Academic literature on the topic 'Carnosinase'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carnosinase.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Carnosinase"

1

Everaert, Inge, Youri Taes, Emile De Heer, Hans Baelde, Ana Zutinic, Benito Yard, Sibylle Sauerhöfer, et al. "Low plasma carnosinase activity promotes carnosinemia after carnosine ingestion in humans." American Journal of Physiology-Renal Physiology 302, no. 12 (June 15, 2012): F1537—F1544. http://dx.doi.org/10.1152/ajprenal.00084.2012.

Full text
Abstract:
A polymorphism in the carnosine dipeptidase-1 gene ( CNDP1), resulting in decreased plasma carnosinase activity, is associated with a reduced risk for diabetic nephropathy. Because carnosine, a natural scavenger/suppressor of ROS, advanced glycation end products, and reactive aldehydes, is readily degraded in blood by the highly active carnosinase enzyme, it has been postulated that low serum carnosinase activity might be advantageous to reduce diabetic complications. The aim of this study was to examine whether low carnosinase activity promotes circulating carnosine levels after carnosine supplementation in humans. Blood and urine were sampled in 25 healthy subjects after acute supplementation with 60 mg/kg body wt carnosine. Precooled EDTA-containing tubes were used for blood withdrawal, and plasma samples were immediately deproteinized and analyzed for carnosine and β-alanine by HPLC. CNDP1 genotype, baseline plasma carnosinase activity, and protein content were assessed. Upon carnosine ingestion, 8 of the 25 subjects (responders) displayed a measurable increase in plasma carnosine up to 1 h after supplementation. Subjects with no measurable increment in plasma carnosine (nonresponders) had ∼2-fold higher plasma carnosinase protein content and ∼1.5-fold higher activity compared with responders. Urinary carnosine recovery was 2.6-fold higher in responders versus nonresponders and was negatively dependent on both the activity and protein content of the plasma carnosinase enzyme. In conclusion, low plasma carnosinase activity promotes the presence of circulating carnosine upon an oral challenge. These data may further clarify the link among CNDP1 genotype, carnosinase, and diabetic nephropathy.
APA, Harvard, Vancouver, ISO, and other styles
2

Rodriguez-Niño, Angelica, Diego O. Pastene, Adrian Post, M. Yusof Said, Antonio W. Gomes-Neto, Lyanne M. Kieneker, M. Rebecca Heiner-Fokkema, et al. "Urinary Carnosinase-1 Excretion is Associated with Urinary Carnosine Depletion and Risk of Graft Failure in Kidney Transplant Recipients: Results of the TransplantLines Cohort Study." Antioxidants 10, no. 7 (July 9, 2021): 1102. http://dx.doi.org/10.3390/antiox10071102.

Full text
Abstract:
Carnosine affords protection against oxidative and carbonyl stress, yet high concentrations of the carnosinase-1 enzyme may limit this. We recently reported that high urinary carnosinase-1 is associated with kidney function decline and albuminuria in patients with chronic kidney disease. We prospectively investigated whether urinary carnosinase-1 is associated with a high risk for development of late graft failure in kidney transplant recipients (KTRs). Carnosine and carnosinase-1 were measured in 24 h urine in a longitudinal cohort of 703 stable KTRs and 257 healthy controls. Cox regression was used to analyze the prospective data. Urinary carnosine excretions were significantly decreased in KTRs (26.5 [IQR 21.4–33.3] µmol/24 h versus 34.8 [IQR 25.6–46.8] µmol/24 h; p < 0.001). In KTRs, high urinary carnosinase-1 concentrations were associated with increased risk of undetectable urinary carnosine (OR 1.24, 95%CI [1.06–1.45]; p = 0.007). During median follow-up for 5.3 [4.5–6.0] years, 84 (12%) KTRs developed graft failure. In Cox regression analyses, high urinary carnosinase-1 excretions were associated with increased risk of graft failure (HR 1.73, 95%CI [1.44–2.08]; p < 0.001) independent of potential confounders. Since urinary carnosine is depleted and urinary carnosinase-1 imparts a higher risk for graft failure in KTRs, future studies determining the potential of carnosine supplementation in these patients are warranted.
APA, Harvard, Vancouver, ISO, and other styles
3

Bando, Keiichi, Kiyoshi Ichihara, Tsunesuke Shimotsuji, Hiroyuki Toyoshima, Kazuma Koda, Chozo Hayashi, and Kiyoshi Miyai. "Reduced Serum Carnosinase Activity in Hypothyroidism." Annals of Clinical Biochemistry: International Journal of Laboratory Medicine 23, no. 2 (March 1986): 190–94. http://dx.doi.org/10.1177/000456328602300208.

Full text
Abstract:
Carnosinase hydrolyses carnosine in muscle, and its deficiency is associated with extensive neuromuscular abnormalities. We measured serum carnosinase activity in patients with thyroid dysfunction which often involves neuromuscular systems. In hyperthyroidism, the carnosinase activity was not significantly different from that in normal subjects. In hypothyroidism, however, it was significantly lower than that in normal subjects. The activity examined in five patients with hypothyroidism returned to normal after replacement therapy. In hypothyroidism, the carnosinase activity showed significant correlation with concentration of serum thyroxine and negative correlation with serum creatine kinase activity. This finding may be of practical importance in the differential diagnosis of disorders causing carnosinase deficiency.
APA, Harvard, Vancouver, ISO, and other styles
4

Lenney, J. F., S. C. Peppers, C. M. Kucera-Orallo, and R. P. George. "Characterization of human tissue carnosinase." Biochemical Journal 228, no. 3 (June 15, 1985): 653–60. http://dx.doi.org/10.1042/bj2280653.

