Journal articles on the topic 'Carrier capture'

To see the other types of publications on this topic, follow the link: Carrier capture.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Carrier capture.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Raghunandan, A., and J. Andrus. "What's captured in Binocular Capture: Envelope or carrier?" Journal of Vision 12, no. 9 (August 10, 2012): 220. http://dx.doi.org/10.1167/12.9.220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Sunghyun, Samantha Hood, Puck van Gerwen, Lucy Whalley, and Aron Walsh. "CarrierCapture.jl: Anharmonic Carrier Capture." Journal of Open Source Software 5, no. 47 (March 12, 2020): 2102. http://dx.doi.org/10.21105/joss.02102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pons, D., and J. C. Bourgoin. "Carrier hopping capture in semiconductors." Physical Review B 43, no. 14 (May 15, 1991): 11840–49. http://dx.doi.org/10.1103/physrevb.43.11840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Deveaud, B., A. Chomette, D. Morris, and A. Regreny. "Carrier capture in quantum wells." Solid State Communications 85, no. 4 (January 1993): 367–71. http://dx.doi.org/10.1016/0038-1098(93)90034-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Blom, P. W. M., J. E. M. Haverkort, P. J. van Hall, and J. H. Wolter. "Carrier‐carrier scattering induced capture in quantum well lasers." Applied Physics Letters 62, no. 13 (March 29, 1993): 1490–92. http://dx.doi.org/10.1063/1.108668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rosati, R., F. Lengers, D. E. Reiter, and T. Kuhn. "Effective detection of spatio-temporal carrier dynamics by carrier capture." Journal of Physics: Condensed Matter 31, no. 28 (April 26, 2019): 28LT01. http://dx.doi.org/10.1088/1361-648x/ab17a8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mansour, N. S., Yu M. Sirenko, K. W. Kim, M. A. Littlejohn, J. Wang, and J. P. Leburton. "Carrier capture in cylindrical quantum wires." Applied Physics Letters 67, no. 23 (December 4, 1995): 3480–82. http://dx.doi.org/10.1063/1.115253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Munoz, E., and Enrique Calleja. "Carrier Capture Processes at DX Centers." Solid State Phenomena 10 (January 1991): 99–120. http://dx.doi.org/10.4028/www.scientific.net/ssp.10.99.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kersting, R., R. Schwedler, K. Wolter, K. Leo, and H. Kurz. "Dynamics of carrier transport and carrier capture inIn1−xGaxAs/InP heterostructures." Physical Review B 46, no. 3 (July 15, 1992): 1639–48. http://dx.doi.org/10.1103/physrevb.46.1639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bourgoin, J. C., and M. Zazoui. "Carrier capture on defects in multiband semiconductors." Physical Review B 45, no. 19 (May 15, 1992): 11324–27. http://dx.doi.org/10.1103/physrevb.45.11324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Blom, P. W. M., C. Smit, J. E. M. Haverkort, and J. H. Wolter. "Carrier capture into a semiconductor quantum well." Physical Review B 47, no. 4 (January 15, 1993): 2072–81. http://dx.doi.org/10.1103/physrevb.47.2072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Stehr, D., C. M. Morris, D. Talbayev, M. Wagner, H. C. Kim, A. J. Taylor, H. Schneider, P. M. Petroff, and M. S. Sherwin. "Ultrafast carrier capture in InGaAs quantum posts." Applied Physics Letters 95, no. 25 (December 21, 2009): 251105. http://dx.doi.org/10.1063/1.3275666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Preisel, Michael, Jesper Mo/rk, and Hartmut Haug. "Calculation of Coulomb-mediated carrier-capture times." Physical Review B 49, no. 20 (May 15, 1994): 14478–85. http://dx.doi.org/10.1103/physrevb.49.14478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Brum, J. A., and G. Bastard. "Resonant carrier capture by semiconductor quantum wells." Physical Review B 33, no. 2 (January 15, 1986): 1420–23. http://dx.doi.org/10.1103/physrevb.33.1420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Binet, F., J. Y. Duboz, C. Grattepain, F. Scholz, and J. Off. "Carrier capture in InGaN quantum wells and hot carrier effects in GaN." Materials Science and Engineering: B 59, no. 1-3 (May 1999): 323–29. http://dx.doi.org/10.1016/s0921-5107(98)00376-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sun, K. W., J. W. Chen, B. C. Lee, C. P. Lee, and A. M. Kechiantz. "Carrier capture and relaxation in InAs quantum dots." Nanotechnology 16, no. 9 (June 29, 2005): 1530–35. http://dx.doi.org/10.1088/0957-4484/16/9/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Preisel, Michael, and Jesper Mo/rk. "Phonon‐mediated carrier capture in quantum well lasers." Journal of Applied Physics 76, no. 3 (August 1994): 1691–96. http://dx.doi.org/10.1063/1.358514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Brübach, J., A. Yu Silov, J. E. M. Haverkort, W. van der Vleuten, and J. H. Wolter. "Carrier capture in ultrathin InAs/GaAs quantum wells." Physical Review B 61, no. 24 (June 15, 2000): 16833–40. http://dx.doi.org/10.1103/physrevb.61.16833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rotariu, O., N. J. C. Strachan, and V. Bădescu. "Modelling of microorganisms capture on magnetic carrier particles." Journal of Magnetism and Magnetic Materials 252 (November 2002): 390–92. http://dx.doi.org/10.1016/s0304-8853(02)00707-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sun, K. W., and A. Kechiantz. "Ultrafast carrier capture in charged InAs quantum dots." Journal of Non-Crystalline Solids 352, no. 23-25 (July 2006): 2355–59. http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Prins, F. E., G. Lehr, E. M. Fröhlich, H. Schweizer, A. Forchel, and J. Straka. "Polarization effects and carrier capture in quantum wires." Superlattices and Microstructures 11, no. 3 (January 1992): 321–23. http://dx.doi.org/10.1016/0749-6036(92)90390-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Piwonski, T., I. O’Driscoll, J. Houlihan, G. Huyet, R. J. Manning, and A. V. Uskov. "Carrier capture dynamics of InAs∕GaAs quantum dots." Applied Physics Letters 90, no. 12 (March 19, 2007): 122108. http://dx.doi.org/10.1063/1.2715115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Davis, L., Y. L. Lam, Y. C. Chen, J. Singh, and P. K. Bhattacharya. "Carrier capture and relaxation in narrow quantum wells." IEEE Journal of Quantum Electronics 30, no. 11 (1994): 2560–64. http://dx.doi.org/10.1109/3.333707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Christen, J., E. Kapon, M. Grundmann, D. M. Hwang, M. Joschko, and D. Bimberg. "1D Charge Carrier Dynamics in GaAs Quantum Wires Carrier Capture, Relaxation, and Recombination." physica status solidi (b) 173, no. 1 (September 1, 1992): 307–21. http://dx.doi.org/10.1002/pssb.2221730130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

REGISTER, LEONARD F. "CARRIER CAPTURE IN SEMICONDUCTOR QUANTUM WELL LASERS: A QUANTUM TRANSPORT ANALYSIS." International Journal of High Speed Electronics and Systems 09, no. 04 (December 1998): 1211–33. http://dx.doi.org/10.1142/s0129156498000476.

Full text
Abstract:
A quantum transport-based analysis of the essential physics of carrier capture in semiconductor quantum wells is presented. First, the past progression of models of carrier capture by quantum wells is briefly reviewed. Then carrier capture is modeled using the Schrödinger Equation Monte Carlo (SEMC) quantum transport simulator. In addition to reproducing familiar effects, these simulations exhibit significant effects associated with partial phase-coherence of the carrier wave-function across the well which cannot be modeled via classical or perturbative Golden Rule calculations, and address fundamental transport limitations often overlooked in Golden Rule calculations. However, this analysis also points to simple changes that could significantly improve, although not perfect, the treatment of carrier capture via these latter more conventional approaches.
APA, Harvard, Vancouver, ISO, and other styles
26

Bimberg, D., H. Münzel, A. Steckenborn, and J. Christen. "Kinetics of relaxation and recombination of nonequilibrium carriers in GaAs: Carrier capture by impurities." Physical Review B 31, no. 12 (June 15, 1985): 7788–99. http://dx.doi.org/10.1103/physrevb.31.7788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Uskov, A. V., I. Magnusdottir, B. Tromborg, J. Mo/rk, and R. Lang. "Line broadening caused by Coulomb carrier–carrier correlations and dynamics of carrier capture and emission in quantum dots." Applied Physics Letters 79, no. 11 (September 10, 2001): 1679–81. http://dx.doi.org/10.1063/1.1401778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yassievich, I. N., and A. A. Pakhomov. "Multiphonon Carrier Emission and Capture by Defects in Nanostructures." Materials Science Forum 196-201 (November 1995): 491–96. http://dx.doi.org/10.4028/www.scientific.net/msf.196-201.491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mansour, N. S., Yu M. Sirenko, K. W. Kim, M. A. Littlejohn, and M. A. Stroscio. "Carrier capture in quantum well embedded quantum wire structures." Applied Physics Letters 69, no. 3 (July 15, 1996): 360–62. http://dx.doi.org/10.1063/1.118060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chin-Yi Tsai, L. F. Eastman, Yu-Hwa Lo, and Chin-Yao Tsai. "Carrier capture and escape in multisubband quantum well lasers." IEEE Photonics Technology Letters 6, no. 9 (September 1994): 1088–90. http://dx.doi.org/10.1109/68.324677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Brum, J. A., and G. Bastard. "Direct and indirect carrier capture by semiconductor quantum wells." Superlattices and Microstructures 3, no. 1 (January 1987): 51–55. http://dx.doi.org/10.1016/0749-6036(87)90177-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Blom, P. W. M., J. Claes, J. E. M. Haverkort, and J. H. Wolter. "Experimental and theoretical study of the carrier capture time." Optical and Quantum Electronics 26, no. 7 (July 1994): S667—S677. http://dx.doi.org/10.1007/bf00326654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Narvaez, Gustavo A., Maria Carolina de O. Aguiar, and José A. Brum. "Carrier capture time in T-shaped semiconductor quantum wires." Physica E: Low-dimensional Systems and Nanostructures 2, no. 1-4 (July 1998): 983–86. http://dx.doi.org/10.1016/s1386-9477(98)00202-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Dneprovskii, V. S., E. A. Zhukov, O. A. Shalygina, V. P. Evtikhiev, and V. P. Kochereshko. "Carrier capture and recombination in CdSe/ZnSe quantum dots." Journal of Experimental and Theoretical Physics 98, no. 1 (January 2004): 156–61. http://dx.doi.org/10.1134/1.1648109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kim, Sunghyun, Ji-Sang Park, Samantha N. Hood, and Aron Walsh. "Lone-pair effect on carrier capture in Cu2ZnSnS4solar cells." Journal of Materials Chemistry A 7, no. 6 (2019): 2686–93. http://dx.doi.org/10.1039/c8ta10130b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Smith, J. M., P. A. Dalgarno, B. Urbaszek, E. J. McGhee, G. S. Buller, G. J. Nott, R. J. Warburton, J. M. Garcia, W. Schoenfeld, and P. M. Petroff. "Carrier storage and capture dynamics in quantum-dot heterostructures." Applied Physics Letters 82, no. 21 (May 26, 2003): 3761–63. http://dx.doi.org/10.1063/1.1577830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Cooke, D. G., F. A. Hegmann, Yu I. Mazur, Zh M. Wang, W. Black, H. Wen, G. J. Salamo, T. D. Mishima, G. D. Lian, and M. B. Johnson. "Ultrafast carrier capture dynamics in InGaAs∕GaAs quantum wires." Journal of Applied Physics 103, no. 2 (January 15, 2008): 023710. http://dx.doi.org/10.1063/1.2831024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ma?kowski, S., F. Kyrychenko, G. Karczewski, J. Kossut, W. Heiss, and G. Prechtl. "Thermal Carrier Escape and Capture in CdTe Quantum Dots." physica status solidi (b) 224, no. 2 (March 2001): 465–69. http://dx.doi.org/10.1002/1521-3951(200103)224:2<465::aid-pssb465>3.0.co;2-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Fan, W. H., S. M. Olaizola, T. Wang, P. J. Parbrook, J. P. R. Wells, D. J. Mowbray, M. S. Skolnick, and A. M. Fox. "Carrier capture times in InGaN/GaN multiple quantum wells." physica status solidi (b) 240, no. 2 (November 2003): 364–67. http://dx.doi.org/10.1002/pssb.200303389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Reid, B., M. Abou-Khalil, and R. Maciejko. "Doping effects on carrier capture in a single quantum well by ensemble Monte Carlo." Canadian Journal of Physics 74, S1 (December 1, 1996): 220–24. http://dx.doi.org/10.1139/p96-863.

Full text
Abstract:
Using a bipolar ensemble Monte Carlo coupled with a Poisson equation solver, we simulate, for the first time, carrier capture with both types of carriers in an InGaAs/InP-doped single quantum well, following femtosecond light-pulse excitation. We show that Coulomb interaction between electrons and holes is very efficient in keeping the capture ambipolar for a long time. However, for short times, the capture is unipolar. Our results indicate that for these kinds of experiments, Monte Carlo simulations with only one type of carrier give questionable results.
APA, Harvard, Vancouver, ISO, and other styles
41

Zhou, Yun, Qiujie Ding, Yuan Wang, Xiaoping OuYang, Lixin Liu, Junyu Li, and Bing Wang. "Carrier Transfer and Capture Kinetics of the TiO2/Ag2V4O11 Photocatalyst." Nanomaterials 10, no. 5 (April 27, 2020): 828. http://dx.doi.org/10.3390/nano10050828.

Full text
Abstract:
In this paper, TiO2/Ag2V4O11 nanoheterojunctions have been synthesized by hydrothermal methods, which show enhanced photocatalytic activity compared to TiO2 under visible light. Moreover, the TiO2/Ag2V4O11 nanoheterojunction with set molar ratio of 2:1, referred to as TA2, show the highest visible light photocatalytic activity, which could decompose about 100% RhB molecules within 80 min of irradiation with visible light. Specially, the time-resolved photoluminescence spectrum of TA2 demonstrates that the free exciton recombination occurs in approximately 1.7 ns, and the time scale for Shockley–Read–Hall recombination of photogenerated electrons and holes is prolonged to 6.84 ns. The prolonged timescale of TA2 compared to TiO2 and Ag2V4O11 can be attributed to the carrier separation between nanojunctions and the carrier capture by interfacial defects. Furthermore, the enhanced photocatalytic activity of TiO2/Ag2V4O11 nanoheterojunctions also benefits from the synergistic effect of the broadened absorption region, higher photocarrier generation, longer carrier lifetime, and quicker collection dynamics.
APA, Harvard, Vancouver, ISO, and other styles
42

Lingk, C., W. Helfer, G. von Plessen, J. Feldmann, K. Stock, M. W. Feise, D. S. Citrin, et al. "Carrier capture processes in strain-inducedInxGa1−xAs/GaAsquantum dot structures." Physical Review B 62, no. 20 (November 15, 2000): 13588–94. http://dx.doi.org/10.1103/physrevb.62.13588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gombia, E., R. Mosca, S. Franchi, C. Ghezzi, and R. Magnanini. "Minority carrier capture at DX centers in AlGaSb Schottky diodes." Journal of Applied Physics 84, no. 9 (November 1998): 5337–41. http://dx.doi.org/10.1063/1.368783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lefebvre, Kevin R., and Neal G. Anderson. "Carrier capture and unipolar avalanche multiplication in quantum well heterostructures." Applied Physics Letters 61, no. 3 (July 20, 1992): 282–84. http://dx.doi.org/10.1063/1.107938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wang, Jin, K. W. Kim, and M. A. Littlejohn. "Carrier capture in pseudomorphically strained wurtzite GaN quantum-well lasers." Applied Physics Letters 71, no. 6 (August 11, 1997): 820–22. http://dx.doi.org/10.1063/1.119657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Uskov, A. V., J. McInerney, F. Adler, H. Schweizer, and M. H. Pilkuhn. "Auger carrier capture kinetics in self-assembled quantum dot structures." Applied Physics Letters 72, no. 1 (January 5, 1998): 58–60. http://dx.doi.org/10.1063/1.120643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wei-zhu, Lin, Peng Wen-ji, Qiu Zhi-ren, Zhou Xue-cong, and Mo Dang. "Dynamics of carrier capture in AlGaAs / GaAs multiple quantum wells." Acta Physica Sinica (Overseas Edition) 1, no. 1 (July 1992): 63–68. http://dx.doi.org/10.1088/1004-423x/1/1/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hwang, Michael T., Preston B. Landon, Joon Lee, Alexander Mo, Brian Meckes, Gennadi Glinsky, and Ratnesh Lal. "DNA nano-carrier for repeatable capture and release of biomolecules." Nanoscale 7, no. 41 (2015): 17397–403. http://dx.doi.org/10.1039/c5nr05124j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wang, Y., and K. P. Cheung. "Carrier capture at the SiO2–Si interface: A physical model." Applied Physics Letters 91, no. 11 (September 10, 2007): 113509. http://dx.doi.org/10.1063/1.2778354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kuhn, T., M. Glanemann, and V. M. Axt. "Quantum kinetics of carrier capture processes into a quantum dot." Physica B: Condensed Matter 314, no. 1-4 (March 2002): 455–58. http://dx.doi.org/10.1016/s0921-4526(01)01437-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography