Academic literature on the topic 'Carboni Anhydrases'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carboni Anhydrases.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Carboni Anhydrases"

1

Sültemeyer, Dieter. "Carbonic anhydrase in eukaryotic algae: characterization, regulation, and possible function during photosynthesis." Canadian Journal of Botany 76, no. 6 (June 1, 1998): 962–72. http://dx.doi.org/10.1139/b98-082.

Full text
Abstract:
Carbonic anhydrase (CA) speeds up the equilibrium between CO2 and HCO3- at physiological pH values and has been detected in almost every species of the animal and plant kingdoms. Among eucaryotic micro- and macro-algae the enzyme is widely distributed and plays an important role in photosynthetic CO2 fixation. In some cases, different forms of carbonic anhydrases located extracellularly and intracellularly have been found to occur in the same cell. The expression of the genes encoding these CA isoforms are under the control of the inorganic carbon concentration in the medium, as the activities increase with decreasing the inorganic carbon content. Considerable progress has been made in recent years in isolating and characterizing the various forms of carbonic anhydrases on a biochemical and molecular level. Most of the data have been collected for microalgae like Chlamydomonas reinhardtii (Dangeard), while the situation in macroalgae is still descriptive. Therefore, this review summarizes the recent development with an emphasis on microalgae carbonic anhydrases.Key words: carbonic anhydrase, CO2 concentrating mechanism, macroalgae, microalgae, photosynthesis.
APA, Harvard, Vancouver, ISO, and other styles
2

Ignatova, Lyudmila, Natalia Rudenko, Elena Zhurikova, Maria Borisova-Mubarakshina, and Boris Ivanov. "Carbonic Anhydrases in Photosynthesizing Cells of C3 Higher Plants." Metabolites 9, no. 4 (April 16, 2019): 73. http://dx.doi.org/10.3390/metabo9040073.

Full text
Abstract:
The review presents data on the location, nature, properties, number, and expression of carbonic anhydrase genes in the photosynthesizing cells of C3 plants. The available data about the presence of carbonic anhydrases in plasma membrane, cytoplasm, mitochondria, chloroplast stroma and thylakoids are scrutinized. Special attention was paid to the presence of carbonic anhydrase activities in the different parts of thylakoids, and on collation of sources of these activities with enzymes encoded by the established genes of carbonic anhydrases. The data are presented to show that the consistent incorporation of carbonic anhydrases belonging to different families of these enzymes forms a coherent system of CO2 molecules transport from air to chloroplasts in photosynthesizing cells, where they are included in organic molecules in the carboxylation reaction. It is discussed that the manifestation of the activity of a certain carbonic anhydrase depends on environmental conditions and the stage of ontogenesis.
APA, Harvard, Vancouver, ISO, and other styles
3

Wani, Tanvi V., and Mrunmayee P. Toraskar. "QSAR STUDIES ON HUMAN CARBONIC ANHYDRASE II INHIBITORS." INDIAN DRUGS 58, no. 11 (December 28, 2021): 18–28. http://dx.doi.org/10.53879/id.58.11.12350.

Full text
Abstract:
Carbonic anhydrase II is one of the forms of human α carbonic anhydrases which are ubiquitous metalloenzymes that catalyze inter-conversion of carbon dioxide and water to bicarbonate and proton, overexpression of which leads to disorders such as glaucoma. 2D and 3D Quantitative Structure Activity Relationship studies were carried out on previously synthesized series of sulfanilamide derivatives by VLife MDS software using stepwise variable, multi-linear regression and k-nearest neighbor molecular field analysis methods. 2D-QSAR model depicts contribution of halogens (such as chlorine and fluorine), methylene and oxygen atoms to inhibition of human carbonic anhydrases II activity. Using k-nearest neighbor molecular field analysis method two 3D-QSAR models (model A and B) were generated from which model A was found to be the best validated model with q2 (0.9494), pred_r2 (0.7367) and q2 _ se (0.2037). It displayed the fact that the inhibitory action of sulfanilamide derivatives against human carbonic anhydrases II is influenced by hydrophobicity and electro positivity.
APA, Harvard, Vancouver, ISO, and other styles
4

Somalinga, Vijayakumar, Hannah Klemmer, Ashikha Arun, Stephanie Mathews, Hannah Wapshott, and Amy M. Grunden. "Cloning, Over-Expression, and Purification of Carbonic Anhydrase from an Extremophilic Bacterium: An Introduction to Advanced Molecular Biology." American Biology Teacher 80, no. 1 (January 1, 2018): 29–34. http://dx.doi.org/10.1525/abt.2018.80.1.29.

Full text
Abstract:
The photosynthetic bioreactor research program is a training platform appropriate for introducing advanced molecular biology techniques to undergraduate students and advanced high school biology students. For this advanced molecular biology training exercise, the enzyme carbonic anhydrase was cloned, over-expressed, purified, and functionally characterized. Carbonic anhydrases are industrially important enzymes with potential use in carbon sequestration and biofuel production. Alpha and beta carbonic anhydrases from Photobacterium profundum, a psychrophilic, halotolerant bacterium, were characterized in this study. Carbonic anhydrases that can withstand high salinity and are active at low temperatures can be transformed into oleaginous marine microalgae to enhance biofuel production. Our research program started with a three-day boot camp with lectures in relevant topics of molecular biology, microbiology, and research methods. After the boot camp, the lab phase of the project involved training students to perform polymerase chain reaction, DNA gel electrophoresis, DNA ligation, and bacterial transformation. In the final phase of the project, students were trained in recombinant protein over-expression and protein purification techniques. Here we report successful cloning and over-expression by high school students of two novel carbonic anhydrases from a psychrohalophile with application in biofuel production.
APA, Harvard, Vancouver, ISO, and other styles
5

Tomar, Jyoti Singh, and Jun Shen. "Characterization of Carbonic Anhydrase In Vivo Using Magnetic Resonance Spectroscopy." International Journal of Molecular Sciences 21, no. 7 (April 1, 2020): 2442. http://dx.doi.org/10.3390/ijms21072442.

Full text
Abstract:
Carbonic anhydrase is a ubiquitous metalloenzyme that catalyzes the reversible interconversion of CO2/HCO3−. Equilibrium of these species is maintained by the action of carbonic anhydrase. Recent advances in magnetic resonance spectroscopy have allowed, for the first time, in vivo characterization of carbonic anhydrase in the human brain. In this article, we review the theories and techniques of in vivo 13C magnetization (saturation) transfer magnetic resonance spectroscopy as they are applied to measuring the rate of exchange between CO2 and HCO3− catalyzed by carbonic anhydrase. Inhibitors of carbonic anhydrase have a wide range of therapeutic applications. Role of carbonic anhydrases and their inhibitors in many diseases are also reviewed to illustrate future applications of in vivo carbonic anhydrase assessment by magnetic resonance spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
6

Rasmussen, Jacob K., and Ebbe Boedtkjer. "Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO2/HCO3– fluctuations." Journal of Cerebral Blood Flow & Metabolism 38, no. 3 (March 20, 2017): 492–505. http://dx.doi.org/10.1177/0271678x17699224.

Full text
Abstract:
The CO2/HCO3– buffer minimizes pH changes in response to acid–base loads, HCO3– provides substrate for Na+,HCO3–-cotransporters and Cl–/HCO3–-exchangers, and H+ and HCO3– modify vasomotor responses during acid–base disturbances. We show here that rat middle cerebral arteries express cytosolic, mitochondrial, extracellular, and secreted carbonic anhydrase isoforms that catalyze equilibration of the CO2/HCO3– buffer. Switching from CO2/HCO3–-free to CO2/HCO3–-containing extracellular solution results in initial intracellular acidification due to hydration of CO2 followed by gradual alkalinization due to cellular HCO3– uptake. Carbonic anhydrase inhibition decelerates the initial acidification and attenuates the associated transient vasoconstriction without affecting intracellular pH or artery tone at steady-state. Na+,HCO3–-cotransport and Na+/H+-exchange activity after NH4+-prepulse-induced intracellular acidification are unaffected by carbonic anhydrase inhibition. Extracellular surface pH transients induced by transmembrane NH3 flux are evident under CO2/HCO3–-free conditions but absent when the buffer capacity and apparent H+ mobility increase in the presence of CO2/HCO3– even after the inhibition of carbonic anhydrases. We conclude that (a) intracellular carbonic anhydrase activity accentuates pH transients and vasoconstriction in response to acute elevations of pCO2, (b) CO2/HCO3– minimizes extracellular surface pH transients without requiring carbonic anhydrase activity, and (c) carbonic anhydrases are not rate limiting for acid–base transport across cell membranes during recovery from intracellular acidification.
APA, Harvard, Vancouver, ISO, and other styles
7

Smith, Kerry S., and James G. Ferry. "A Plant-Type (β-Class) Carbonic Anhydrase in the Thermophilic Methanoarchaeon Methanobacterium thermoautotrophicum." Journal of Bacteriology 181, no. 20 (October 15, 1999): 6247–53. http://dx.doi.org/10.1128/jb.181.20.6247-6253.1999.

Full text
Abstract:
ABSTRACT Carbonic anhydrase, a zinc enzyme catalyzing the interconversion of carbon dioxide and bicarbonate, is nearly ubiquitous in the tissues of highly evolved eukaryotes. Here we report on the first known plant-type (β-class) carbonic anhydrase in the archaea. TheMethanobacterium thermoautotrophicum ΔH cabgene was hyperexpressed in Escherichia coli, and the heterologously produced protein was purified 13-fold to apparent homogeneity. The enzyme, designated Cab, is thermostable at temperatures up to 75°C. No esterase activity was detected withp-phenylacetate as the substrate. The enzyme is an apparent tetramer containing approximately one zinc per subunit, as determined by plasma emission spectroscopy. Cab has a CO2 hydration activity with a k cat of 1.7 × 104 s−1 and Km for CO2 of 2.9 mM at pH 8.5 and 25°C. Western blot analysis indicates that Cab (β class) is expressed in M. thermoautotrophicum; moreover, a protein cross-reacting to antiserum raised against the γ carbonic anhydrase fromMethanosarcina thermophila was detected. These results show that β-class carbonic anhydrases extend not only into theArchaea domain but also into the thermophilic prokaryotes.
APA, Harvard, Vancouver, ISO, and other styles
8

Sly, William S., and Peiyi Y. Hu. "Human Carbonic Anhydrases and Carbonic Anhydrase Deficiencies." Annual Review of Biochemistry 64, no. 1 (June 1995): 375–401. http://dx.doi.org/10.1146/annurev.bi.64.070195.002111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Silverman, David N. "The catalytic mechanism of carbonic anhydrase." Canadian Journal of Botany 69, no. 5 (May 1, 1991): 1070–78. http://dx.doi.org/10.1139/b91-137.

Full text
Abstract:
Water as a ligand of the zinc in carbonic anhydrase has a pKa of 7 or less and the zinc-bound hydroxide is enhanced as a nucleophile for attack on CO2. The product of catalysis is HCO3− and a proton, and the catalytic pathway as determined for vertebrate isozymes I, II, and III occurs in two separate and distinct stages. The first stage includes the hydration of CO2 and ends with the release of HCO3− from its binding site as a ligand of the zinc; its position is replaced by a water molecule. This process is described by the ratio kcat/Km; for hydration catalyzed by isozyme II, the most efficient of the carbonic anhydrases, kcat/Km is close to diffusion controlled at 108 M−1∙s−1. The second stage is the regeneration of the zinc-bound hydroxide by protolysis of water and release of a proton to the surrounding medium. For carbonic anhydrase II, this proton transfer is rate determining for the maximal turnover number kcat of 106 s−1. Its pathway includes intramolecular proton transfer from the zinc-bound water to His64 in the active-site cavity followed by proton transfer to buffer in solution. For the least efficient of the carbonic anhydrases, isozyme III, kcat/Km near 3 × 105 M−1∙s−1 is not diffusion controlled; nevertheless, proton transfer from zinc-bound water to solution is still rate limiting for a maximal turnover of 104 s−1. Carbonic anhydrase isolated from spinach chloroplasts is quite similar to vertebrate isozyme II in catalytic properties, although it has been found to have almost no sequence homology with the vertebrate carbonic anhydrases. Key words: carbonic anhydrase, CO2, catalytic mechanism, proton transfer, bicarbonate.
APA, Harvard, Vancouver, ISO, and other styles
10

Gee, Christopher W., and Krishna K. Niyogi. "The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in Nannochloropsis oceanica." Proceedings of the National Academy of Sciences 114, no. 17 (April 10, 2017): 4537–42. http://dx.doi.org/10.1073/pnas.1700139114.

Full text
Abstract:
Aquatic photosynthetic organisms cope with low environmental CO2 concentrations through the action of carbon-concentrating mechanisms (CCMs). Known eukaryotic CCMs consist of inorganic carbon transporters and carbonic anhydrases (and other supporting components) that culminate in elevated [CO2] inside a chloroplastic Rubisco-containing structure called a pyrenoid. We set out to determine the molecular mechanisms underlying the CCM in the emerging model photosynthetic stramenopile, Nannochloropsis oceanica, a unicellular picoplanktonic alga that lacks a pyrenoid. We characterized CARBONIC ANHYDRASE 1 (CAH1) as an essential component of the CCM in N. oceanica CCMP1779. We generated insertions in this gene by directed homologous recombination and found that the cah1 mutant has severe defects in growth and photosynthesis at ambient CO2. We identified CAH1 as an α-type carbonic anhydrase, providing a biochemical role in CCM function. CAH1 was found to localize to the lumen of the epiplastid endoplasmic reticulum, with its expression regulated by the external inorganic carbon concentration at both the transcript and protein levels. Taken together, these findings show that CAH1 is an indispensable component of what may be a simple but effective and dynamic CCM in N. oceanica.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Carboni Anhydrases"

1

Kanfar, Nasreddine. "Synthèse d'inhibiteurs multivalents des anhydrases carboniques." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT197/document.

Full text
Abstract:
Les anhydrases carboniques (CA, CE. 4.2.1.1) sont des métalloenzymes de zinc, ubiquitaires, qui catalysent l'hydratation réversible du CO2, avec la formation de bicarbonate et de la libération d'un proton. Sur les 13 isoformes actifs présents chez l'homme, certains d'entre eux sont impliqués dans les processus pathologiques. Les CA sont connues depuis plus de 50 ans en tant que cibles thérapeutiques et certains inhibiteurs sont actuellement en phase clinique ou dans des études pré-cliniques pour le traitement du glaucome, de l'épilepsie et de cancer. Néanmoins, le manque de sélectivité contre les différents isoformes responsables des effets secondaires nécessite le développement de nouvelles stratégies. Le but de ce travail est de développer une nouvelle façon pour inhiber les CAs en tirant parti de l'interaction multivalente pour inhiber sélectivement et efficacement les isoformes de l'CA. En effet, les clusters multivalents représentent une classe émergente de composés pour l'inhibition d'enzymes. Cette stratégie a été développée récemment pour l'inhibition et l'activation d'CA, certaines études ayant démontré des améliorations dans la puissance d'inhibition et la sélectivité. Dans ce projet, différentes plateformes (peptides, nanoparticules de silice) multifonctionnels ont été revêtus de sulfonamides comme inhibiteurs de l'CA par bioconjugaison. L'effet d'inhibition et la spécificité de la multivalence ont été étudiés sur les isoformes CA
Carbonic anhydrases (CAs, EC. 4.2.1.1) are ubiquitous zinc metalloenzymes which catalyze the reversible hydration of CO2 with formation of bicarbonate and release of a proton. On the 13 active isoforms present in human, some of them are involved in pathological processes. CAs are known for more than 50 years as a therapeutic targets, and some inhibitors are currently in clinic or in (pre)clinical studies for the treatment of glaucoma, epilepsy and cancer. Nevertheless the lack of selectivity against the different isoforms responsible of side-effects requires the development of new strategies. The aim of this work is to develop a new way for CA inhibition by taking advantage of multivalent interaction to selectively and efficiently inhibit CA isoforms. Indeed, multivalent clusters represent an emerging class of compounds for enzymes inhibition. This strategy has been recently developed for CA inhibition and activation, some studies reporting improvements in inhibitory potency and selectivity. In this project, different platforms (peptides, polymers, silica nanoparticles) multifunctional were coated with sulfonamides as inhibitors of CA by bioconjugation. The inhibitory effect and specificity of the multivalency were studied isoforms CA
APA, Harvard, Vancouver, ISO, and other styles
2

Bertucci, Anthony. "Etudes moléculaire et physiologique des mécanismes permettant l'utilisation du carbone inorganique chez le corail Scléractiniaire Stylophora pistillata (Esper, 1797)." Thesis, Aix-Marseille 2, 2010. http://www.theses.fr/2010AIX22112/document.

Full text
Abstract:
La formation d’un squelette de CaCO3 par les coraux Scléractiniaires est à la base de l’édification des récifs coralliens. Nombre de ces coraux constructeurs de récif vivent en symbiose avec des Dinoflagellés photosynthétiques. Ces deux processus reposent sur le transport et l’utilisation de carbone inorganique (Ci) provenant de l’eau de mer pour la photosynthèse, et du métabolisme animal pour la calcification. Cette thèse s’est intéressée à l’étude moléculaire et physiologique des mécanismes, permettant l’utilisation de ce carbone inorganique.Malgré l’importance des transports de HCO3-, aucun transporteur n’a été caractérisé à cejour et leur implication dans la physiologie des coraux n’est que suggérée par la pharmacologie. Durant cette thèse nous avons cloné un gène codant pour un transporteur deHCO3- chez le corail Acropora sp. La conversion de ce HCO3- en CO2 pour la photosynthèse est facilitée par l’acidification de l’environnement proche du Dinoflagellé dans la cellule animale. Cette acidification est causée par une H+-ATPase de type P que nous avons caractérisée. Ce gène est le premier à montrer une expression dépendante de la vie en symbiose chez le symbiote.Nous avons aussi cloné et localisé deux anhydrases carboniques (AC). L’une impliquée dans la calcification et l’autre dans la régulation du pH intracellulaire et l’équilibre entre leCO2 et HCO3-. Une étude pharmacologique de ces deux AC, a identifié des molécules inhibitrices et activatrices qui ont permis des expériences de physiologie in vivo. Celles-ci permettent une analyse plus discriminante du rôle des AC dans la calcification
Coral reefs edification is based on the formation of a calcium carbonate skeleton byscleractinian corals. Many of these reef-building corals establish a symbiotic association with photosynthetic Dinoflagellates. Both processes involve the transport and utilization of inorganic carbon (Ci) coming from seawater for photosynthesis, and from animal metabolismfor calcification. This work focused on the molecular and physiological study of poorlyknown mechanisms that allow the utilization of Ci.Despite the importance of bicarbonate transport, no transporter has been characterized and their role in coral physiology is only suggested by pharmacological experiments. We have cloned a gene encoding a bicarbonate transporter in the coral Acropora sp. The conversion of this bicarbonate into CO2 for photosynthesis is mediated by the acidification of the are asurrounding the Dinoflagellate in the animal cell. This is performed by a P type H+-ATPasethat we characterized here. This is the first gene with a symbiosis-dependent expression in the symbiont.This work also allowed the cloning and the localization of two carbonic anhydrases (CA).The first one is involved in calcification, the second one plays a role in the intracellular pHregulation and the CO2 / HCO3- equilibrium. A pharmacological study of these two enzymes identified inhibitor and activator compounds that have been then used in physiology experiments. This last approach represents a more accurate study of the role of CAs incalcification
APA, Harvard, Vancouver, ISO, and other styles
3

Alber, Birgit E. "Carbonic anhydrase from Methanosarcina thermophila : proposal of a new class of carbonic anhydrases and putative roles for the enzyme in anaerobic acetate catabolism /." Diss., This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-06062008-171625/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Le, Goff Carine. "Approches physiologique et moléculaire de la calcification chez le corail rouge de méditerranée Corallium rubrum." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066439/document.

Full text
Abstract:
Le processus de calcification chez Corallium rubrum conduit à la formation de deux structures squelettiques composées de CaCO3, l’axe squelettique et les sclérites, de taille et de forme différentes. Comme chez de nombreuses espèces calcifiantes, la calcification se fait sous contrôle biologique impliquant notamment des enzymes et des transporteurs ioniques. Une question centrale est d’identifier les mécanismes communs ou propres à chaque espèce qui sous-tendent leur convergence fonctionnelle envers ce processus. Deux approches ont été utilisées pour caractériser ces mécanismes chez C. rubrum: 1) Une approche physiologique avec le développement d’une technique de culture de microcolonies sur lamelles permettant d’observer différents stades de calcification, et de mesurer le pH aux sites de calcification par imagerie confocale ; 2) Une approche moléculaire afin de caractériser une famille d’enzymes, les anhydrases carboniques (ACs), qui jouent un rôle clef dans la calcification.Nous avons réalisé une cartographie du pH en effectuant des mesures dans différents compartiments intra- et extracellulaires. Nos résultats montrent notamment que le pH aux sites de calcification est supérieur à celui du milieu circulant dans les canaux gastrodermiques et non à celui l’eau de mer. Les mesures d’expression différentielle des ACs dans différents tissus mettent en évidence une isozyme préférentiellement exprimée dans les cellules calcifiantes.Ces résultats intégrés dans un contexte de calcification comparée pointent sur la convergence fonctionnelle des ACs et de la régulation du pH par les cellules calcifiantes, tout en soulignant des divergences évolutives
The calcification process in Corallium rubrum leads to the formation of two skeletal structures made of calcium carbonate, the skeletal axis and sclerites, of different size and shape. As in many calcifying species, calcification occurs under a biological control that involves enzymes and ion transporters. A central issue is to determine the common and the species-specific mechanisms of calcification in order to identify functional convergences in this process. Two approaches were used to characterize these mechanisms in C. rubrum: 1) A physiological approach involving the development of a microcolony culture technique on glass coverslips, allowing the observation of the different stages of calcification, and the measurement of pH at the sites of calcification by the use of confocal microscopy; 2) A molecular approach to characterize an enzyme family, the carbonic anhydrases, which play a key role in calcification.We performed pH mapping by making measurements in different intra- and extracellular compartments. Our results show higher pH values at the sites of calcification compared with the fluid circulating in the gastrodermal canals, but not with the seawater surrounding the microcolony. Measurements of differential expression of carbonic anhydrases in different tissue fractions highlight an isozyme preferentially expressed in the calcifying cells.Within comparative calcification perspectives, these results point towards the functional convergence of carbonic anhydrases and pH regulation by the calcifying cells, while highlighting evolutionary divergences
APA, Harvard, Vancouver, ISO, and other styles
5

Rawlins, Charles Henry. "Geological sequestration of carbon dioxide by hydrous carbonate formation in steelmaking slag." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2008. http://scholarsmine.mst.edu/thesis/pdf/Rawlins_09007dcc804d4f95.pdf.

Full text
Abstract:
Thesis (Ph. D.)--Missouri University of Science and Technology, 2008.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 18, 2008) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
6

Mudge, Stephen Michael. "Carbonic anhydrase in marine organisms." Thesis, Bangor University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Foxon, Simon Paul. "Small molecule models of carbonic anhydrase." Thesis, University of York, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Johansson, Inga-Maj. "Pea carbonic anhydrase : a kinetic study." Doctoral thesis, Umeå universitet, Kemiska institutionen, 1994. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-118926.

Full text
Abstract:
The enzyme carbonic anhydrase (CA), catalysing the interconversion between CO2 and HCO3', has long been known to be present in plants as well as in animals. Several of the animal isozymes, but none of the plant CAs, have been extensively studied. When the first plant CA cDNA sequences were published in 1990, it was obvious that the animal and plant CAs represent evolutionarily distinct families with no significant sequence homology between the families. Pea CA is synthesised as a precursor and subsequently processed at the import into the chloroplast. When we purified CA from pea leaves two oligomeric forms with molecular masses around 230 kDa were obtained. One form was homogenous while the other form contained subunits of two different sizes. The larger subunit has an acidic and highly charged N-terminal extension, consisting of 37 residues. We propose that the sequence that precedes the cleavage site resulting in the large subunit represents the functional transit peptide, directing CA to the chloroplast. Neither the transit peptide nor the acidic 37-residue peptide were found to affect the folding, activity or oligomerisation of pea CA. Kinetic investigations showed that pea CA requires a reduced environment and high concentrations of buffer for maximal catalytic activity. High buffer concentrations result in a faster turnover of the enzyme (kcat) while the efficiency (kcatlKm) is not affected. This is consistent with a ping-pong mechanism with the buffer as the second substrate. Both kcat and kcatlKm increase with pH but the dependences cannot be described by simple titration curves. SCN' is an uncompetitive inhibitor at high pH and a noncompetitive inhibitor at neutral and low pH. This is in accordance with the mechanistic model, previously proposed for human CAM, involving a zincbound water molecule as a catalytic group. In this model, the carbon dioxide - bicarbonate interconversion, reflected by kcatlKm, is temporally separated from a rate limiting proton-transfer step. At high pH, solvent hydrogen isotope effects obtained for pea CA agree with this scheme, while they do not fit at neutral and low pH. Site-specific mutations of cysteine residues at positions 165, 269 and 272 were difficult to study, either because strong deviations from Michaelis-Menten kinetics were observed, or because the mutants were found in inclusion bodies. However, the mutant H208A was found to be a very efficient enzyme with the highest kcatlKm value obtained for any CA so far, 2.9-108 M'1s '1. With the H208A mutant an increased dependence on high buffer concentrations at low pH was obtained. At high pH, the mutant is more efficient than the unmutated enzyme. The H208A mutant is also more prone to oxidation than the wild-type enzyme.

Diss. (sammanfattning) Umeå : Umeå universitet, 1994, härtill 4 uppsatser


digitalisering@umu
APA, Harvard, Vancouver, ISO, and other styles
9

Aresheva, Olga. "Regulation of CO2 acquisition and role of beta-carbonic anhydrases in A. thaliana and related C3-C4 species." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0538.

Full text
Abstract:
Dans la première partie de ce travail, nous examinons comment les changements de la concentration de CO2 au cours de l'histoire géologique ont contribué à déterminer la réponse stomatique et l'apparition des mécanismes de concentration du carbone. La deuxième partie de la thèse se concentre sur le rôle des anhydrases carboniques dans le transport et l'assimilation du CO2 dans les feuilles. Nous caractérisons la croissance, l'assimilation et le transport du CO2 dans des lignées d'insertion d'ADN-T simples, doubles et triples d'Arabidopsis thaliana dépourvues des principales β-anhydrases carboniques de la feuille (β-CA1, β-CA2, β-CA4). Nous présentons une comparaison quantitative de la conductance mésophyllienne aux sites de l'anhydrase carbonique chez Arabidopsis thaliana et des espèces proches de type C3 (Tareneya hassleriana) et C4 (Gynandropsis gynandra) de la famille des Cleomaceae. La troisième partie de la thèse étudie la réponse stomatique chez les espèces C3 et C4 de la famille des Cleomaceae. En utilisant la microdissection par capture laser, nous comparons les transcriptomes des cellules de garde et des cellules mésophylliennes dans les deux espèces. Nous présentons les caractéristiques des transcriptomes des cellules de garde communes à T. hassleriana, G. gynandra ainsi qu'à A. thaliana, et mettons en evidence en quoi le transcriptome des GCs des feuilles C4 diffère du C3 GC ancestral. Enfin, nous intégrons ces données dans le contexte de la voie métabolique C4 par analyse comparative de l'expression génique des cellules de garde, des cellules mésophylliennes et des cellules des gaines perivasculaires foliaires
In the first part of this work, we review how the changes in CO2 concentration across geological history contributed to shape current plant life, changes in stomatal function and the apparition of carbon-concentrating mechanisms. The second part of the thesis concentrates on the role of carbonic anhydrases for CO2 transport and assimilation in leaves. We characterize growth, assimilation rates and CO2 transport in single, double and triple T-DNA insertion lines of Arabidopsis thaliana that lack the main β-carbonic anhydrases of the leaf (β-CA1, β-CA2, β-CA4). We provide a quantitative comparison of the mesophyll conductance to the sites of carbonic anhydrase in Arabidopsis thaliana and we have related this to C3 type (Tareneya hassleriana) and C4 type (Gynandropsis gynandra) species from Cleomaceae family.The third part of the thesis describes stomatal behavior and its potential differences in C3 and C4 species from Cleomaceae family. Using laser capture microdissection, we compare transcriptomes of the guard cells and the mesophyll cells in both species. We report characteristics of the guard cell transcriptomes common to C3 T. hassleriana, C4 G. gynandra as well as A. thaliana, but also the extent to which the transcriptome of GCs from C4 leaves differs from the ancestral C3 GC. Finally, we integrate these data into the context of the C4 metabolic pathway of the whole C4 type leaf by comparative analysis of gene expression between guard cells, mesophyll cells and bundle-sheath cells. We also discuss whether variations in transcript profiles could underlie changes in stomatal behavior
APA, Harvard, Vancouver, ISO, and other styles
10

Ekstedt, Elisabeth. "Localization of carbonic anhydrase in reproductive organs /." Uppsala : Dept. of Anatomy and Physiology, Swedish University of Agricultural Sciences, 2005. http://epsilon.slu.se/200540.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Carboni Anhydrases"

1

Chegwidden, W. Richard, Nicholas D. Carter, and Yvonne H. Edwards, eds. The Carbonic Anhydrases. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8446-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dodgson, Susanna J., Richard E. Tashian, Gerolf Gros, and Nicholas D. Carter, eds. The Carbonic Anhydrases. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-0750-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

J, Dodgson Susanna, ed. The Carbonic anhydrases: Cellular physiology and molecular genetics. New York: Plenum Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1940-, Aresta M., Schloss J. V, NATO Advanced Study Institute, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Enzymatic and model carboxylation and reduction reactions for carbon dioxide utilization. Dordrecht: Kluwer Academic Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matulis, Daumantas, ed. Carbonic Anhydrase as Drug Target. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12780-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chegwidden, W. Richard, and Nicholas D. Carter, eds. The Carbonic Anhydrases: Current and Emerging Therapeutic Targets. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79511-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jones, Nicholas Richard. Computer modelling of human carbonic anhydrase II. Manchester: University of Manchester, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

International Workshop on Carbonic Anhydrase (1990 Spoleto, Italy). Carbonic anhydrase: From biochemistry and genetics to physiology and clinical medicine : proceedings of the International Workshop on Carbonic Anhydrase, held in Spoleto, Italy in March 1990. New York: VCH, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

M, Guliev N., and Romanova A. K, eds. Karboangidraza rasteniĭ. Moskva: "Nauka", 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Frost, Susan C., and Robert McKenna, eds. Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7359-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Carboni Anhydrases"

1

Fukuzawa, Hideya, Mikio Tsuzuki, and Shigetoh Miyachi. "Algal carbonic anhydrase." In The Carbonic Anhydrases, 535–46. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8446-4_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kozliak, Evguenii I., Michel B. Guilloton, James A. Fuchs, and Paul M. Anderson. "Bacterial carbonic anhydrases." In The Carbonic Anhydrases, 547–65. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8446-4_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dodgson, Susanna J. "The Carbonic Anhydrases." In The Carbonic Anhydrases, 3–14. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-0750-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Geers, Cornelia, and Gerolf Gros. "Muscle Carbonic Anhydrases." In The Carbonic Anhydrases, 227–40. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-0750-9_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nioka, Shoko, and Robert E. Forster. "Lung Carbonic Anhydrase." In The Carbonic Anhydrases, 333–40. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-0750-9_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Forster, Robert E. "Remarks on the discovery of carbonic anhydrase." In The Carbonic Anhydrases, 1–11. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8446-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lindskog, Sven, and David N. Silverman. "The catalytic mechanism of mammalian carbonic anhydrases." In The Carbonic Anhydrases, 175–95. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8446-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Supuran, Claudiu T., and Andrea Scozzafava. "Activation of carbonic anhydrase isozymes." In The Carbonic Anhydrases, 197–219. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8446-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hunt, Jennifer A., Charles A. Lesburg, David W. Christianson, Richard B. Thompson, and Carol A. Fierke. "Active-site engineering of carbonic anhydrase and its application to biosensors." In The Carbonic Anhydrases, 221–40. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8446-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carlsson, Uno, and Bengt-Harald Jonsson. "Folding and stability of human carbonic anhydrase II." In The Carbonic Anhydrases, 241–59. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8446-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Carboni Anhydrases"

1

Singla, Rajeev K., Tanya Agarwal, and Arun Garg. "Carbonic Anhydrases and their Physiological Roles." In MOL2NET 2019, International Conference on Multidisciplinary Sciences, 5th edition. Basel, Switzerland: MDPI, 2019. http://dx.doi.org/10.3390/mol2net-05-06764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

CATALDO, M., C. DI NATALE, A. D'AMICO, A. RAMUNDO-ORLANDO, E. ZAMPETTI, S. PANTALEI, and A. MACAGNANO. "MEASUREMENT OF CARBON DIOXIDE HYDRATION BY CARBONIC ANHYDRASE ENTRAPPED IN SUBMICROMETER-SIZED NANOREACTOR." In Proceedings of the 13th Italian Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812835987_0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thompson, Richard B., Badri P. Maliwal, and Hui-Hui Zeng. "Improved fluorophores for zinc biosensing using carbonic anhydrase." In BiOS '99 International Biomedical Optics Symposium, edited by Gerald E. Cohn and John C. Owicki. SPIE, 1999. http://dx.doi.org/10.1117/12.346738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ito, Tadasuke, Masato Okada, Shotaro Togami, Shinya Ariyasu, Shin Aoki, and Hayato Ohwada. "ILP based screening applied to predicting carbonic anhydrase II ligands." In 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2015. http://dx.doi.org/10.1109/bibm.2015.7359801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stěpánková, Jana, Pavlína Rezáčová, Jiří Brynda, Monika Harvanová, Vlastimil Mašek, Alice Nová, Michal Siller, et al. "Abstract 4492: Novel carborane based inhibitors of carbonic anhydrase IX." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-4492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yukihiro, Kato, Masakazu Yashiro, Shinichiro Kashiwagi, Yuhiko Fuyuhiro, Satoru Noda, Yosuke Doi, Naoshi Kubo, et al. "Abstract 445: Significance of carbonic anhydrase-9 in gastric carcinoma." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bouzina, Abdeslem, Yousra Ouafa Bouone, Rachida Mansouri, and Nour-Eddine Aouf. "Synthesis, ADME/T, and Carbonic Anhydrase Binding of Hydroxycarboxamide Compounds." In ECMC 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/ecmc2022-13446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sahin, Ali, and Murat Senturk. "The effect of sodium pertechnetate human carbonic anhydrase I and II." In II. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2017. Author(s), 2017. http://dx.doi.org/10.1063/1.4981758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ignatova, L. K., E. M. Zhurikova, N. N. Rudenko, T. P. Fedorchuk, and B. N. Ivanov. "Chloroplast carbonic anhydrase of higher C3 plants and their participation in photosynthesis." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yurong Chai, Yumin Lv, Tianyun Wang, Weihong Hou, and Lexun Xue. "Heterologous Gene Expression Driven by Carbonic Anhydrase Gene Promoter in Dunaliella salina." In 2004, Ottawa, Canada August 1 - 4, 2004. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2004. http://dx.doi.org/10.13031/2013.17004.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Carboni Anhydrases"

1

Studer, Anthony. The role of carbonic anhydrase in C4 photosynthesis. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1233447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hazlebeck, David, Bill Rickman, and Rodney Corpuz. Algae Production CO2 Absorber with Immobilized Carbonic Anhydrase. Office of Scientific and Technical Information (OSTI), January 2020. http://dx.doi.org/10.2172/1581442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Ruixin, Songshan Li, Yafen Liu, Xiayin Zhang, Jinhui Wang, Limei Sun, Ting Zhang, Zhaotian Zhang, Haotian Lin, and Xiaoyan Ding. The Role of Carbonic Anhydrase Inhibitors in the Treatment of X-linked Retinoschisis: A Systematic Review and Meta­analysis Meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2020. http://dx.doi.org/10.37766/inplasy2020.12.0098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography