeling Stabilization of Crane-Induced Ship Motion With Gyroscopic Control Using the Moving Frame Method." Journal of Computational and Nonlinear Dynamics 14, no. 3 (January 18, 2019). http://dx.doi.org/10.1115/1.4042323.
Full textMurakami, Hidenori. "Development of an Active Curved Beam Model—Part I: Kinematics and Integrability Conditions." Journal of Applied Mechanics 84, no. 6 (April 18, 2017). http://dx.doi.org/10.1115/1.4036308.
Full textMurakami, Hidenori. "Development of an Active Curved Beam Model—Part II: Kinetics and Internal Activation." Journal of Applied Mechanics 84, no. 6 (April 18, 2017). http://dx.doi.org/10.1115/1.4036317.
Full textБубякин, И. В. "MIXED MULTISCALE FINITE ELEMENT METHOD FOR PROBLEMS IN PERFORATED MEDIA WITH INHOMOGENEOUS." Журнал «Математические заметки СВФУ», no. 4 (March 23, 2018). http://dx.doi.org/10.25587/svfu.2018.4.11312.
Full text