Academic literature on the topic 'Cardinality constrained optimization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cardinality constrained optimization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cardinality constrained optimization"
Kanzow, Christian, Andreas B. Raharja, and Alexandra Schwartz. "An Augmented Lagrangian Method for Cardinality-Constrained Optimization Problems." Journal of Optimization Theory and Applications 189, no. 3 (April 29, 2021): 793–813. http://dx.doi.org/10.1007/s10957-021-01854-7.
Full textBertsimas, Dimitris, and Romy Shioda. "Algorithm for cardinality-constrained quadratic optimization." Computational Optimization and Applications 43, no. 1 (November 15, 2007): 1–22. http://dx.doi.org/10.1007/s10589-007-9126-9.
Full textKanzow, Christian, Andreas B. Raharja, and Alexandra Schwartz. "Sequential optimality conditions for cardinality-constrained optimization problems with applications." Computational Optimization and Applications 80, no. 1 (July 22, 2021): 185–211. http://dx.doi.org/10.1007/s10589-021-00298-z.
Full textStephan, Rüdiger. "Cardinality constrained combinatorial optimization: Complexity and polyhedra." Discrete Optimization 7, no. 3 (August 2010): 99–113. http://dx.doi.org/10.1016/j.disopt.2010.03.002.
Full textCai, L. "Parameterized Complexity of Cardinality Constrained Optimization Problems." Computer Journal 51, no. 1 (March 6, 2007): 102–21. http://dx.doi.org/10.1093/comjnl/bxm086.
Full textBacanin, Nebojsa, and Milan Tuba. "Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint." Scientific World Journal 2014 (2014): 1–16. http://dx.doi.org/10.1155/2014/721521.
Full textXu, Fengmin, Yuhong Dai, Zhihu Zhao, and Zongben Xu. "Efficient projected gradient methods for cardinality constrained optimization." Science China Mathematics 62, no. 2 (April 25, 2018): 245–68. http://dx.doi.org/10.1007/s11425-016-9124-0.
Full textSadjadi, Seyed Jafar, Mohsen Gharakhani, and Ehram Safari. "Robust optimization framework for cardinality constrained portfolio problem." Applied Soft Computing 12, no. 1 (January 2012): 91–99. http://dx.doi.org/10.1016/j.asoc.2011.09.006.
Full textShaw, Dong X., Shucheng Liu, and Leonid Kopman. "Lagrangian relaxation procedure for cardinality-constrained portfolio optimization." Optimization Methods and Software 23, no. 3 (June 2008): 411–20. http://dx.doi.org/10.1080/10556780701722542.
Full textFebrianti, Werry, Kuntjoro Adji Sidarto, and Novriana Sumarti. "Solving Constrained Mean-Variance Portfolio Optimization Problems Using Spiral Optimization Algorithm." International Journal of Financial Studies 11, no. 1 (December 20, 2022): 1. http://dx.doi.org/10.3390/ijfs11010001.
Full textDissertations / Theses on the topic "Cardinality constrained optimization"
Aslan, Murat. "The Cardinality Constrained Multiple Knapsack Problem." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12610131/index.pdf.
Full textLi, Yibo. "Solving cardinality constrained portfolio optimisation problem using genetic algorithms and ant colony optimisation." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/10867.
Full textBucher, Max [Verfasser], Alexandra [Akademischer Betreuer] Schwartz, and Christian [Akademischer Betreuer] Kanzow. "Optimality Conditions and Numerical Methods for a Continuous Reformulation of Cardinality Constrained Optimization Problems / Max Bucher ; Alexandra Schwartz, Christian Kanzow." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2018. http://d-nb.info/1167926323/34.
Full textKreber, Dennis [Verfasser], Sven de [Akademischer Betreuer] Vries, Jan Pablo [Akademischer Betreuer] Burgard, Sven de [Gutachter] Vries, Jan Pablo [Gutachter] Burgard, and Christoph [Gutachter] Buchheim. "Cardinality-Constrained Discrete Optimization for Regression / Dennis Kreber ; Gutachter: Sven de Vries, Jan Pablo Burgard, Christoph Buchheim ; Sven de Vries, Jan Pablo Burgard." Trier : Universität Trier, 2019. http://d-nb.info/1197809198/34.
Full textDias, Carlos Henrique. "Um novo algoritmo genetico para a otimização de carteiras de investimento com restrições de cardinalidade." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307124.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-10T22:50:20Z (GMT). No. of bitstreams: 1 Dias_CarlosHenrique_M.pdf: 2721795 bytes, checksum: 57d6019ecabf33034889a64675ccf707 (MD5) Previous issue date: 2008
Resumo: Este trabalho tem por finalidade a determinação da fronteira eficiente de investimento através da otimização do modelo de média-variância com restrições de cardinalidade e limite inferior de investimento. Por tratar-se de um problema inteiro e não linear, cuja solução exata é de difícil obtenção, optamos por empregar um algoritmo genético, na linha desenvolvida por Chang et al. [3], que até hoje serve como referência para a determinação da fronteira eficiente de Pareto para problemas de otimização de investimentos. Entretanto, verificamos que o algoritmo proposto por Chang et al. apresenta uma distribuição não uniforme na geração de soluções aleatórias. Para contornar esse problema, introduzimos um novo esquema de geração de cromossomos, baseado na discretização do espaço, que permite a geração de soluções que satisfazem diretamente a restrição de montante total aplicado. Com essa nova abordagem, foi possível definir operadores de seleção, crossover e mutação bastante eficientes. Os resultados obtidos mostram que o novo algoritmo é mais robusto que aquele proposto por Chang et al
Abstract: In this work we consider the problem of determining of the efficient frontier of a portfolio using the mean-variance model subject to a cardinality constrain and to lower bounds on the amount invested in the selected assets. As this nonlinear integer programming problem is hard to solve exactly, we use a genetic algorithm, following the lines described by Chang et al. [3], still considered as a reference in the field. However, as the feasible solutions generated by the algorithm of Chang et al. are not uniformly distributed over the solution set, we introduce a new scheme for defining the chromosomes, based on the discretization of the feasible region, so that the amount invested always sum up to one for every solution obtained by the algorithm. This new approach allows us to define very efficient selection, crossover and mutation procedures. The numerical results obtained so far show that the new method is more robust than the one proposed by Chang et al
Mestrado
Otimização
Mestre em Matemática Aplicada
Villela, Pedro Ferraz 1982. "Um algoritmo exato para a otimização de carteiras de investimento com restrições de cardinalidade." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307123.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-12T16:09:04Z (GMT). No. of bitstreams: 1 Villela_PedroFerraz_M.pdf: 727069 bytes, checksum: d87d64ae49bfc1a53017a463cf10b453 (MD5) Previous issue date: 2008
Resumo: Neste trabalho, propomos um método exato para a resolução de problemas de programação quadrática que envolvem restrições de cardinalidade. Como aplicação, empregamos o método para a obtenção da fronteira eficiente de um problema (bi-objetivo) de otimização de carteiras de investimento. Nosso algoritmo é baseado no método Branch-and-Bound. A chave de seu sucesso, entretanto, reside no uso do método de Lemke, que é aplicado para a resolução dos subproblemas associados aos nós da árvore gerada pelo Branch-and-Bound. Ao longo do texto, algumas heurísticas também são introduzidas, com o propósito de acelerar a convergência do método. Os resultados computacionais obtidos comprovam que o algoritmo proposto é eficiente.
Abstract: In this work, we propose an exact method for the resolution of quadratic programming problems involving cardinality restrictions. As an application, the algorithm is used to generate the effective Pareto frontier of a (bi-objective) portfolio optimization problem. This algorithm is based on the Branch-and-Bound method. The key to its success, however, resides in the application of Lemke's method to the resolution of the subproblems associated to the nodes of the tree generated by the Branch-and-Bound algorithm. Throughout the text, some heuristics are also introduced as a way to accelerate the performance of the method. The computational results acquired show that the proposed algorithm is efficient.
Mestrado
Otimização
Mestre em Matemática Aplicada
"On cardinality constrained optimization." Thesis, 2009. http://library.cuhk.edu.hk/record=b6074943.
Full textGao, Jianjun.
Adviser: Duan Li.
Source: Dissertation Abstracts International, Volume: 72-11, Section: B, page: .
Thesis (Ph.D.)--Chinese University of Hong Kong, 2009.
Includes bibliographical references (leaves 134-142).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract also in Chinese.
"Cardinality constrained portfolio selection using clustering methodology." 2011. http://library.cuhk.edu.hk/record=b5894828.
Full text"August 2011."
Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.
Includes bibliographical references (p. 90-93).
Abstracts in English and Chinese.
Chapter 1 --- Introduction --- p.1
Chapter 2 --- Portfolio Selection Using Clustering Methodology --- p.7
Chapter 2.1 --- Heuristic algorithm --- p.8
Chapter 2.1.1 --- Step 1: Security transformation by factor model --- p.8
Chapter 2.1.2 --- Step 2: Clustering algorithm --- p.10
Chapter 2.1.3 --- Step 3: Representative selection by t he Sliarpe ratio --- p.16
Chapter 2.2 --- Numerical results --- p.17
Chapter 3 --- Modified Portfolio Selection Using Clustering Methodology --- p.22
Chapter 3.1 --- Analysis of artificial factors --- p.23
Chapter 3.2 --- Problem reformulation --- p.27
Chapter 3.3 --- Numerical results --- p.29
Chapter 4 --- Minimum Variance Point --- p.70
Chapter 4.1 --- Iterative elimination scheme I --- p.72
Chapter 4.2 --- Iterative elimination scheme II --- p.74
Chapter 4.3 --- Orthogonal matrix mapping --- p.76
Chapter 4.4 --- Condition to solve diagonal dominant problem --- p.77
Chapter 4.5 --- L1 formulation --- p.82
Chapter 4.6 --- Numerical results --- p.85
Chapter 5 --- Summary and Future work --- p.88
"Cardinality constrained discrete-time linear-quadratic control." 2005. http://library.cuhk.edu.hk/record=b5892706.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (leaves 75-76).
Abstracts in English and Chinese.
Chapter 1 --- Introduction --- p.1
Chapter 2 --- Solution Framework Using Dynamic Programming --- p.7
Chapter 2.1 --- Difficulty of using dynamic programming --- p.8
Chapter 2.2 --- Scalar-state problems --- p.12
Chapter 2.3 --- Time-invariant system --- p.17
Chapter 2.4 --- Illustrative example of a scalar-state problem --- p.21
Chapter 3 --- Cardinality Constrained Quadratic Optimization --- p.26
Chapter 3.1 --- Reformulation --- p.27
Chapter 3.2 --- NP hardness --- p.31
Chapter 3.3 --- Solving CCQP with an efficient branch and bound method --- p.34
Chapter 3.3.1 --- Efficient branch and bound algorithm --- p.34
Chapter 3.3.2 --- Geometrical interpretation of the proposed ranking order --- p.48
Chapter 3.3.3 --- Additional algorithmic ideas for enhancing computational efficiency --- p.56
Chapter 3.4 --- Numerical example and computational results --- p.60
Chapter 4 --- Summary and Future Work --- p.73
McCarthy, Philip James. "Cardinality Constrained Robust Optimization Applied to a Class of Interval Observers." Thesis, 2013. http://hdl.handle.net/10012/7907.
Full textBook chapters on the topic "Cardinality constrained optimization"
de Farias, Ismael R., and George L. Nemhauser. "A Polyhedral Study of the Cardinality Constrained Knapsack Problem." In Integer Programming and Combinatorial Optimization, 291–303. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-47867-1_21.
Full textKhokhar, Mulazim-Ali, Kris Boudt, and Chunlin Wan. "Cardinality-Constrained Higher-Order Moment Portfolios Using Particle Swarm Optimization." In Applying Particle Swarm Optimization, 169–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70281-6_10.
Full textStreichert, Felix, Holger Ulmer, and Andreas Zell. "Evolutionary Algorithms and the Cardinality Constrained Portfolio Optimization Problem." In Operations Research Proceedings, 253–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-17022-5_33.
Full textCui, Min, Donglei Du, Ling Gai, and Ruiqi Yang. "A Linear-Time Streaming Algorithm for Cardinality-Constrained Maximizing Monotone Non-submodular Set Functions." In Combinatorial Optimization and Applications, 96–110. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-92681-6_9.
Full textAhmad, Faisal, Faraz Hasan, Mohammad Shahid, Jahangir Chauhan, and Mohammad Imran. "Cardinality Constrained Portfolio Selection Strategy Based on Hybrid Metaheuristic Optimization Algorithm." In Proceedings of International Conference on Data Science and Applications, 853–62. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6631-6_59.
Full textPleshakov, Michael, Sergei Sidorov, and Kirill Spiridonov. "Convergence Analysis of Penalty Decomposition Algorithm for Cardinality Constrained Convex Optimization in Hilbert Spaces." In Mathematical Optimization Theory and Operations Research, 141–53. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49988-4_10.
Full textMayambala, Fred, Elina Rönnberg, and Torbjörn Larsson. "Tight Upper Bounds on the Cardinality Constrained Mean-Variance Portfolio Optimization Problem Using Truncated Eigendecomposition." In Operations Research Proceedings, 385–92. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28697-6_54.
Full textRuiz-Torrubiano, Rubén, Sergio García-Moratilla, and Alberto Suárez. "Optimization Problems with Cardinality Constraints." In Computational Intelligence in Optimization, 105–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12775-5_5.
Full textRégin, Jean-Charles. "Combination of Among and Cardinality Constraints." In Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 288–303. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11493853_22.
Full textKocjan, Waldemar, and Per Kreuger. "Filtering Methods for Symmetric Cardinality Constraint." In Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 200–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24664-0_14.
Full textConference papers on the topic "Cardinality constrained optimization"
Friedrich, Tobias, Timo Kötzing, Aishwarya Radhakrishnan, Leon Schiller, Martin Schirneck, Georg Tennigkeit, and Simon Wietheger. "Crossover for cardinality constrained optimization." In GECCO '22: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3512290.3528713.
Full textCheng, Runze, and Jianjun Gao. "On cardinality constrained mean-CVaR portfolio optimization." In 2015 27th Chinese Control and Decision Conference (CCDC). IEEE, 2015. http://dx.doi.org/10.1109/ccdc.2015.7162076.
Full textGomez, Miguel A., Carmen X. Flores, and Maria A. Osorio. "Hybrid search for cardinality constrained portfolio optimization." In the 8th annual conference. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1143997.1144302.
Full textParizy, Matthieu, Przemyslaw Sadowski, and Nozomu Togawa. "Cardinality Constrained Portfolio Optimization on an Ising Machine." In 2022 IEEE 35th International System-on-Chip Conference (SOCC). IEEE, 2022. http://dx.doi.org/10.1109/socc56010.2022.9908082.
Full textZhang, Jize, Tim Leung, and Aleksandr Aravkin. "A Relaxed Optimization Approach for Cardinality-Constrained Portfolios." In 2019 18th European Control Conference (ECC). IEEE, 2019. http://dx.doi.org/10.23919/ecc.2019.8796164.
Full textCui, Tianxiang, Shi Cheng, and Ruibin Bai. "A combinatorial algorithm for the cardinality constrained portfolio optimization problem." In 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014. http://dx.doi.org/10.1109/cec.2014.6900357.
Full textMcCarthy, Philip James, Christopher Nielsen, and Stephen L. Smith. "Cardinality constrained robust optimization applied to a class of interval observers." In 2014 American Control Conference - ACC 2014. IEEE, 2014. http://dx.doi.org/10.1109/acc.2014.6859149.
Full textChen, Angela H. L., Yun-Chia Liang, and Chia-Chien Liu. "An artificial bee colony algorithm for the cardinality-constrained portfolio optimization problems." In 2012 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2012. http://dx.doi.org/10.1109/cec.2012.6252920.
Full textSuthiwong, Dit, and Maleerat Sodanil. "Cardinality-constrained Portfolio optimization using an improved quick Artificial Bee Colony Algorithm." In 2016 International Computer Science and Engineering Conference (ICSEC). IEEE, 2016. http://dx.doi.org/10.1109/icsec.2016.7859943.
Full textMin, Jiang, Zhiqing Meng, Gengui Zhou, and Rui Shen. "A Smoothing Penalty Function Algorithm for Two-Cardinality Sparse Constrained Optimization Problems." In 2018 14th International Conference on Computational Intelligence and Security (CIS). IEEE, 2018. http://dx.doi.org/10.1109/cis2018.2018.00018.
Full text