Full text
Abstract:
Human tissue carnosinase (EC 3.4.13.3) had optimum activity at pH9.5 and was a cysteine peptidase, being activated by dithiothreitol and inhibited by p-hydroxymercuribenzoate. By optimizing assay conditions, the activity per g of tissue was increased 10-fold compared with values in the literature. The enzyme was present in every human tissue assayed and was entirely different from serum carnosinase. Highly purified tissue carnosinase had a broader specificity than hog kidney carnosinase. Although tissue carnosinase was very strongly inhibited by bestatin, it did not hydrolyse tripeptides, and thus appears to be a dipeptidase rather than an aminopeptidase. It had a relative molecular mass of 90 000, an isoelectric point of 5.6, and a Km value of 10 mM-carnosine. Two forms of kidney and brain carnosinase were separated by high-resolution anion-exchange chromatography, although only one form was detected by various electrophoretic methods. Homocarnosinase and Mn2+-independent carnosinase were not detected in human tissues, although these enzymes are present in rat and hog kidney.
APA, Harvard, Vancouver, ISO, and other styles
5

Oppermann, Henry, Stefanie Elsel, Claudia Birkemeyer, Jürgen Meixensberger, and Frank Gaunitz. "Erythrocytes Prevent Degradation of Carnosine by Human Serum Carnosinase." International Journal of Molecular Sciences 22, no. 23 (November 26, 2021): 12802. http://dx.doi.org/10.3390/ijms222312802.

Full text
Abstract:
The naturally occurring dipeptide carnosine (β-alanyl-l-histidine) has beneficial effects in different diseases. It is also frequently used as a food supplement to improve exercise performance and because of its anti-aging effects. Nevertheless, after oral ingestion, the dipeptide is not detectable in human serum because of rapid degradation by serum carnosinase. At the same time, intact carnosine is excreted in urine up to five hours after intake. Therefore, an unknown compartment protecting the dipeptide from degradation has long been hypothesized. Considering that erythrocytes may constitute this compartment, we investigated the uptake and intracellular amounts of carnosine in human erythrocytes cultivated in the presence of the dipeptide and human serum using liquid chromatography–mass spectrometry. In addition, we studied carnosine’s effect on ATP production in red blood cells and on their response to oxidative stress. Our experiments revealed uptake of carnosine into erythrocytes and protection from carnosinase degradation. In addition, no negative effect on ATP production or defense against oxidative stress was observed. In conclusion, our results for the first time demonstrate that erythrocytes can take up carnosine, and, most importantly, thereby prevent its degradation by human serum carnosinase.
APA, Harvard, Vancouver, ISO, and other styles
6

Menini, Stefano, Carla Iacobini, Claudia Blasetti Fantauzzi, and Giuseppe Pugliese. "L-carnosine and its Derivatives as New Therapeutic Agents for the Prevention and Treatment of Vascular Complications of Diabetes." Current Medicinal Chemistry 27, no. 11 (April 23, 2020): 1744–63. http://dx.doi.org/10.2174/0929867326666190711102718.

Full text
Abstract:
Vascular complications are among the most serious manifestations of diabetes. Atherosclerosis is the main cause of reduced life quality and expectancy in diabetics, whereas diabetic nephropathy and retinopathy are the most common causes of end-stage renal disease and blindness. An effective therapeutic approach to prevent vascular complications should counteract the mechanisms of injury. Among them, the toxic effects of Advanced Glycation (AGEs) and Lipoxidation (ALEs) end-products are well-recognized contributors to these sequelae. L-carnosine (β-alanyl-Lhistidine) acts as a quencher of the AGE/ALE precursors Reactive Carbonyl Species (RCS), which are highly reactive aldehydes derived from oxidative and non-oxidative modifications of sugars and lipids. Consistently, L-carnosine was found to be effective in several disease models in which glyco/lipoxidation plays a central pathogenic role. Unfortunately, in humans, L-carnosine is rapidly inactivated by serum carnosinase. Therefore, the search for carnosinase-resistant derivatives of Lcarnosine represents a suitable strategy against carbonyl stress-dependent disorders, particularly diabetic vascular complications. In this review, we present and discuss available data on the efficacy of L-carnosine and its derivatives in preventing vascular complications in rodent models of diabetes and metabolic syndrome. We also discuss genetic findings providing evidence for the involvement of the carnosinase/L-carnosine system in the risk of developing diabetic nephropathy and for preferring the use of carnosinase-resistant compounds in human disease. The availability of therapeutic strategies capable to prevent both long-term glucose toxicity, resulting from insufficient glucoselowering therapy, and lipotoxicity may help reduce the clinical and economic burden of vascular complications of diabetes and related metabolic disorders.
APA, Harvard, Vancouver, ISO, and other styles
7

Kiliś-Pstrusińska, Katarzyna. "Carnosine, carnosinase and kidney diseases." Postępy Higieny i Medycyny Doświadczalnej 66 (April 20, 2012): 215–23. http://dx.doi.org/10.5604/17322693.991600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Macarini, José Roberto, Soliany Grassi Maravai, José Henrique Cararo, Nádia Webber Dimer, Cinara Ludvig Gonçalves, Luiza Wilges Kist, Mauricio Reis Bogo, Patrícia Fernanda Schuck, Emilio Luiz Streck, and Gustavo Costa Ferreira. "Impairment of Electron Transfer Chain Induced by Acute Carnosine Administration in Skeletal Muscle of Young Rats." BioMed Research International 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/632986.

Full text
Abstract:
Serum carnosinase deficiency is an inherited disorder that leads to an accumulation of carnosine in the brain tissue, cerebrospinal fluid, skeletal muscle, and other tissues of affected patients. Considering that high levels of carnosine are associated with neurological dysfunction and that the pathophysiological mechanisms involved in serum carnosinase deficiency remain poorly understood, we investigated thein vivoeffects of carnosine on bioenergetics parameters, namely, respiratory chain complexes (I–III, II, and II-III), malate dehydrogenase, succinate dehydrogenase, and creatine kinase activities and the expression of mitochondrial-specific transcription factors (NRF-1, PGC-1α, andTFAM) in skeletal muscle of young Wistar rats. We observed a significant decrease of complexes I–III and II activities in animals receiving carnosine acutely, as compared to control group. However, no significant alterations in respiratory chain complexes, citric acid cycle enzymes, and creatine kinase activities were found between rats receiving carnosine chronically and control group animals. As compared to control group, mRNA levels ofNRF-1, PGC-1α, andTFAMwere unchanged. The present findings indicate that electron transfer through the respiratory chain is impaired in skeletal muscle of rats receiving carnosine acutely. In case these findings are confirmed by further studies and ATP depletion is also observed, impairment of bioenergetics could be considered a putative mechanism responsible for the muscle damage observed in serum carnosinase-deficient patients.
APA, Harvard, Vancouver, ISO, and other styles
9

Kilis-Pstrusinska, Katarzyna. "Carnosine and Kidney Diseases: What We Currently Know?" Current Medicinal Chemistry 27, no. 11 (April 23, 2020): 1764–81. http://dx.doi.org/10.2174/0929867326666190730130024.

Full text
Abstract:
: Carnosine (beta-alanyl-L-histidine) is an endogenously synthesised dipeptide which is present in different human tissues e.g. in the kidney. Carnosine is degraded by enzyme serum carnosinase, encoding by CNDP1 gene. Carnosine is engaged in different metabolic pathways in the kidney. It reduces the level of proinflammatory and profibrotic cytokines, inhibits advanced glycation end products’ formation, moreover, it also decreases the mesangial cell proliferation. Carnosine may also serve as a scavenger of peroxyl and hydroxyl radicals and a natural angiotensin-converting enzyme inhibitor. : This review summarizes the results of experimental and human studies concerning the role of carnosine in kidney diseases, particularly in chronic kidney disease, ischemia/reperfusion-induced acute renal failure, diabetic nephropathy and also drug-induced nephrotoxicity. The interplay between serum carnosine concentration and serum carnosinase activity and polymorphism in the CNDP1 gene is discussed. : Carnosine has renoprotective properties. It has a promising potential for the treatment and prevention of different kidney diseases, particularly chronic kidney disease which is a global public health issue. Further studies of the role of carnosine in the kidney may offer innovative and effective strategies for the management of kidney diseases.
APA, Harvard, Vancouver, ISO, and other styles
10

Blancquaert, L., I. Everaert, A. Baguet, T. Bex, S. Barbaresi, S. de Jager, E. Lievens, et al. "Acute preexercise supplementation of combined carnosine and anserine enhances initial maximal power of Wingate tests in humans." Journal of Applied Physiology 130, no. 6 (June 1, 2021): 1868–78. http://dx.doi.org/10.1152/japplphysiol.00602.2020.

Full text
Abstract:
Current results reveal that carnosine and anserine competitively bind to the highly active carnosinase enzyme in human plasma. Acute combined carnosine and anserine supplementation is therefore described as novel strategy to raise plasma anserine and carnosine. We report that indices of maximal exercise/muscle power during the initial stage of a Wingate test were significantly improved by preexercise 20–25mg/kg body wt anserine and carnosine supplementation, pointing toward a novel acute nutritional strategy to improve high-intensity exercise performance.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Carnosinase"

1

White, Colleen A. "An investigation into human serum carnosinase." Thesis, Glasgow Caledonian University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rodriguez-Nino, Maria Angelica [Verfasser], and Benito A. [Akademischer Betreuer] Yard. "Implications of the carnosine-carnosinase system in diabetic nephropathy / Maria Angelica Rodriguez-Nino ; Betreuer: Benito A. Yard." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1223261727/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rodriguez-Nino, Maria Angelica Verfasser], and Benito A. [Akademischer Betreuer] [Yard. "Implications of the carnosine-carnosinase system in diabetic nephropathy / Maria Angelica Rodriguez-Nino ; Betreuer: Benito A. Yard." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-290999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Macarini, José Roberto. "Avaliação da toxicidade da carnosina sobre parâmetros de metabolismo energético em músculo esquelético de ratos jovens." reponame:Repositório Institucional da UNESC, 2013. http://repositorio.unesc.net/handle/1/4361.

Full text
Abstract:
Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ciências da Saúde, da Universidade do extremo Sul Catarinense, UNESC, para obtenção do título de Mestre em Ciências da Saúde.
Carnosina (β-alanil-L-histidina) é um dipeptídeo composto pelos aminoácidos β-alanina e L-histidina, amplamente distribuído em músculo esquelético de mamíferos. O dipeptídeo é sintetizado por uma ligase, a carnosina sintetase; e é hidrolisado a seus precursores pelas metaloproteases carnosinase sérica e carnosinase citosólica. Níveis séricos elevados de carnosina e dipeptídeos análogos são encontrados em indivíduos com disfunção neurológica e alterações neuromusculares, associadas à deficiência hereditária de carnosinase sérica. No presente trabalho, objetivou-se investigar os efeitos da administração aguda e crônica de carnosina sobre parâmetros do metabolismo energético em músculo esquelético de Wistar machos de 30 dias de vida. Para o experimento agudo, os animais receberam uma dose única do dipeptídeo (100 mg/kg i.p.) e, decorridas 24 horas, foram mortos por decapitação. Já no tratamento crônico, os animais receberam uma dose diária de carnosina (100 mg/kg i.p.) durante 5 dias, e posteriormente foram mortos por decapitação 1 hora após a última injeção intraperitoneal. O músculo esquelético (soleus) foi dissecado e homogeneizado para posterior avaliação da atividade dos complexos I-III, II e II-III da cadeia respiratória e das enzimas sucinato desidrogenase, malato desidrogenase e creatina quinase. Neste estudo, demonstrou-se que, em comparação com o grupo controle, os animais que receberam carnosina agudamente apresentaram uma redução estatisticamente significante da atividade dos complexos I-III e II da cadeia respiratória. Verificou-se também uma tendência de redução, porém não estatisticamente significativa, da atividade do complexo II-III, da malato desidrogenase e da creatina quinase de ratos do grupo carnosina. Por outro lado, em animais administrados cronicamente com o dipeptídeo, observou-se apenas uma tendência de diminuição, embora não estatisticamente significativa, da atividade do complexo I-III do grupo carnosina em comparação com o grupo. Concluindo, a administração aguda de carnosina é capaz de inibir enzimas-chave do metabolismo energético de ratos. É provável que uma disfunção energética secundária ao acúmulo de carnosina possa ajudar a explicar os sintomas neuromusculares observados em pacientes com deficiência de carnosinase sérica, bem como desvendar mecanismos envolvidos na fisiopatologia dessa rara doença.
APA, Harvard, Vancouver, ISO, and other styles
5

Weigand, Tim [Verfasser], and Markus [Akademischer Betreuer] Hecker. "Molekulare und metabolische Auswirkungen eines Carnosinase 1-Knockouts im Mausmodell / Tim Weigand ; Betreuer: Markus Hecker." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1210489961/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pavlin, Matic [Verfasser], Paolo Akademischer Betreuer] Carloni, and Marc [Akademischer Betreuer] [Spehr. "Investigating functional aspects and inhibition of the human carnosinase CN1 enzyme by computational methods / Matic Pavlin ; Paolo Carloni, Marc Spehr." Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1130792633/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pavlin, Matic Verfasser], Paolo [Akademischer Betreuer] Carloni, and Marc [Akademischer Betreuer] [Spehr. "Investigating functional aspects and inhibition of the human carnosinase CN1 enzyme by computational methods / Matic Pavlin ; Paolo Carloni, Marc Spehr." Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1130792633/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

GILARDONI, ETTORE. "AN INTEGRATED PROTEOMIC AND ANALYTICAL APPROACH FOR ELUCIDATING THE MECHANISM OF ACTION OF HISTIDINE DIPEPTIDES AND SYNTHETIC DERIVATES." Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/797770.

Full text
Abstract:
β-alanil-L-istidina (carnosina) è un peptide endogeno che possiede innumerevoli proprietà (chelante dei metalli, antiossidante, sequestrante delle specie reattive carboniliche). Diversi studi clinici hanno dimostrato un’attività farmacologica della carnosina in malattie su base ossidative, tuttavia il meccanismo dell’attività in vivo non è ancora noto. Questo progetto ha come scopo quello di comprendere il meccanismo in vivo della carnosina. Per far ciò, sono stati sviluppati nuovi metodi analitici di cromatografia liquida accoppiata a spettrometria di massa per la quantificazione in campioni biologici dei peptidi istidinici, loro derivati e gli addotti con le specie reattive carboniliche. Come prima cosa, un metodo analitico basato su una colonna ad interazione idrofiliche è stato sviluppato per l’analisi del carnosinolo in matrici biologiche di modelli animali di sindrome metabolica. La concentrazione di carnosinolo è stata determinata in diversi tessuti e, per la prima volta, l’addotto carnosinolo-acroleina è stato identificato in omogenato di fegato. Questo conferma l’attività del carnosinolo e dei peptidi istidinici come sequestranti delle specie reattive carboniliche in vivo. Tuttavia, è stata identificata l’instabilità metabolica dell’addotto carnosinolo-HNE in diversi tessuti. Saranno quindi necessari ulteriori studi per la caratterizzazione del metabolismo di questi addotti e l’identificazione della corretta entità chimica da ricercare nelle matrici biologiche come indice dell’attività sequestrante di carnosina e derivati. Il metodo basato su colonne ad interazioni idrofiliche è stato anche utilizzato per sviluppare un metodo a rivelazione diretta per determinare l’attività idrolitica del siero umano della carnosina. La carnosinasi serica è stata identificata come principale enzima impiegato nel metabolismo della carnosina. Rispetto ad altri metodi pubblicati in letteratura, quello sviluppato in questo elaborato si basa su una determinazione diretta della carnosina, senza dover effettuare processi complessi di preparazione del campione. I dati ottenuti sono stati convalidati con dati presenti in letteratura, dimostrando che il nostro metodo risulta essere affidabile ed accurato. È stato possibile anche condurre esperimenti di competizione fra substrati naturali e alcune molecole per valutare le principali interazioni substrato/enzima, con l’obiettivo di identificare inibitori della carnosinasi. I dati ottenuti sono stati condivisi con colleghi chimici computazionali che attraverso esperimenti di docking, virtual screening e dinamica molecolare hanno identificato dei possibili inibitori naturali della carnosinasi serica umana. Un nuovo meccanismo d’azione della carnosina è stato approfondito, in quanto recenti pubblicazioni hanno evidenziato un ruolo della carnosina nella prevenzione della formazione di addotti fra la 3,4-diidrofenilglicolaldeide (DOPEGAL), un metabolita intermedio del catabolismo della noradrenalina, e le proteine. La capacità della carnosina di legare covalentemente la DOPEGAL tramite la formazione di un prodotto di Amadori è stata determinata in vitro e in lisato cellulare dove la DOPEGAL è stata formata aggiungendo noradrenalina al lisato enzimaticamente attivo. Studi futuri dovranno caratterizzare la stabilità metabolica di quest’addotto e le caratteristiche della sua formazione in matrici biologiche in quanto risulta essere un interessante biomarcatore di tossicità noradrenalinergica. In fine è stata valutato l’impatto della carnosina e del carnosinolo sul proteoma di cellule endoteliali umane derivanti dalla vena ombelicale. È ormai noto che i farmaci non agiscono unicamente col meccanismo d’azione per il quale sono stati sviluppati, ma possono interferire con l’espressione delle proteine cellulari, aumentandone, o diminuendone l’espressione e di conseguenza attivando o disattivando vie biologiche. Carnosina e carnosinolo non inducono una variazione nell’espressione delle proteine in cellule sane. Questo conferma la sicurezza delle molecole, soprattutto prevedendone un uso come terapia cronica. In futuro l’effetto del trattamento andrà valutato su cellule in condizioni patologiche, per comprendere se, in queste condizioni, carnosina o carnosinolo riescono a influenzare vie metaboliche e risposte cellulari. Sebbene ci siano ancora diverse domande che sono rimaste senza risposta, i dati ottenuti in questo elaborato hanno portato all’aumento della conoscenza del meccanismo d’azione di carnosina e derivati e all’identificazione di composti inibitori della carnosinasi.
β-alanil-L-histidine (i.e. carnosine) is an endogenous peptide that have been extensively characterized for a number of in vitro properties (i.e. metal chelating, antioxidant, reactive carbonyl species quenching). Several clinical trials highlighted the potential benefits of carnosine in the treatment of oxidative stress-based diseases, although the in vivo mechanism of action is not known, yet. The research project herein tries to expand upon the in vivo mechanism of action of carnosine. New analytical methods have been developed by means of liquid chromatography – tandem mass spectrometry for the quantification of histidine dipeptides, their derivatives, and the adducts formed with reactive carbonyl species into biospecimens. A first step was the implementation of hydrophilic interaction chromatography to skip some sample preparation steps and to reduce the chance of systematic errors. The method allowed the quantification of carnosine and carnosinol (a carnosine derivative stable to carnosinase) in biospecimens. Carnosinol tissue distribution in animal models of metabolic syndrome was determined and carnosinol-acrolein adduct was detected for the first time in liver matrices. This finding experimentally confirmed the reactive carbonyl species (RCS quenching activity of histidine dipeptides and derivatives in vivo. However, the metabolic instability of carnosinolHNE adduct was proved and such an evidence requires further studies aiming at understanding the metabolic fate of RCS-adducts to characterize their disposal. Subsequently, a new method for the measurement of carnosine hydrolysis in serum was developed as well. Human serum carnosinase has been identified as the enzyme responsible for such an activity. Compared to other published assays, the method employs a direct detection of the substrate and the use of less sample. Competition experiments with either natural derivatives or other molecules were set to identify hit compounds acting as carnosinase inhibitors. The collected data were shared with computational chemists who identified putative hit compounds via docking, virtual screening, and molecular dynamic approaches. Furthermore, a novel carnosine mechanism of action was studied starting from the evidence that carnosine can prevent the formation of protein adducts with 3,4- dihydroxyphenylglycolaldehyde (DOPEGAL) (i.e. an aldehyde intermediate of norepinephrine metabolism). This could be relevant for the in vivo mode of action of carnosine since DOPEGAL can accumulate in cells because of oxidative stress and as it covalently binds proteins, it can alter their structures and functions. Carnosine quenching activity via the formation of an Amadori product with DOPEGAL was determined in vitro and in cell lysates producing DOPEGAL from enzymatic transformation of norepinephrine. Future studies should be done to characterize the metabolic stability of the adduct and its formation in biospecimens as potential biomarker of norepinephrine toxicity. Finally, the project included proteomics studies on human umbilical vein cells (HUVECs) to assess the impact of carnosine and carnosinol on protein expression. It is widely recognized that drugs exert their pharmacological effects also by an alteration of biological pathways by modifying protein expression. Carnosine and carnosinol have little or no impact on protein expression as detectable on proteome or secretome of healthy endothelial cells. In the future the impact on pathological cells should be carried out as well. These data support the hypothesis of a low toxicity for these molecules, making them suitable candidates for a chronic administration. Although a lot of questions are still unanswered, these data have given new insights in the mechanism of action of carnosine and in the discovery of molecules acting either as carnosine-like compounds or as carnosinase inhibitors.
APA, Harvard, Vancouver, ISO, and other styles
9

Painelli, Vitor de Salles. "Efeitos de 12 semanas de treinamento intermitente de alta intensidade sobre as concentrações intramusculares de carnosina." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/39/39132/tde-30112017-111317/.

Full text
Abstract:
INTRODUÇÃO: A carnosina é um dipeptídeo com capacidade tamponante presente no músculo esquelético, que pode ser obtido pela ingestão de carnes. Estudos transversais relatam que atletas engajados em exercícios de alta intensidade possuem um maior conteúdo de carnosina muscular (CarnM) comparados a destreinados, sugerindo que o treinamento pode modular a CarnM, apesar da ausência de estudos longitudinais. OBJETIVO: Investigar os efeitos do treinamento intermitente (TI) de alta intensidade sobre a CarnM e seus genes associados. MÉTODOS: Vinte homens saudáveis e vegetarianos (eliminando a influência da dieta) foram pareados pelo consumo máximo de oxigênio (VO2máx), e aleatoriamente designados a um grupo Controle (C, N=10) ou Treinado (T, N=10). O grupo T realizou TI em cicloergômetro 3 dias por semana durante 12 semanas, com progressão do volume (6-12 séries) e intensidade (140-170% do limiar de lactato [LL]). O grupo C manteve a rotina habitual. Antes e após a intervenção, biópsias musculares foram realizadas para a determinação da CarnM, da expressão de genes relacionados à CarnM e da capacidade tamponante muscular in vitro (βΜinvitro). Foram realizados teste de Wingate e VO2máx para a avaliação do trabalho total (TT), do VO2máx, dos limiares ventilatórios (LV) e do LL. Foi conduzido o Modelo Misto para análise dos dados. RESULTADOS: Um efeito de interação foi observado para CarnM (F = 4.72; P=0.04), com aumentos significantes para o grupo T (Pré: 15.8±5.7 e Pós: 20.6±5.3 mmoL/kg músculo seco; +36.0%, P=0.01) e nenhuma alteração no grupo C (Pré: 14.3±5.3 e Pós: 15.0±4.9 mmoL/Kg músculo seco; +6.3%, P=0.99). Houve melhora no TT, LV, LL, VO2máx e βΜinvitro no grupo T (todos P<0.05), mas sem mudanças no grupo C (P>0.05). Não houve alteração na expressão gênica das enzimas e transportadores avaliados nos grupos T ou C. CONCLUSÃO: Este estudo sugere que o TI pode aumentar a CarnM, sem alterar os seus genes. Tal aumento, associado ao da βΜinvitro, pode ajudar a explicar o potente efeito deste tipo de treino sobre a aptidão física e cardiorrespiratória
INTRODUCTION: Carnosine is a dipeptide with buffering capacity present within the skeletal muscle, which can be obtained by meat ingestion. Cross-sectional studies report that athletes engaged in high-intensity exercises have a greater muscle carnosine (MCarn) content compared to their untrained counterparts, suggesting that exercise training can modulate MCarn, despite of the absence of longitudinal studies. OBJECTIVE: To investigate the effects of high-intensity intermittent training (HIIT) on CarnM and its associated genes. METHODS: Twenty healthy and vegetarian men (eliminating dietary influences) were matched by maximal oxygen uptake (VO2máx), and randomly assigned to a Control (C, N = 10) or Trained (T, N = 10) group. The T group performed HIIT on cycle ergometer 3 days per week for 12 weeks, with progressive volume (6-12 series) and intensity (140-170% lactate threshold [LT]). The C group kept their usual routine. Prior to the intervention, muscle biopsies were performed for MCarn determination, expression MCarn-related genes and the muscle buffering capacity in vitro (βΜinvitro). Wingate and VO2máx tests were performed to evaluate total work done (TWD), VO2máx, ventilatory thresholds (VT) and LT. The Mixed Model was conducted for data analysis. RESULTS: An interaction effect was observed for MCarn (F = 4.72, P = 0.04), with significant increases for the T group (Pre: 15.8 ± 5.7 and Post: 20.6 ± 5.0 mmoL.kg-1 dry muscle; +36%; P = 0.01), but not in C (Pre: 14.3 ± 5.3 and Post: 15.0 ± 4.9 mmoL.kg-1 dry muscle; +6.3%, P = 0.99). There was no change in the gene expression of the enzymes and transporters evaluated in the T or C groups. There was an improvement in TWD, VT, LT, VO2máx and βΜinvitro in the T group (all P<0.05), but no changes in C (P>0.05). CONCLUSION: This study suggests that HIIT can increase MCarn without altering its genes. This increase, associated with βΜinvitro, may help to explain the potent effect of this type of training on physical and cardiorespiratory fitness
APA, Harvard, Vancouver, ISO, and other styles
10

Painelli, Vitor de Salles. "Influência do estado de treinamento sobre o desempenho físico em resposta à suplementação de beta-alanina." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/39/39132/tde-07072014-155832/.

Full text
Abstract:
Estudos recentes têm demonstrado que a suplementação de beta-alanina (BA) pode melhorar o desempenho físico. O mecanismo proposto para tal resultado envolve o aumento das concentrações intramusculares de carnosina, um dipeptídeo cuja função mais bem atribuída é a de manutenção do equilíbrio ácido-básico. Apesar do emergente corpo literário acerca dos efeitos ergogênicos da suplementação de BA, a maior parte das evidências provém de estudos conduzidos com indivíduos não treinados ou fisicamente ativos, enquanto os estudos com indivíduos treinados são escassos, e seus resultados, controversos. Tem sido especulado que a diferença na capacidade tamponante muscular entre indivíduos treinados e não treinados é um possível fator mascarando o efeito ergogênico da suplementação de BA em indivíduos treinados, já que têm sido demonstrado que este perfil de indivíduos possui maior capacidade tamponante e conteúdo muscular de carnosina. Assim, o objetivo do presente estudo foi investigar a influência do estado de treinamento sobre o desempenho físico intermitente de membros inferiores em resposta à suplementação de BA. Para tanto, 40 homens jovens e saudáveis foram recrutados para participar do estudo, e divididos em dois grupos de acordo com o seu estado de treinamento [ciclistas treinados (T) ou indivíduos não treinados (NT)]. Os participantes foram aleatoriamente designados a um grupo suplementado com BA ou placebo (dextrose - PL), provendo quatro condições experimentais: NTPL, NTBA, TPL e TBA. A suplementação foi realizada com a ingestão de 6.4 gramas de BA ou PL por dia, durante 4 semanas. Antes e após o período de suplementação, os participantes completaram 4 séries do teste de Wingate para membro inferior, com 30 segundos de duração cada uma e 3 minutos de descanso entre elas. O trabalho total realizado foi significantemente aumentado após o período de suplementação em ambos os grupos NTBA (+1349 ± 1411 kJ; P = 0.03) e TBA (+1978 ± 1508 kJ; P = 0.002), foi significantemente reduzido no grupo NTPL (-1385 ± 2815 kJ; P = 0.03), e não se alterou no grupo TPL (-219 ± 1507 kJ; P = 0.73). Comparada ao período pré-suplementação, a potência média no período pós-suplementação foi significantemente maior na série 4 para o grupo NTBA (P = 0.0004), enquanto a mesma foi maior nas séries 1, 2 e 4 (P <= 0.05) para o grupo TBA. Não foram observadas diferenças na potência média entre o período pré- e pós-suplementação para os grupos NTPL e TPL. Em conclusão, quatro semanas de suplementação de BA foram efetivas em melhorar o desempenho físico intermitente de membros inferiores em ambos os participantes treinados e não treinados. Estes dados ressaltam a eficácia ergogênica da suplementação de BA para exercícios de alta-intensidade, independentemente do estado de treinamento do indivíduo
Recent studies have demonstrated that beta-alanine (BA) supplementation can improve performance. The proposed mechanisms for this result involve an increased muscle carnosine content, a dipeptide whose function is attributed to the maintenance of acid-base balance. Even though the body of evidence surrounding the ergogenic effects of BA supplementation is increasing, most of the evidences come from studies conducted with physically active or untrained individuals, while studies with trained participants are scarce, and their results, controversial. It has been speculated that the difference in muscle buffering capacity between trained and untrained individuals is a possible factor masking the ergogenic effect of BA supplementation in trained individuals, who have already been demonstrated to have greater buffering capacity and muscle carnosine content. Therefore, the aim of this study was to investigate the influence of training status on intermittent lower-body performance in response to BA supplementation. For this purpose, forty young males were divided into two groups according to their training status (trained - T, and untrained - NT cyclists). Participants were further randomly allocated to BA or placebo (dextrose - PL) groups, providing four experimental conditions: NTPL, NTBA, TPL, TBA. BA or PL was ingested by 6.4 g·d-1, during for 4 weeks. Before and after the supplementation period, participants completed four 30-seconds lower-body Wingate bouts, separated by 3 minutes. Total work done was significantly increased following supplementation in both NTBA (+1349 ± 1411 kJ; P = 0.03) and TBA (+1978 ± 1508 kJ; P = 0.002), and it was significantly reduced in NTPL (-1385 ± 2815 kJ; P = 0.03) with no difference for TPL (-219 ± 1507 kJ; P = 0.73). Compared to pre-supplementation, post-supplementation mean power output was significantly higher in bout 4 for NTBA (P = 0.0004), and higher in bouts 1, 2 and 4 (P <= 0.05) for TBA. No differences were observed in mean power output for NTPL and TPL from pre- to post-supplementation period. In conclusion, four weeks of BA supplementation was effective at improving intermittent lower-body performance in both untrained and trained individuals. These data highlight the efficacy of BA as an ergogenic aid for high-intensity exercise regardless of the training status of the individual
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Carnosinase"

1

Halpern, Georges M. Ulcer free!: Nature's safe & effective remedy for ulcers. Garden City Park, N.Y: Square One Publishers, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moneysmith, Marie, and Jack Challem. User's Guide to Carnosine. Turner Publishing Company, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carnosine: Physiological Effects and Research Insights. Nova Science Publishers, Incorporated, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Basic Health Publications User's Guide to Carnosine: Learn How This Super-Nutrient Can Fight Aging, Boost Your Immunity, and Prevent Disease (Basic Health Publications User's Guide). Basic Health Publications, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boldyrev, Alexander A. Carnosine and Oxidative Stress in Cells and Tissues. Nova Science Publishers Inc, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Halpern, Georges M. Zinc-Carnosine: Nature's Safe and Effective Remedy for Ulcers. Square One Publishers, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kaur, Jasvinder. Concentration of anserine and carnosine in surimi wash water and their antioxidant activity. 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Preedy, Victor R., M. Takahashi, E. Biazik, M. A. Bevilacqua, and F. Gaunitz. Imidazole Dipeptides: Chemistry, Analysis, Function and Effects. Royal Society of Chemistry, The, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kyriazis, Marios. Carnosine: And Other Elixirs of Youth : The Miraculous Anti-Ageing Supplement. Watkins Publishing Ltd, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Adele, Stephen. The Carnosine Breakthrough H Blocker a New Science in Muscular Performance. iSatori Technologies, LLC, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Carnosinase"

1

Volkmar, Fred R. "Carnosine." In Encyclopedia of Autism Spectrum Disorders, 1. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4614-6435-8_1384-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Volkmar, Fred R. "Carnosine." In Encyclopedia of Autism Spectrum Disorders, 529. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1698-3_1384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Volkmar, Fred R. "Carnosine." In Encyclopedia of Autism Spectrum Disorders, 823–24. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-91280-6_1384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bährle-Rapp, Marina. "Decarboxy Carnosine HCl." In Springer Lexikon Kosmetik und Körperpflege, 143. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_2670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schomburg, Dietmar, and Dörte Stephan. "Carnosine N-methyltransferase." In Enzyme Handbook 11, 97–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61030-1_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nazeran, Homer, and Sherry Blake-Greenberg. "Nanoscale Carnosine Patches Improve Organ Function." In IFMBE Proceedings, 138–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14998-6_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gjessing, L. R., H. A. Lunde, L. MØrkrid, J. F. Lenney, and O. Sjaastad. "Inborn errors of carnosine and homocarnosine metabolism." In Neurotransmitter Actions and Interactions, 91–106. Vienna: Springer Vienna, 1990. http://dx.doi.org/10.1007/978-3-7091-9050-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chevalot, Isabelle, Elmira Arab-Tehrany, Eric Husson, and Christine Gerardin. "Application of Carnosine and Its Functionalised Derivatives." In Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants, 421–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527681754.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tanigawa, T., T. Yoshikawa, Y. Naito, T. Yoneta, S. Ueda, H. Oyamada, T. Takemura, et al. "Antioxidative Action of Zinc-Carnosine Compound Z-103." In Advances in Experimental Medicine and Biology, 223–28. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5730-8_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Silbernagl, S., and K. Völker. "RENAL TRANSPORT AND METABOLISM OF CARNOSINE IN THE RAT." In Molecular Nephrology, edited by Walter G. Guder and Zoran Kovačević, 21–26. Berlin, Boston: De Gruyter, 1987. http://dx.doi.org/10.1515/9783110884746-006.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Carnosinase"

1

Weigand, T., CP Schmitt, P. Nawroth, G. Vistoli, and V. Peters. "Carnosinase-Inhibition als Schutz vor Diabetischer Nephropathie." In Late Breaking Abstracts: – Diabetes Kongress 2017 – 52. Jahrestagung der DDG. Georg Thieme Verlag KG, 2017. http://dx.doi.org/10.1055/s-0037-1603540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Raum, J., J. Qiu, B. Yard, and HP Hammes. "Überexpression der Serum-Carnosinase aggraviert Schädigung der Mikrogefäße bei diabetischer Retinopathie im Mausmodell." In Diabetes Kongress 2019 – 54. Jahrestagung der DDG. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1688257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Qiu, J., S. Hauske, S. Zhang, A. Rodriguez, T. Albrecht, D. Pastene, B. Krämer, V. Peters, B. Yard, and A. Kannt. "Identification and characterisation of carnostatine (SAN9812), a potent and selective carnosinase (CN1) inhibitor with in-vivo activity." In Diabetes Kongress 2018 – 53. Jahrestagung der DDG. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rodriguez, MA. "Detection of Serum carnosinase 1 in urine of healthy individuals and type 2 diabetic patients: correlation with albuminuria and renal function." In Diabetes Kongress 2018 – 53. Jahrestagung der DDG. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Трушина, Элеонора Николаевна. "ABOUT THE MECHANISMS OF THE PROTECTIVE INFLUENCE OF CARNOSINE IN NON-ALCOHOLIC FATTY LIVER DISEASE." In Наука. Исследования. Практика: сборник избранных статей по материалам Международной научной конференции (Санкт-Петербург, Декабрь 2021). Crossref, 2022. http://dx.doi.org/10.37539/srp300.2021.75.64.005.

Full text
Abstract:
В статье приводится краткий обзор литературы о механизмах протективного влияния карнозина при неалкогольной жировой болезни печени. The article provides a brief review of the literature on the mechanisms of the protective effect of carnosine in non-alcoholic fatty liver disease.
APA, Harvard, Vancouver, ISO, and other styles
6

Rahimi, Rahmatollah, Maryam Khosravi, and Ebrahim Safavi. "Synthesis of L-Carnosine and its Applications in Biomedical Field." In The 18th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2014. http://dx.doi.org/10.3390/ecsoc-18-a047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Efird, JIMMY, and Charulata Jindal. "The Prophylaxis Potential of Carnosine in the Management of COVID-19." In The 3rd International Electronic Conference on Environmental Research and Public Health —Public Health Issues in the Context of the COVID-19 Pandemic. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/ecerph-3-09101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Demukhamedova, D., N. Alieva, and N. M. Gojayev. "Effect of the transition metals on the carnosine coordination complexes structure." In 2009 International Conference on Application of Information and Communication Technologies (AICT). IEEE, 2009. http://dx.doi.org/10.1109/icaict.2009.5372539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Мустафина, Оксана Константиновна, Элеонора Николаевна Трушина, Николай Александрович Ригер, and Илья Владимирович Аксенов. "EVALUATION OF THE EFFECT OF CARNOSINE AND ALPHA-LIPOIC ACID ON THE HEMATOLOGICAL PARAMETERS OF WISTAR RATS WITH INDUCED FATTY LIVER DISEASE." In Наука. Исследования. Практика: сборник избранных статей по материалам Международной научной конференции (Санкт-Петербург, Октябрь 2020). Crossref, 2020. http://dx.doi.org/10.37539/srp293.2020.74.75.013.

Full text
Abstract:
В исследовании установлено, что использование высококалорийного холинодефицитного рациона (ВКХДР) у крыс привело к снижению уровня гемоглобина и эритроцитарных показателей, лейкоцитозу. Не выявлено достоверного влияния ВКХДР на общее количество тромбоцитов и эритроцитов. Добавление в рационы крыс карнозина и альфа-липоевой кислоты не оказало протективного влияния на изменения гематологического статуса в условиях развития НАЖБП. Studies on the effect of minor biologically active substances on the hematological parameters of rats against the background of induced fatty liver dystrophy. The addition of carnosine and alpha-lipoic acid to rat diets did not have a significant protective effect on changes in the hematological status in conditions of non-alcoholic fatty liver disease.
APA, Harvard, Vancouver, ISO, and other styles
10

Wu, CC, SL Hsieh, PYL Lai, S. Hsieh, and JJ Wang. "PO-148 Suppression of carnosine on adhesion and extravasation in human colorectal cells." In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.189.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Carnosinase"

1

Guerreiro, Hugo, Rute Borrego, and Lino Mendes. β-alanine supplementation for athletic performance in female athletes: a protocol for a systematic review of randomized control trials. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, June 2022. http://dx.doi.org/10.37766/inplasy2022.6.0041.

Full text
Abstract:
Review question / Objective: The Effect of β-alanine Supplementation on Athletic Performance in Female Athletes: a Systematic Review of Randomized Control Trials. Condition being studied: β-alanine is an endogenously produced non-proteinogenic amino acid that can also be obtained through the consumption of foods such as meat. The ergogenic effect of β-alanine supplementation is linked to the levels of carnosine (a cytoplasmatic dipeptide to which β-alanine is a precursor). It has become one of the most common sports nutrition ergogenic aids, with typical doses at about 4 to 6 g per day that are ideal to elevate muscle carnosine concentrations by up 80%. This elevation happens regardless of high or low baseline levels (common in vegetarians, women and in older subjects) and chronic supplementation (and the associated increase of muscle carnosine levels) is known to be of particular interest in improving high-intensity exercise performance by enhancing intracellular H+ buffering, reducing muscle acidosis. It has been mostly proposed as beneficial in exercises between 60 seconds and 4 minutes, but some positive effects have been noted in other sport-related outcomes. The fact that women tend to have less muscle carnosine content then man, in addition to other characteristics of the female athlete, highlights the importance of understanding if the outcomes and magnitude of the effects already found and stablished in male athletes are, in fact, equivalent in the female athlete.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography