Journal articles on the topic 'Carina Dwarf Spheroidal Galaxy'

To see the other types of publications on this topic, follow the link: Carina Dwarf Spheroidal Galaxy.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Carina Dwarf Spheroidal Galaxy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mateo, Mario, Denise Hurley-Keller, and James Nemec. "Dwarf Cepheids in the Carina Dwarf Spheroidal Galaxy." Astronomical Journal 115, no. 5 (May 1998): 1856–68. http://dx.doi.org/10.1086/300330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mighell, Kenneth J. "WFPC2 Observations of the Carina Dwarf Spheroidal Galaxy." Astronomical Journal 114 (October 1997): 1458. http://dx.doi.org/10.1086/118576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carlin, J. L., S. R. Majewski, D. I. Casetti-Dinescu, and T. M. Girard. "Preliminary proper motion analysis of the Carina dwarf spheroidal." Proceedings of the International Astronomical Union 3, S248 (October 2007): 492–93. http://dx.doi.org/10.1017/s174392130801990x.

Full text
Abstract:
AbstractWe present preliminary results from a proper motion study of the Carina dwarf spheroidal galaxy. Our proper motions show a scatter of ~1.1 mas yr−1 per Carina member star, and we determinate the mean ensemble motion to an accuracy of ~7 mas century−1. While this is a precise measurement of the relative proper motions of Carina members, our correction to an absolute frame is limited by the small number of measured QSOs in the field.
APA, Harvard, Vancouver, ISO, and other styles
4

Mateo, Mario, Edward W. Olszewski, Carlton Pryor, Douglas L. Welch, and Philippe Fischer. "The Carina dwarf spheroidal galaxy - How dark is it?" Astronomical Journal 105 (February 1993): 510. http://dx.doi.org/10.1086/116449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Godwin, P. J. "Core and Tidal Radii of the Carina Dwarf Spheroidal Galaxy from UK Schmidt Telescope Plates." Symposium - International Astronomical Union 113 (1985): 77–79. http://dx.doi.org/10.1017/s0074180900147254.

Full text
Abstract:
Core and tidal radii of the Carina dwarf galaxy are determined by fitting King dynamical models to number count radial profiles, derived from COSMOS data. These values are compared with those of the other six known Local Group dwarf spheroidals.
APA, Harvard, Vancouver, ISO, and other styles
6

Kuhn, J. R., Horace A. Smith, and Suzanne L. Hawley. "Tidal Disruption and Tails from the Carina Dwarf Spheroidal Galaxy." Astrophysical Journal 469, no. 2 (October 1, 1996): L93—L96. http://dx.doi.org/10.1086/310270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fabrizio, Michele, Ivan Ferraro, Giacinto Iannicola, Giuseppe Bono, Mario Nonino, and Frédéric Thévenin. "On the kinematic structure of the Carina dwarf spheroidal galaxy." Journal of Physics: Conference Series 383 (October 1, 2012): 012009. http://dx.doi.org/10.1088/1742-6596/383/1/012009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

de Boer, T. J. L., E. Tolstoy, B. Lemasle, A. Saha, E. W. Olszewski, M. Mateo, M. J. Irwin, and G. Battaglia. "The episodic star formation history of the Carina dwarf spheroidal galaxy." Astronomy & Astrophysics 572 (November 18, 2014): A10. http://dx.doi.org/10.1051/0004-6361/201424119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Monelli, M., A. R. Walker, G. Bono, R. Buonanno, F. Caputo, M. Castellani, V. Castellani, et al. "Short and long period variable stars in the Carina dwarf Spheroidal galaxy." International Astronomical Union Colloquium 193 (2004): 133–37. http://dx.doi.org/10.1017/s0252921100010484.

Full text
Abstract:
AbstractWe present first results concerning the detection of variable stars in the Carina dwarf Spheroidal from B, V images collected with the 4-m CTIO telescope. We show a sample of candidate variables spanning from the tip of the Red Giant Branch down to the Main Sequence turn off. Finally, we discuss the future photometric and spectroscopic developments of this project.
APA, Harvard, Vancouver, ISO, and other styles
10

Mateo, Mario, Denise Hurley-Keller, and James Nemec. "Erratum: Dwarf Cepheids in the Carina Dwarf Spheroidal Galaxy [Astron. J. [BF]115[/BF], 1856 (1998)]." Astronomical Journal 117, no. 1 (January 1999): 638. http://dx.doi.org/10.1086/300662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Koch, Andreas, Eva K. Grebel, Rosemary F. G. Wyse, Jan T. Kleyna, Mark I. Wilkinson, Daniel R. Harbeck, Gerard F. Gilmore, and N. Wyn Evans. "Complexity on Small Scales: The Metallicity Distribution of the Carina Dwarf Spheroidal Galaxy." Astronomical Journal 131, no. 2 (February 2006): 895–911. http://dx.doi.org/10.1086/499490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ravi, V., R. M. Shannon, and A. Jameson. "A FAST RADIO BURST IN THE DIRECTION OF THE CARINA DWARF SPHEROIDAL GALAXY." Astrophysical Journal 799, no. 1 (January 14, 2015): L5. http://dx.doi.org/10.1088/2041-8205/799/1/l5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lemasle, B., V. Hill, E. Tolstoy, and K. Venn. "Flames High Resolution Spectroscopy of RGB Stars in the Carina Dwarf Spheroidal Galaxy." EAS Publications Series 48 (2011): 73–75. http://dx.doi.org/10.1051/eas/1148016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Susmitha, A., A. Koch, and T. Sivarani. "Abundance analysis of a CEMP-no star in the Carina dwarf spheroidal galaxy." Astronomy & Astrophysics 606 (October 2017): A112. http://dx.doi.org/10.1051/0004-6361/201730774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Vivas, A. Katherina, and Mario Mateo. "A COMPREHENSIVE, WIDE-FIELD STUDY OF PULSATING STARS IN THE CARINA DWARF SPHEROIDAL GALAXY." Astronomical Journal 146, no. 6 (October 25, 2013): 141. http://dx.doi.org/10.1088/0004-6256/146/6/141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mould, J. R., G. D. Bothun, P. J. Hall, L. Staveley-Smith, and A. E. Wright. "An upper limit on the H I content of the Carina dwarf spheroidal galaxy." Astrophysical Journal 362 (October 1990): L55. http://dx.doi.org/10.1086/185846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lemasle, B., V. Hill, E. Tolstoy, K. A. Venn, M. D. Shetrone, M. J. Irwin, T. J. L. de Boer, E. Starkenburg, and S. Salvadori. "VLT/FLAMES spectroscopy of red giant branch stars in the Carina dwarf spheroidal galaxy." Astronomy & Astrophysics 538 (February 2012): A100. http://dx.doi.org/10.1051/0004-6361/201118132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bono, G., P. B. Stetson, A. R. Walker, M. Monelli, M. Fabrizio, A. Pietrinferni, E. Brocato, et al. "On the Stellar Content of the Carina Dwarf Spheroidal Galaxy1." Publications of the Astronomical Society of the Pacific 122, no. 892 (June 2010): 651–61. http://dx.doi.org/10.1086/653590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hayashi, Kohei, Michele Fabrizio, Ewa L. Łokas, Giuseppe Bono, Matteo Monelli, Massimo Dall’Ora, and Peter B. Stetson. "Dark halo structure in the Carina dwarf spheroidal galaxy: joint analysis of multiple stellar components." Monthly Notices of the Royal Astronomical Society 481, no. 1 (August 23, 2018): 250–61. http://dx.doi.org/10.1093/mnras/sty2296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sanders, R. H. "Low-surface-brightness spheroidal galaxies as Milgromian isothermal spheres." Monthly Notices of the Royal Astronomical Society 507, no. 1 (July 19, 2021): 803–8. http://dx.doi.org/10.1093/mnras/stab2053.

Full text
Abstract:
ABSTRACT I consider a sample of eight pressure-supported low-surface-brightness galaxies in terms of Milgrom’s modified Newtonian dynamics (MOND). These objects include seven nearby dwarf spheroidal galaxies – Sextans, Carina, Leo II, Sculptor, Draco, Leo I, Fornax, and the ultra-diffuse galaxy DF44. The objects are modelled as Milgromian isotropic isothermal spheres characterized by two parameters that are constrained by observations: the constant line-of-sight velocity dispersion and the central surface density. The velocity dispersion determines the total mass, and, with the implied mass-to-light ratio, the central surface brightness. This then specifies the radial run of surface brightness over the entire isothermal sphere. For these objects, the predicted radial distribution of surface brightness is shown to be entirely consistent with observations. This constitutes a success for MOND that is independent of the reduced dynamical mass.
APA, Harvard, Vancouver, ISO, and other styles
21

Koch, Andreas, Eva K. Grebel, Gerard F. Gilmore, Rosemary F. G. Wyse, Jan T. Kleyna, Daniel R. Harbeck, Mark I. Wilkinson, and N. Wyn Evans. "COMPLEXITY ON SMALL SCALES. III. IRON AND α ELEMENT ABUNDANCES IN THE CARINA DWARF SPHEROIDAL GALAXY." Astronomical Journal 135, no. 4 (March 13, 2008): 1580–97. http://dx.doi.org/10.1088/0004-6256/135/4/1580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Majewski, Steven R., James C. Ostheimer, Richard J. Patterson, William E. Kunkel, Kathryn V. Johnston, and Doug Geisler. "Exploring Halo Substructure with Giant Stars. II. Mapping the Extended Structure of the Carina Dwarf Spheroidal Galaxy." Astronomical Journal 119, no. 2 (February 2000): 760–76. http://dx.doi.org/10.1086/301228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Rizzi, Luca, Enrico V. Held, Gianpaolo Bertelli, and Ivo Saviane. "Clues to the Evolution of the Carina Dwarf Spheroidal Galaxy from the Color Distribution of its Red Giant Stars." Astrophysical Journal 589, no. 2 (April 29, 2003): L85—L88. http://dx.doi.org/10.1086/376400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Santana, Felipe A., Ricardo R. Muñoz, T. J. L. de Boer, Joshua D. Simon, Marla Geha, Patrick Côté, Andrés E. Guzmán, Peter Stetson, and S. G. Djorgovski. "A MEGACAM SURVEY OF OUTER HALO SATELLITES. VI. THE SPATIALLY RESOLVED STAR-FORMATION HISTORY OF THE CARINA DWARF SPHEROIDAL GALAXY." Astrophysical Journal 829, no. 2 (September 26, 2016): 86. http://dx.doi.org/10.3847/0004-637x/829/2/86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Smecker-Hane, Tammy A., Peter B. Stetson, James E. Hesser, and Mathew D. Lehnert. "The stellar populations of the Carina dwarf spheroidal Galaxy. 1: A new color-magnitude diagram for the giant and horizontal branches." Astronomical Journal 108 (August 1994): 507. http://dx.doi.org/10.1086/117087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Munoz, Ricardo R., Steven R. Majewski, Simone Zaggia, William E. Kunkel, Peter M. Frinchaboy, David L. Nidever, Denija Crnojevic, et al. "Exploring Halo Substructure with Giant Stars. XI. The Tidal Tails of the Carina Dwarf Spheroidal Galaxy and the Discovery of Magellanic Cloud Stars in the Carina Foreground." Astrophysical Journal 649, no. 1 (September 20, 2006): 201–23. http://dx.doi.org/10.1086/505620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Reichert, M., C. J. Hansen, M. Hanke, Á. Skúladóttir, A. Arcones, and E. K. Grebel. "Neutron-capture elements in dwarf galaxies." Astronomy & Astrophysics 641 (September 2020): A127. http://dx.doi.org/10.1051/0004-6361/201936930.

Full text
Abstract:
Context. We present a large homogeneous set of stellar parameters and abundances across a broad range of metallicities, involving 13 classical dwarf spheroidal (dSph) and ultra-faint dSph (UFD) galaxies. In total, this study includes 380 stars in Fornax, Sagittarius, Sculptor, Sextans, Carina, Ursa Minor, Draco, Reticulum II, Bootes I, Ursa Major II, Leo I, Segue I, and Triangulum II. This sample represents the largest, homogeneous, high-resolution study of dSph galaxies to date. Aims. With our homogeneously derived catalog, we are able to search for similar and deviating trends across different galaxies. We investigate the mass dependence of the individual systems on the production of α-elements, but also try to shed light on the long-standing puzzle of the dominant production site of r-process elements. Methods. We used data from the Keck observatory archive and the ESO reduced archive to reanalyze stars from these 13 classical dSph and UFD galaxies. We automatized the step of obtaining stellar parameters, but ran a full spectrum synthesis (1D, local thermal equilibrium) to derive all abundances except for iron to which we applied nonlocal thermodynamic equilibrium corrections where possible. Results. The homogenized set of abundances yielded the unique possibility of deriving a relation between the onset of type Ia supernovae and the stellar mass of the galaxy. Furthermore, we derived a formula to estimate the evolution of α-elements. This reveals a universal relation of these systems across a large range in mass. Finally, we show that between stellar masses of 2.1 × 107 M⊙ and 2.9 × 105 M⊙, there is no dependence of the production of heavy r-process elements on the stellar mass of the galaxy. Conclusions. Placing all abundances consistently on the same scale is crucial to answering questions about the chemical history of galaxies. By homogeneously analyzing Ba and Eu in the 13 systems, we have traced the onset of the s-process and found it to increase with metallicity as a function of the galaxy’s stellar mass. Moreover, the r-process material correlates with the α-elements indicating some coproduction of these, which in turn would point toward rare core-collapse supernovae rather than binary neutron star mergers as a host for the r-process at low [Fe/H] in the investigated dSph systems.
APA, Harvard, Vancouver, ISO, and other styles
28

Majewski, Steven R., Peter M. Frinchaboy, William E. Kunkel, Robert Link, Ricardo R. Muñoz, James C. Ostheimer, Christopher Palma, Richard J. Patterson, and Doug Geisler. "Exploring Halo Substructure with Giant Stars. VI. Extended Distributions of Giant Stars around the Carina Dwarf Spheroidal Galaxy: How Reliable Are They?" Astronomical Journal 130, no. 6 (December 2005): 2677–700. http://dx.doi.org/10.1086/444535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

VandenBerg, Don A., Peter B. Stetson, and Thomas M. Brown. "COLOR–MAGNITUDE DIAGRAM CONSTRAINTS ON THE METALLICITIES, AGES, AND STAR FORMATION HISTORY OF THE STELLAR POPULATIONS IN THE CARINA DWARF SPHEROIDAL GALAXY." Astrophysical Journal 805, no. 2 (May 26, 2015): 103. http://dx.doi.org/10.1088/0004-637x/805/2/103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Eskridge, P. B. "Dwarf Spheroidal Galaxies." Symposium - International Astronomical Union 161 (1994): 525–33. http://dx.doi.org/10.1017/s0074180900048026.

Full text
Abstract:
Dwarf Spheroidal (dSph) galaxies are the faintest baryonic systems recognized as galaxies. Understanding the structure and stellar populations of these systems is critical for the modelling of their formation and evolution, and by extension, for understanding the general problem of galaxy formation and evolution. Further, as dSphs are the only available probes of the distant halo of the Galaxy, understanding their structure is a crucial step in the study of the gravitational potential of the halo and the mass of the Galaxy. I will not attempt to review fully all current topics of dSph research. Instead, I will concentrate specifically on those issues that are directly related (as I see it) to the overall topic of wide-field imaging. Recent reviews covering other aspects of dSph research have been written by DaCosta (1988, 1992) and Pryor (1992).
APA, Harvard, Vancouver, ISO, and other styles
31

Zijlstra, A. A., G. Dudziak, and J. R. Walsh. "The Planetary Nebulae in the Sagittarius Dwarf Galaxy." Symposium - International Astronomical Union 180 (1997): 479–80. http://dx.doi.org/10.1017/s007418090013181x.

Full text
Abstract:
There are 9 dwarf spheroidal galaxies in the neighbourhood of the Galaxy. The last to be discovered is in Sagittarius (Ibata et al 1994), situated at a distance of 25 kpc and is interacting with the Galaxy. Its mass is ≥107 M⊙ making it perhaps the largest local dwarf spheroidal. The only other dwarf spheroidal known to contain a planetary nebula was Fornax (Danziger et al 1978).
APA, Harvard, Vancouver, ISO, and other styles
32

Kordopatis, G., N. C. Amorisco, N. W. Evans, G. Gilmore, and S. E. Koposov. "Chemodynamic subpopulations of the Carina dwarf galaxy." Monthly Notices of the Royal Astronomical Society 457, no. 2 (February 1, 2016): 1299–307. http://dx.doi.org/10.1093/mnras/stw073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ripepi, V., M. Dall’Ora, L. Pulone, M. Castellani, C. Corsi, M. Monelli, G. Bono, et al. "The Carina Dwarf Galaxy Variable Star Population." International Astronomical Union Colloquium 185 (2002): 134–35. http://dx.doi.org/10.1017/s0252921100015773.

Full text
Abstract:
AbstractWe present some preliminary results based on new observations of the variable stars belonging to the Carina Dwarf Galaxy (DG). Photometric data were collected with the two wide field imagers available at ESO (WFI@2.2.) and CTIO (4m prime focus).
APA, Harvard, Vancouver, ISO, and other styles
34

Mould, Jeremy, and Jerome Kristian. "The dwarf spheroidal galaxy Andromeda I." Astrophysical Journal 354 (May 1990): 438. http://dx.doi.org/10.1086/168706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Salucci, Paolo, Mark I. Wilkinson, Matthew G. Walker, Gerard F. Gilmore, Eva K. Grebel, Andreas Koch, Christiane Frigerio Martins, and Rosemary F. G. Wyse. "Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws." Monthly Notices of the Royal Astronomical Society 420, no. 3 (January 9, 2012): 2034–41. http://dx.doi.org/10.1111/j.1365-2966.2011.20144.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Saha, A., D. G. Monet, and P. Seitzer. "RR Lyrae stars in the Carina dwarf galaxy." Astronomical Journal 92 (August 1986): 302. http://dx.doi.org/10.1086/114161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Skúladóttir, Á., S. M. Andrievsky, E. Tolstoy, V. Hill, S. Salvadori, S. A. Korotin, and M. Pettini. "Sulphur in the Sculptor dwarf spheroidal galaxy." Astronomy & Astrophysics 580 (August 2015): A129. http://dx.doi.org/10.1051/0004-6361/201525956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Paltoglou, George, and K. C. Freeman. "Dynamics of the Fornax Dwarf Spheroidal Galaxy." Symposium - International Astronomical Union 127 (1987): 447–48. http://dx.doi.org/10.1017/s0074180900185675.

Full text
Abstract:
The mass to light ratio of the inner parts of the Fornax system is 3.2 ± 1.1. Its major axis rotation is only 3.4 ± 2.4 km s-1 over ± 1 kpc, which argues against its origin as a stripped dwarf irregular.
APA, Harvard, Vancouver, ISO, and other styles
39

Piatek, Slawomir, Carlton Pryor, Taft E. Armandroff, and Edward W. Olszewski. "Structure of the Draco Dwarf Spheroidal Galaxy." Astronomical Journal 123, no. 5 (May 2002): 2511–24. http://dx.doi.org/10.1086/339698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gallagher, John S. ,. III, and Rosemary F. G. Wyse. "Dwarf spheroidal galaxies: Keystones of galaxy evolution." Publications of the Astronomical Society of the Pacific 106 (December 1994): 1225. http://dx.doi.org/10.1086/133500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Tolstoy, Eline. "Detailed Studies of the Sculptor Dwarf Spheroidal Galaxy in the Milky Way halo." Proceedings of the International Astronomical Union 9, S298 (May 2013): 53–58. http://dx.doi.org/10.1017/s1743921313006194.

Full text
Abstract:
AbstractIn and around the Milky Way halo there are a number of low mass low luminosity dwarf galaxies. Several of these systems have been studied in great detail. I describe recent photometric and spectroscopic studies of the Sculptor dwarf spheroidal galaxy made as part of the DART survey of nearby dwarf spheroidal galaxies.
APA, Harvard, Vancouver, ISO, and other styles
42

Lanfranchi, G. A., F. Matteucci, and G. Cescutti. "Detailed chemical evolution of Carina and Sagittarius dwarf spheroidal galaxies." Astronomy & Astrophysics 453, no. 1 (June 9, 2006): 67–75. http://dx.doi.org/10.1051/0004-6361:20054627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Koch, A., M. Wilkinson, E. K. Grebel, D. Harbeck, J. Kleyna, R. Wyse, G. Gilmore, and W. Evans. "The chemical evolution of subpopulations in the Carina dwarf spheroidal." Proceedings of the International Astronomical Union 1, no. C198 (March 2005): 134–38. http://dx.doi.org/10.1017/s1743921305003637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gonçalves, Denise R., Laura Magrini, Lucimara P. Martins, Ana M. Teodorescu, Cintia Quireza, and Gaia Lanfranchi. "Deep spectroscopy of the dwarf spheroidal NGC 185." Proceedings of the International Astronomical Union 7, S283 (July 2011): 370–71. http://dx.doi.org/10.1017/s1743921312011477.

Full text
Abstract:
AbstractDwarf galaxies are crucial to understand the formation and evolution of galaxies, since they constitute the most abundant galaxy population. Abundance ratios and their variations due to star formation and inflow/outflow of gas are key constraints to chemical evolution models. The determination of these abundances in the dwarf galaxies of the Local Universe is thus of extreme importance. NGC 185 is one of the four brightest dwarf companions of M31, but unlike the other three it has an important content of gas and dust. Interestingly enough, in an optical survey of bright nearby galaxies NGC 185 was classified as a Seyfert galaxy based on its integrated emission-line ratios in the nuclear regions. However, although its emission lines formally place it in the category of Seyfert it is probable that this galaxy does not contain a genuine active nucleus. In this contribution, we resume, firstly, our results of an empirical study of the galaxy, on which we characterise its emission-line population and obtain planetary nebulae abundance ratios (Gonçalves et al. 2012). And, secondly, we discuss our attempt to identify the possible ionization mechanisms for NGC 185 enlighting the controversial classification of this galaxy dwarf spheroidal (dSph) as well as Seyfert, via stellar population synthesis and chemical evolution modelling (Martins et al. 2011).
APA, Harvard, Vancouver, ISO, and other styles
45

Martínez-Delgado, David, Eva K. Grebel, Behnam Javanmardi, Walter Boschin, Nicolas Longeard, Julio A. Carballo-Bello, Dmitry Makarov, et al. "Mirach’s Goblin: Discovery of a dwarf spheroidal galaxy behind the Andromeda galaxy." Astronomy & Astrophysics 620 (December 2018): A126. http://dx.doi.org/10.1051/0004-6361/201833302.

Full text
Abstract:
Context. It is of broad interest for galaxy formation theory to carry out a full inventory of the numbers and properties of dwarf galaxies, both satellite and isolated, in the Local Volume. Aims. Ultra-deep imaging in wide areas of the sky with small amateur telescopes can help to complete the census of these hitherto unknown low-surface-brightness galaxies, which cannot be detected by the current resolved stellar population and HI surveys. We report the discovery of Donatiello I, a dwarf spheroidal galaxy located one degree from the star Mirach (β And) in a deep image taken with an amateur telescope. Methods. The color-magnitude diagram (CMD) obtained from follow-up observations obtained with the Gran Telescopio Canarias (La Palma, Spain) reveals that this system is beyond the local group and is mainly composed of old stars. The absence of young stars and HI emission in the ALFALFA survey is typical of quenched dwarf galaxies. Our photometry suggests a distance modulus for this galaxy of (m − M) = 27.6 ± 0.2 (3.3 Mpc), although this distance cannot yet be established securely owing to the crowding effects in our CMD. At this distance, the absolute magnitude (MV = −8.3), surface brightness (μV = 26.5 mag arcsec−2), and stellar content of Donatiello I are similar to the “classical” Milky Way companions Draco or Ursa Minor. Results. The projected position and distance of Donatiello I are consistent with this object being a dwarf satellite of the closest S0-type galaxy NGC 404 (“Mirach’s Ghost”). Alternatively, it could be one of the most isolated quenched dwarf galaxies reported so far behind the Andromeda galaxy.
APA, Harvard, Vancouver, ISO, and other styles
46

Hurley-Keller, Denise, Mario Mateo, and James Nemec. "The Star Formation History of the Carina Dwarf Galaxy." Astronomical Journal 115, no. 5 (May 1998): 1840–55. http://dx.doi.org/10.1086/300326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Battaglia, G., M. Irwin, E. Tolstoy, T. de Boer, and M. Mateo. "THE EXTENSIVE AGE GRADIENT OF THE CARINA DWARF GALAXY." Astrophysical Journal 761, no. 2 (December 5, 2012): L31. http://dx.doi.org/10.1088/2041-8205/761/2/l31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Carney, B. W., and P. Seitzer. "Deep photometry of the Draco dwarf spheroidal galaxy." Astronomical Journal 92 (July 1986): 23. http://dx.doi.org/10.1086/114131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Walker, Matthew G., Mario Mateo, Edward W. Olszewski, Rebecca Bernstein, Xiao Wang, and Michael Woodroofe. "Internal Kinematics of the Fornax Dwarf Spheroidal Galaxy." Astronomical Journal 131, no. 4 (April 2006): 2114–39. http://dx.doi.org/10.1086/500193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Roderick, T. A., H. Jerjen, G. S. Da Costa, and A. D. Mackey. "Structural analysis of the Sextans dwarf spheroidal galaxy." Monthly Notices of the Royal Astronomical Society 460, no. 1 (April 22, 2016): 30–43. http://dx.doi.org/10.1093/mnras/stw949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography