Journal articles on the topic 'Carotenoids, Ultrafast'

To see the other types of publications on this topic, follow the link: Carotenoids, Ultrafast.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 48 journal articles for your research on the topic 'Carotenoids, Ultrafast.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Son, Minjung, Alberta Pinnola, Roberto Bassi, and Gabriela S. Schlau-Cohen. "Ultrabroadband two-dimensional electronic spectroscopy reveals energy flow pathways in LHCII across the visible spectrum." EPJ Web of Conferences 205 (2019): 09034. http://dx.doi.org/10.1051/epjconf/201920509034.

Full text
Abstract:
We utilise ultrabroadband two-dimensional electronic spectroscopy to map out pathways of energy flow in LHCII across the entire visible region. In addition to the well-established, low-lying chlorophyll Qy bands, our results reveal additional pathways of energy relaxation on the higher-lying excited states involving the S2 energy levels of carotenoids, including ultrafast carotenoid-to-chlorophyll energy transfer on 90-150 fs timescales.
APA, Harvard, Vancouver, ISO, and other styles
2

HASHIMOTO, Hideki, Tokutake SASHIMA, Kazuhiro YANAGI, and Masayuki YOSHIZAWA. "Ultrafast Relaxation Processes of Photosynthetic Carotenoids." Review of Laser Engineering 32, no. 11 (2004): 701–10. http://dx.doi.org/10.2184/lsj.32.701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kosumi, Daisuke, Takayuki Kajikawa, Kazuhiko Sakaguchi, Shigeo Katsumura, and Hideki Hashimoto. "Excited state properties of β-carotene analogs incorporating a lactone ring." Physical Chemistry Chemical Physics 19, no. 4 (2017): 3000–3009. http://dx.doi.org/10.1039/c6cp06828f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miki, Takeshi, Tiago Buckup, Marie S. Krause, June Southall, Richard J. Cogdell, and Marcus Motzkus. "Vibronic coupling in the excited-states of carotenoids." Physical Chemistry Chemical Physics 18, no. 16 (2016): 11443–53. http://dx.doi.org/10.1039/c5cp07542d.

Full text
Abstract:
The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.
APA, Harvard, Vancouver, ISO, and other styles
5

Hashimoto, Hideki, Mitsuru Sugisaki, and Masayuki Yoshizawa. "Ultrafast time-resolved vibrational spectroscopies of carotenoids in photosynthesis." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1847, no. 1 (January 2015): 69–78. http://dx.doi.org/10.1016/j.bbabio.2014.09.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tamura, Hiroyuki, and Hiroshi Ishikita. "Quenching of Singlet Oxygen by Carotenoids via Ultrafast Superexchange Dynamics." Journal of Physical Chemistry A 124, no. 25 (June 2, 2020): 5081–88. http://dx.doi.org/10.1021/acs.jpca.0c02228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Niedzwiedzki, Dariusz M., Daniel J. Sandberg, Hong Cong, Megan N. Sandberg, George N. Gibson, Robert R. Birge, and Harry A. Frank. "Ultrafast time-resolved absorption spectroscopy of geometric isomers of carotenoids." Chemical Physics 357, no. 1-3 (February 2009): 4–16. http://dx.doi.org/10.1016/j.chemphys.2008.07.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Sebok, Terry Park, Jaebeom Lee, and Yoonsoo Pang. "Ultrafast Electron Injection from the S2 State of Carotenoids into TiO2 Nanoparticles." Journal of Nanoscience and Nanotechnology 17, no. 4 (April 1, 2017): 2685–89. http://dx.doi.org/10.1166/jnn.2017.13369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Romero, Elisabet, Ivo H. M. van Stokkum, Jan P. Dekker, and Rienk van Grondelle. "Ultrafast carotenoid band shifts correlated with Chlz excited states in the photosystem II reaction center: are the carotenoids involved in energy transfer?" Physical Chemistry Chemical Physics 13, no. 13 (2011): 5573. http://dx.doi.org/10.1039/c0cp02896g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Niedzwiedzki, Dariusz, Jeremy F. Koscielecki, Hong Cong, James O. Sullivan, George N. Gibson, Robert R. Birge, and Harry A. Frank. "Ultrafast Dynamics and Excited State Spectra of Open-Chain Carotenoids at Room and Low Temperatures." Journal of Physical Chemistry B 111, no. 21 (May 2007): 5984–98. http://dx.doi.org/10.1021/jp070500f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chábera, Pavel, Marcel Fuciman, K. Razi Naqvi, and Tomáš Polívka. "Ultrafast dynamics of hydrophilic carbonyl carotenoids – Relation between structure and excited-state properties in polar solvents." Chemical Physics 373, no. 1-2 (July 2010): 56–64. http://dx.doi.org/10.1016/j.chemphys.2010.01.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Peterman, Erwin J. G., René Monshouwer, Ivo H. M. van Stokkum, Rienk van Grondelle, and Herbert van Amerongen. "Ultrafast singlet excitation transfer from carotenoids to chlorophylls via different pathways in light-harvesting complex II of higher plants." Chemical Physics Letters 264, no. 3-4 (January 1997): 279–84. http://dx.doi.org/10.1016/s0009-2614(96)01334-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Polli, D., M. R. Antognazza, D. Brida, G. Lanzani, G. Cerullo, and S. De Silvestri. "Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids." Chemical Physics 350, no. 1-3 (June 2008): 45–55. http://dx.doi.org/10.1016/j.chemphys.2007.12.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gradinaru, C. C., J. T. M. Kennis, E. Papagiannakis, I. H. M. van Stokkum, R. J. Cogdell, G. R. Fleming, R. A. Niederman, and R. van Grondelle. "An unusual pathway of excitation energy deactivation in carotenoids: Singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna." Proceedings of the National Academy of Sciences 98, no. 5 (February 20, 2001): 2364–69. http://dx.doi.org/10.1073/pnas.051501298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Pillai, Smitha, Janneke Ravensbergen, Antaeres Antoniuk-Pablant, Benjamin D. Sherman, Rienk van Grondelle, Raoul N. Frese, Thomas A. Moore, Devens Gust, Ana L. Moore, and John T. M. Kennis. "Carotenoids as electron or excited-state energy donors in artificial photosynthesis: an ultrafast investigation of a carotenoporphyrin and a carotenofullerene dyad." Physical Chemistry Chemical Physics 15, no. 13 (2013): 4775. http://dx.doi.org/10.1039/c3cp50364j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

LAMPOURA, STEFANIA S., B. P. KRUEGER, I. H. M. VAN STOKKUM, J. M. SALVERDA, C. C. GRADINARU, D. RUTKAUSKAS, R. G. HILLER, and R. VAN GRONDELLE. "ENERGY TRANSFER IN THE PERIDININ CHLOROPHYLL a PROTEIN OF AMPHIDINIUM CARTERAE STUDIED BY POLARIZED ABSORPTION MEASUREMENTS." International Journal of Modern Physics B 15, no. 28n30 (December 10, 2001): 3849–52. http://dx.doi.org/10.1142/s0217979201008822.

Full text
Abstract:
In this work we report the results of ultrafast transient absorption studies which examined energy transfer between carotenoids and chlorophylls in Peridinin-Chlorophyll-a-Protein (PCP) light harvesting complex from the dinoflagellate Amphidinium carterae. Global analysis of the isotropic decay reveals that the peridinin lifetime in PCP is 2.3±0.2 ps. This time constant is the peridinin- Chl a energy transfer, which is essentially entirely mediated by coupling of the peridinin S 1 and Chl a Q y transitions. Based on this lifetime we estimated an energy transfer timescale of ~2.4 ps and a peridinin- Chl a coupling of 46 cm -1. The magnitude of this coupling suggests a peridinin S 1 transition dipole moment of ~3 D . Global analysis of the depolarization measurements, shows, a small decrease in the depolarization from the initial 0.4 value to 0.36±0.03. This decrease occurs on the same timescale as the S2→S1 internal conversion, suggesting that either the S 1 transition dipole is oriented ~15° away from the S 2 transition dipole, or, that a small amount of peridinin S 2-peridinin S 2 energy transfer occurs in competition with internal conversion, or some combination of the two.
APA, Harvard, Vancouver, ISO, and other styles
17

Papagiannakis, Emmanouil, Somes Kumar Das, Andrew Gall, Ivo H. M. van Stokkum, Bruno Robert, Rienk van Grondelle, Harry A. Frank, and John T. M. Kennis. "Light Harvesting by Carotenoids Incorporated into the B850 Light-Harvesting Complex fromRhodobactersphaeroidesR-26.1: Excited-State Relaxation, Ultrafast Triplet Formation, and Energy Transfer to Bacteriochlorophyll." Journal of Physical Chemistry B 107, no. 23 (June 2003): 5642–49. http://dx.doi.org/10.1021/jp027174i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kopczynski, Matthäus, Thomas Lenzer, Kawon Oum, Jaane Seehusen, Marco T. Seidel, and Vladimir G. Ushakov. "Ultrafast transient lens spectroscopy of various C40 carotenoids: lycopene, β-carotene, (3R,3′R)-zeaxanthin, (3R,3′R,6′R)-lutein, echinenone, canthaxanthin, and astaxanthin." Physical Chemistry Chemical Physics 7, no. 14 (2005): 2793. http://dx.doi.org/10.1039/b506574g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Adamec, František, Domenica Farci, David Bína, Radek Litvín, Tuhin Khan, Marcel Fuciman, Dario Piano, and Tomáš Polívka. "Photophysics of deinoxanthin, the keto-carotenoid bound to the main S-layer unit of Deinococcus radiodurans." Photochemical & Photobiological Sciences 19, no. 4 (2020): 495–503. http://dx.doi.org/10.1039/d0pp00031k.

Full text
Abstract:
An ultrafast transient absorption experiment on the SDBC, which binds the carotenoid deinoxanthin, reveals a non-specific binding site that loosely binds the carotenoid, but protects the carotenoid from the outer environment.
APA, Harvard, Vancouver, ISO, and other styles
20

Herek, J. L., M. Wendling, Z. He, T. Polívka, G. Garcia-Asua, R. J. Cogdell, C. N. Hunter, R. van Grondelle, V. Sundström, and T. Pullerits. "Ultrafast Carotenoid Band Shifts: Experiment and Theory†." Journal of Physical Chemistry B 108, no. 29 (July 2004): 10398–403. http://dx.doi.org/10.1021/jp040094p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Staleva, Hristina, Muhammad Zeeshan, Pavel Chábera, Vassilia Partali, Hans-Richard Sliwka, and Tomáš Polívka. "Ultrafast Dynamics of Long Homologues of Carotenoid Zeaxanthin." Journal of Physical Chemistry A 119, no. 46 (November 5, 2015): 11304–12. http://dx.doi.org/10.1021/acs.jpca.5b08460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Šlouf, Václav, Valentyna Kuznetsova, Marcel Fuciman, Céline Bourcier de Carbon, Adjélé Wilson, Diana Kirilovsky, and Tomáš Polívka. "Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria." Photosynthesis Research 131, no. 1 (September 9, 2016): 105–17. http://dx.doi.org/10.1007/s11120-016-0302-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhu, Jingyi, Itay Gdor, Elena Smolensky, Noga Friedman, Mordechai Sheves, and Sanford Ruhman. "Photoselective Ultrafast Investigation of Xanthorhodopsin and Its Carotenoid Antenna Salinixanthin." Journal of Physical Chemistry B 114, no. 8 (March 4, 2010): 3038–45. http://dx.doi.org/10.1021/jp910845h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Murai, Y., M. Yokono, S. Akimoto, I. Yamazaki, A. Murakami, M. Higuchi, and M. Mimuro. "3P288 Ultrafast excitation relaxation dynamics of the carotenoid isolated from green alga." Seibutsu Butsuri 45, supplement (2005): S275. http://dx.doi.org/10.2142/biophys.45.s275_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Herek, J. L., T. Polívka, T. Pullerits, G. J. S. Fowler, C. N. Hunter, and V. Sundström. "Ultrafast Carotenoid Band Shifts Probe Structure and Dynamics in Photosynthetic Antenna Complexes†." Biochemistry 37, no. 20 (May 1998): 7057–61. http://dx.doi.org/10.1021/bi980118g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ho, Junming, Elizabeth Kish, Dalvin D. Méndez-Hernández, Katherine WongCarter, Smitha Pillai, Gerdenis Kodis, Jens Niklas, et al. "Triplet–triplet energy transfer in artificial and natural photosynthetic antennas." Proceedings of the National Academy of Sciences 114, no. 28 (June 26, 2017): E5513—E5521. http://dx.doi.org/10.1073/pnas.1614857114.

Full text
Abstract:
In photosynthetic organisms, protection against photooxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll-to-carotenoid triplet–triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, whereas it is ultrafast in the oxygen-rich chloroplasts of oxygen-evolving photosynthetic organisms. To better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomeric carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET, including a resonance Raman-based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by density functional theory (DFT) calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light-harvesting proteins from oxygenic (LHCII) and anoxygenic organisms (LH2). Both DFT and electron paramagnetic resonance (EPR) analyses further indicate that, upon T-TET, the triplet wave function is localized on the carotenoid in both dyads.
APA, Harvard, Vancouver, ISO, and other styles
27

Polívka, Tomáš, and Villy Sundström. "Ultrafast Dynamics of Carotenoid Excited States−From Solution to Natural and Artificial Systems." Chemical Reviews 104, no. 4 (April 2004): 2021–72. http://dx.doi.org/10.1021/cr020674n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Polívka, Tomáš, Tõnu Pullerits, Harry A. Frank, Richard J. Cogdell, and Villy Sundström. "Ultrafast Formation of a Carotenoid Radical in LH2 Antenna Complexes of Purple Bacteria." Journal of Physical Chemistry B 108, no. 39 (September 2004): 15398–407. http://dx.doi.org/10.1021/jp0483019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Cong, Hong, Dariusz M. Niedzwiedzki, George N. Gibson, Amy M. LaFountain, Rhiannon M. Kelsh, Alastair T. Gardiner, Richard J. Cogdell, and Harry A. Frank. "Ultrafast Time-Resolved Carotenoid to-Bacteriochlorophyll Energy Transfer in LH2 Complexes from Photosynthetic Bacteria." Journal of Physical Chemistry B 112, no. 34 (August 2008): 10689–703. http://dx.doi.org/10.1021/jp711946w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Palacios, Rodrigo E., Stephanie L. Gould, Christian Herrero, Michael Hambourger, Alicia Brune, Gerdenis Kodis, Paul A. Liddell, et al. "Bioinspired energy conversion." Pure and Applied Chemistry 77, no. 6 (January 1, 2005): 1001–8. http://dx.doi.org/10.1351/pac200577061001.

Full text
Abstract:
Artificial photosynthetic antenna systems have been synthesized based on carotenoid polyenes and polymer-polyenes covalently attached to tetrapyrroles. Absorption of light in the blue/green region of the spectra excites the polyenes to their S2 state, and ultrafast singlet energy transfer to the tetrapyrroles occurs when the chromophores are in partial conjugation. The additional participation of other excited states of the polyene in the energy-transfer process is a requirement for perfect antenna function. Analogs of photosynthetic reaction centers consisting of tetrapyrrole chromophores covalently linked to electron acceptors and donors have been prepared. Excitation of these constructs results in a cascade of energy transfer/electron transfer which, in selected cases, forms a final charge-separated state characterized by a giant dipole moment (>150 D), a quantum yield approaching unity, a significant fraction of the photon energy stored as chemical potential, and a lifetime sufficient for reaction with secondary electron donors and acceptors. A new antenna-reaction center complex is described in which a carotenoid moiety is located in partial conjugation with the tetrapyrrole π-system allowing fast energy transfer (<100 fs) between the chromophores. In this assembly, the energy transduction process can be initiated by light absorbed by the polyene.
APA, Harvard, Vancouver, ISO, and other styles
31

Lohse, Peter W., Florian Ehlers, Kawon Oum, Mirko Scholz, and Thomas Lenzer. "Ultrafast solvation dynamics of 12′-apo-β-carotenoic-12′-acid in [C6mim]+[Tf2N]−." Chemical Physics 373, no. 1-2 (July 2010): 45–49. http://dx.doi.org/10.1016/j.chemphys.2009.12.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zuo, Ping, Bin-Xing Li, Xiao-Hui Zhao, Yi-Shi Wu, Xi-Cheng Ai, Jian-Ping Zhang, Liang-Bi Li, and Ting-Yun Kuang. "Ultrafast Carotenoid-to-Chlorophyll Singlet Energy Transfer in the Cytochrome b6f Complex from Bryopsis corticulans." Biophysical Journal 90, no. 11 (June 2006): 4145–54. http://dx.doi.org/10.1529/biophysj.105.076612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wasielewski, Michael R., Paul A. Liddell, Donna Barrett, Thomas A. Moore, and Devens Gust. "Ultrafast carotenoid to pheophorbide energy transfer in a biomimetic model for antenna function in photosynthesis." Nature 322, no. 6079 (August 1986): 570–72. http://dx.doi.org/10.1038/322570a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Macpherson, Alisdair N., Paul A. Liddell, Darius Kuciauskas, Dereck Tatman, Tomas Gillbro, Devens Gust, Thomas A. Moore, and Ana L. Moore. "Ultrafast Energy Transfer from a Carotenoid to a Chlorin in a Simple Artificial Photosynthetic Antenna." Journal of Physical Chemistry B 106, no. 36 (September 2002): 9424–33. http://dx.doi.org/10.1021/jp0212343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Perlík, Václav, Joachim Seibt, Laura J. Cranston, Richard J. Cogdell, Craig N. Lincoln, Janne Savolainen, František Šanda, Tomáš Mančal, and Jürgen Hauer. "Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters." Journal of Chemical Physics 142, no. 21 (June 7, 2015): 212434. http://dx.doi.org/10.1063/1.4919548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lohse, Peter W., Reinhard Bürsing, Thomas Lenzer, and Kawon Oum. "Exploring 12‘-Apo-β-carotenoic-12‘-acid as an Ultrafast Polarity Probe for Ionic Liquids." Journal of Physical Chemistry B 112, no. 10 (March 2008): 3048–57. http://dx.doi.org/10.1021/jp710766z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kosumi, D., T. Kusumoto, and H. Hashimoto. "Unique ultrafast excited states dynamics of artificial short-polyene carotenoid analog 2-(all-trans-β-ionylideneetinylidene)-indan-1,3-dione." Journal of Photochemistry and Photobiology A: Chemistry 418 (September 2021): 113424. http://dx.doi.org/10.1016/j.jphotochem.2021.113424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Stalke, Sebastian, Duncan A. Wild, Thomas Lenzer, Matthäus Kopczynski, Peter W. Lohse, and Kawon Oum. "Solvent-dependent ultrafast internal conversion dynamics of n′-apo-β-carotenoic-n′-acids (n = 8, 10, 12)." Physical Chemistry Chemical Physics 10, no. 16 (2008): 2180. http://dx.doi.org/10.1039/b720037d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kosumi, Daisuke, Toshiyuki Kusumoto, Ritsuko Fujii, Mitsuru Sugisaki, Yoshiro Iinuma, Naohiro Oka, Yuki Takaesu, et al. "Ultrafast S1 and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump-probe spectroscopy." Journal of Luminescence 131, no. 3 (March 2011): 515–18. http://dx.doi.org/10.1016/j.jlumin.2010.09.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Segatta, Francesco, Itay Gdor, Julien Réhault, Simone Taioli, Noga Friedman, Mordechai Sheves, Ivan Rivalta, Sanford Ruhman, Giulio Cerullo, and Marco Garavelli. "Ultrafast Carotenoid to Retinal Energy Transfer in Xanthorhodopsin Revealed by the Combination of Transient Absorption and Two‐Dimensional Electronic Spectroscopy." Chemistry – A European Journal 24, no. 46 (August 2, 2018): 12084–92. http://dx.doi.org/10.1002/chem.201803525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Paschenko, Vladimir Z., Vladimir V. Gorokhov, Boris N. Korvatovskiy, Eugeniy A. Bocharov, Peter P. Knox, Oleg M. Sarkisov, Christoph Theiss, Hans J. Eichler, Gernot Renger, and Andrew B. Rubin. "The rate of Qx→Qy relaxation in bacteriochlorophylls of reaction centers from Rhodobacter sphaeroides determined by kinetics of the ultrafast carotenoid bandshift." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817, no. 8 (August 2012): 1399–406. http://dx.doi.org/10.1016/j.bbabio.2012.02.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Accomasso, Davide, Serra Arslancan, Lorenzo Cupellini, Giovanni Granucci, and Benedetta Mennucci. "Ultrafast Excited-State Dynamics of Carotenoids and the Role of the SX State." Journal of Physical Chemistry Letters, July 19, 2022, 6762–69. http://dx.doi.org/10.1021/acs.jpclett.2c01555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Yoshizawa, Masayuki, Ryosuke Nakamura, Orihiro Yoshimatsu, Kenta Abe, Shunsuke Sakai, Katsunori Nakagawa, Ritsuko Fujii, Mamoru Nango, and Hideki Hashimoto. "Femtosecond stimulated Raman spectroscopy of the dark S1 excited state of carotenoid in photosynthetic light harvesting complex." Acta Biochimica Polonica 59, no. 1 (March 17, 2012). http://dx.doi.org/10.18388/abp.2012_2169.

Full text
Abstract:
Vibrational dynamics of the excited state in the light-harvesting complex (LH1) have been investigated by femtosecond stimulated Raman spectroscopy (FSRS). The native and reconstituted LH1 complexes have same dynamics. The ν(1) (C=C stretching) vibrational mode of spirilloxanthin in LH1 shows ultrafast high-frequency shift in the S(1) excited state with a time constant of 0.3 ps. It is assigned to the vibrational relaxation of the S(1) state following the internal conversion from the photoexcited S(2) state.
APA, Harvard, Vancouver, ISO, and other styles
44

Özcan, Emrah, Valentyna Kuznetsova, Gürkan Keşan, Marcel Fuciman, Radek Litvin, and Tomáš Polívka. "Ultrafast Excited States Dynamics of Metal Ion Complexes of the Carotenoid Astaxanthin." SSRN Electronic Journal, 2023. http://dx.doi.org/10.2139/ssrn.4360601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Polivka, Tomas, and Villy Sundstroem. "Ultrafast Dynamics of Carotenoid Excited States — From Solution to Natural and Artificial Systems." ChemInform 35, no. 24 (June 15, 2004). http://dx.doi.org/10.1002/chin.200424298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Finney, Lauren A., Patrick J. Skrodzki, Nicholas Peskosky, Milos Burger, John Nees, Karl Krushelnick, and Igor Jovanovic. "Ultrafast laser filament-induced fluorescence for detecting uranium stress in Chlamydomonas reinhardtii." Scientific Reports 12, no. 1 (October 13, 2022). http://dx.doi.org/10.1038/s41598-022-21404-z.

Full text
Abstract:
AbstractPlants and other photosynthetic organisms have been suggested as potential pervasive biosensors for nuclear nonproliferation monitoring. We demonstrate that ultrafast laser filament-induced fluorescence of chlorophyll in the green alga Chlamydomonas reinhardtii is a promising method for remote, in-field detection of stress from exposure to nuclear materials. This method holds an advantage over broad-area surveillance, such as solar-induced fluorescence monitoring, when targeting excitation of a specific plant would improve the detectability, for example when local biota density is low. After exposing C. reinhardtii to uranium, we find that the concentration of chlorophyll a, chlorophyll fluorescence lifetime, and carotenoid content increase. The increased fluorescence lifetime signifies a decrease in non-photochemical quenching. The simultaneous increase in carotenoid content implies oxidative stress, further confirmed by the production of radical oxygen species evidence in the steady-state absorption spectrum. This is potentially a unique signature of uranium, as previous work finds that heavy metal stress generally increases non-photochemical quenching. We identify the temporal profile of the chlorophyll fluorescence to be a distinguishing feature between uranium-exposed and unexposed algae. Discrimination of uranium-exposed samples is possible at a distance of $$\sim $$ ∼ 35 m with a single laser shot and a modest collection system, as determined through a combination of experiment and simulation of distance-scaled uncertainty in discriminating the temporal profiles. Illustrating the potential for remote detection, detection over 125 m would require 100 laser shots, commensurate with the detection time on the order of 1 s.
APA, Harvard, Vancouver, ISO, and other styles
47

Niziński, Stanisław, Adjéle Wilson, Lucas M. Uriarte, Cyril Ruckebusch, Elena A. Andreeva, Ilme Schlichting, Jacques-Philippe Colletier, Diana Kirilovsky, Gotard Burdzinski, and Michel Sliwa. "Unifying Perspective of the Ultrafast Photodynamics of Orange Carotenoid Proteins from Synechocystis: Peril of High-Power Excitation, Existence of Different S* States, and Influence of Tagging." JACS Au, April 25, 2022. http://dx.doi.org/10.1021/jacsau.1c00472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Niziński, Stanisław, Adjéle Wilson, Lucas M. Uriarte, Cyril Ruckebusch, Elena A. Andreeva, Ilme Schlichting, Jacques-Philippe Colletier, Diana Kirilovsky, Gotard Burdzinski, and Michel Sliwa. "Unifying Perspective of the Ultrafast Photodynamics of Orange Carotenoid Proteins from Synechocystis: Peril of High-Power Excitation, Existence of Different S* States, and Influence of Tagging." JACS Au, April 25, 2022. http://dx.doi.org/10.1021/jacsau.1c00472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography