Academic literature on the topic 'Carbonate de lithium'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbonate de lithium.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Carbonate de lithium"

1

Coppola, Luigi, Denny Coffetti, Elena Crotti, Raffaella Dell’Aversano, Gabriele Gazzaniga, and Tommaso Pastore. "Influence of Lithium Carbonate and Sodium Carbonate on Physical and Elastic Properties and on Carbonation Resistance of Calcium Sulphoaluminate-Based Mortars." Applied Sciences 10, no. 1 (December 25, 2019): 176. http://dx.doi.org/10.3390/app10010176.

Full text
Abstract:
In this study, three different hardening accelerating admixtures (sodium carbonate, lithium carbonate and a blend of sodium and lithium carbonates) were employed to prepare calcium sulphoaluminate cement-based mortars. The workability, setting times, entrapped air, elasto-mechanical properties such as compressive strength and dynamic modulus of elasticity, free shrinkage, water absorption and carbonation rate were measured and mercury intrusion porosimetry were also performed. Experimental results show that a mixture of lithium carbonate and sodium carbonate acts as a hardening accelerating admixture, improving the early-age strength and promoting a remarkable pore structure refinement. Finally, sodium carbonate also reduces the water absorption, the carbonation rate and the shrinkage of mortars without affecting the setting times and the workability.
APA, Harvard, Vancouver, ISO, and other styles
2

Алиев, А. Р., И. Р. Ахмедов, М. Г. Какагасанов, and З. А. Алиев. "Колебательные спектры ионно-молекулярных кристаллов карбонатов в предпереходной области вблизи структурных фазовых переходов." Журнал технической физики 127, no. 9 (2019): 429. http://dx.doi.org/10.21883/os.2019.09.48196.104-19.

Full text
Abstract:
Molecular relaxation processes in lithium carbonate (Li2CO3), sodium carbonate (Na2CO3) and potassium carbonate (K2CO3) were studied by Raman spectroscopy. It has been established that in crystalline carbonates Li2CO3, Na2CO3 and K2CO3, the structural phase transition of the first kind is stretched (diffuse phase transition). The existence of the pretransition region in the studied carbonates Li2CO3, Na2CO3 and K2CO3 was found.
APA, Harvard, Vancouver, ISO, and other styles
3

Bhatt, Mahesh Datt, Maenghyo Cho, and Kyeongjae Cho. "Density functional theory calculations for the interaction of Li+ cations and PF6– anions with nonaqueous electrolytes." Canadian Journal of Chemistry 89, no. 12 (December 2011): 1525–32. http://dx.doi.org/10.1139/v11-131.

Full text
Abstract:
The interaction of lithium (Li+) cation and hexafluorophosphate (PF6–) anion with nonaqueous electrolytes is studied by using density functional theory at the B3LYP/6–311++G(d,p) level in the gas phase in terms of the coordination of Li+ and PF6– with these solvents. Ethylene carbonate (EC) coordinates with Li+ and PF6– most strongly and reaches the anode and cathode most easily because of its highest dielectric constant among all the solvent molecules, resulting in its preferential reduction on the anode and oxidation on the cathode. For cyclic carbonates EC and propylene carbonate (PC), the structure Li+(S)4 is found to be the most stable. However, for linear carbonates dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC), the formation of PF6–(S)n=1–3 is not favorable. Such analysis may be useful in applications for lithium ion batteries.
APA, Harvard, Vancouver, ISO, and other styles
4

Gu, Kaihua, Wenhui Feng, Hongyuan Wei, and Leping Dang. "The Factors Influencing Lithium Carbonate Crystallization in Spent Lithium-Ion Battery Leachate." Processes 12, no. 4 (April 8, 2024): 753. http://dx.doi.org/10.3390/pr12040753.

Full text
Abstract:
In this study, lithium was recovered from spent lithium-ion batteries through the crystallization of lithium carbonate. The influence of different process parameters on lithium carbonate precipitation was investigated. The results indicate that under the conditions of 90 °C and 400 rpm, a 2.0 mol/L sodium carbonate solution was added at a rate of 2.5 mL/min to a 2.5 mol/L lithium chloride solution, yielding lithium carbonate with a recovery rate of 85.72% and a purity of 98.19%. The stirring rate and LiCl solution concentration significantly impact the particle size of lithium carbonate aggregates. As the stirring rate increases from 200 to 800 rpm, the average particle size decreases from 168.694 μm to 115.702 μm. Conversely, an increase in the LiCl solution concentration reduces the lithium carbonate particle size, with an average particle size of only 97.535 μm being observed at a LiCl solution concentration of 2.5 mol/L. It was also observed that nickel and cobalt ions become incorporated into the crystal lattice of lithium carbonate, thereby affecting the growth and morphology of lithium carbonate.
APA, Harvard, Vancouver, ISO, and other styles
5

Rynearson, Leah, Nuwanthi D. Rodrigo, Chamithri Jayawardana, and Brett L. Lucht. "Electrolytes Containing Triethyl Phosphate Solubilized Lithium Nitrate for Improved Silicon Anode Performance." Journal of The Electrochemical Society 169, no. 4 (April 1, 2022): 040537. http://dx.doi.org/10.1149/1945-7111/ac6455.

Full text
Abstract:
An electrolyte consisting of lithium nitrate (LiNO3) and lithium difluoro(oxalato)borate (LiDFOB) in ethylene carbonate (EC), ethylmethyl carbonate (EMC), and triethyl phosphate (TEP) is used to improve the long-term cycling stability of silicon anodes. TEP was selected for its ability to dissolve LiNO3 in carbonates to a concentration of ∼0.2 M. The large amount of LiNO3 combined with the LiDFOB salt leads to a capacity retention of 87.1% after one hundred cycles due to the formation of a relatively stable solid electrolyte interphase (SEI). Ex-situ surface analysis reveals that the SEI consists of oxalates, lithium alkyl carbonates, borates, and nitrate reduction products. By selecting two components which are preferentially reduced (LiNO3 and LiDFOB), the SEI is able to inhibit continuous solvent decomposition and allows for improved electrochemical cycling for pure silicon anodes.
APA, Harvard, Vancouver, ISO, and other styles
6

Parhizi, Mohammad, Louis Edwards Caceres-Martinez, Brent A. Modereger, Hilkka I. Kenttämaa, Gozdem Kilaz, and Jason K. Ostanek. "Determining the Composition of Carbonate Solvent Systems Used in Lithium-Ion Batteries without Salt Removal." Energies 15, no. 8 (April 12, 2022): 2805. http://dx.doi.org/10.3390/en15082805.

Full text
Abstract:
In this work, two methods were investigated for determining the composition of carbonate solvent systems used in lithium-ion (Li-ion) battery electrolytes. One method was based on comprehensive two-dimensional gas chromatography with electron ionization time-of-flight mass spectrometry (GC×GC/EI TOF MS), which often enables unknown compound identification by their electron ionization (EI) mass spectra. The other method was based on comprehensive two-dimensional gas chromatography with flame ionization detection (GC×GC/FID). Both methods were used to determine the concentrations of six different commonly used carbonates in Li-ion battery electrolytes (i.e., ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and vinylene carbonate (VC) in model compound mixtures (MCMs), single-blind samples (SBS), and a commercially obtained electrolyte solution (COES). Both methods were found to be precise (uncertainty < 5%), accurate (error < 5%), and sensitive (limit of detection <0.12 ppm for FID and <2.7 ppm for MS). Furthermore, unlike the previously reported methods, these methods do not require removing lithium hexafluorophosphate salt (LiPF6) from the sample prior to analysis. Removal of the lithium salt was avoided by diluting the electrolyte solutions prior to analysis (1000-fold dilution) and using minimal sample volumes (0.1 µL) for analysis.
APA, Harvard, Vancouver, ISO, and other styles
7

Rynearson, Leah L., and Leah Rynearson. "Utilizing Triethyl Phosphate to Increase the Solubility of Lithium Nitrate for Improved Silicon Anode Performance." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 287. http://dx.doi.org/10.1149/ma2022-012287mtgabs.

Full text
Abstract:
An electrolyte consisting of lithium nitrate (LiNO3) and lithium difluoro(oxalto)borate (LiDFOB) in ethylene carbonate (EC), ethylmethyl carbonate (EMC), and triethyl phosphate (TEP) was used to improve the long-term cycling stability of silicon anodes. TEP was selected for its ability to dissolve LiNO3 in carbonates to a concentration of ~0.2 M. The large amount of LiNO3 combined with the LiDFOB salt led to a capacity retention of 87.1% after one hundred cycles due to the formation of a stable solid electrolyte interphase (SEI). Ex-situ surface analysis revealed that the SEI consists of oxalates, lithium alkyl carbonates, borates, and nitrate decomposition products. By selecting two components that preferentially reduce before the rest (LiNO3 and LiDFOB), the SEI formed was able to prevent significant solvent decomposition and allow for improved electrochemical cycling in pure silicon anodes.
APA, Harvard, Vancouver, ISO, and other styles
8

Rao, S. Rama, and C. S. Sunandana. "Quenched lithium carbonate." Journal of Physics and Chemistry of Solids 57, no. 3 (March 1996): 315–18. http://dx.doi.org/10.1016/0022-3697(95)00281-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Simard, Marie. "Lithium Carbonate Intoxication." Archives of Internal Medicine 149, no. 1 (January 1, 1989): 36. http://dx.doi.org/10.1001/archinte.1989.00390010054004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Wei-Sheng, Cheng-Han Lee, and Hsing-Jung Ho. "Purification of Lithium Carbonate from Sulphate Solutions through Hydrogenation Using the Dowex G26 Resin." Applied Sciences 8, no. 11 (November 15, 2018): 2252. http://dx.doi.org/10.3390/app8112252.

Full text
Abstract:
Purification of lithium carbonate, in the battery industry, is an important step in the future. In this experiment, the waste lithium-ion batteries were crushed, sieved, leached with sulfuric acid, eluted with an extractant, and finally sulphate solutions were extracted, through selective precipitation. Next, sodium carbonate was first added to the sulphate solutions, to precipitate lithium carbonate (Li2CO3). After that, lithium carbonate was put into the water to create lithium carbonate slurry and CO2 was added to it. The aeration of CO2 and the hydrogenation temperature were controlled, in this experiment. Subsequently, Dowex G26 resin was used to remove impurities, such as the calcium and sodium in lithium carbonate. Moreover, the adsorption isotherms, described by means of the Langmuir and Freundlich isotherms, were used to investigate the ion-exchange behaviors of impurities. After removing the impurities, the different heating rate was controlled to obtain lithium carbonate. In a nutshell, this study showed the optimum condition of CO2 aeration, hydrogenation temperature, ion-exchange resin and the heating rate to get high yields and purity of lithium carbonate.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Carbonate de lithium"

1

Kruesi, William H. "The electrowinning of lithium from chloride-carbonate melts." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hirata, Kazuhisa. "Studies on Carbonate-Free Electrolytes Based on Lithium Bis (fluorosulfonyl) imide for Lithium-Ion Batteries." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lebrun, Nathalie. "Étude du comportement électrochimique du lithium en milieu carbonate de propylène." Paris 12, 1992. http://www.theses.fr/1992PA120046.

Full text
Abstract:
La mise au point de generateurs secondaires a anode de lithium se heurte encore a de nombreux problemes lies a la reactivite de ce metal vis-a-vis du milieu electrolytique. Afin de mieux comprendre les phenomenes mis en jeu, nous avons etudie le comportement electrochimique du lithium au cours de son stockage et de son cyclage galvanostatique dans des solutions de carbonate de propylene molaires en tetrafluoroborate de lithium et en trifluoromethanesulfonate de lithium. L'ensemble des resultats obtenus nous a permis de proposer une modelisation du processus de passivation et d'electrodeposition de ce metal
APA, Harvard, Vancouver, ISO, and other styles
4

Le, Van Khu. "Préparation par voie électrochimique de nano-poudres de carbone en milieu carbonates alcalins fondus." Paris 6, 2009. http://www.theses.fr/2009PA066072.

Full text
Abstract:
Des nano-poudres de carbone (5 - 50nm) ont été préparées par électro-réduction d’un mélange eutectique fondu Li2CO3-Na2CO3-K2CO3 entre 450°C et 700°C. Les mécanismes réactionnels mis en jeu ont été étudiés sur électrode en C vitreux et en Ni. Les analyses physico-chimiques ont mis en évidence la présence de phases amorphes et cristallisées. Les poudres possèdent des aires spécifiques très élevées (1315 m2/g) du fait de l’abondante micro et mésoporosité. Les poudres ont été utilisées comme matériaux hôtes anodiques pour accumulateurs lithium-ion dans différents électrolytes notamment le PC pur pour lequel des capacités réversibles de l'ordre de 430 mAh/g ont pu être obtenues. Les poudres de carbone ont également été testées comme matériau d’électrode négative pour condensateur électrochimique hybride C/MnO2 en milieu aqueux neutre. Des capacités de 122 F/g ont été enregistrées. Enfin, une approche exploratoire a été menée en vue de la synthèse de composés mixtes C-Ni et C-Sn par électrolyse du mélange de carbonates fondus contenant des ions Ni2+ ou Sn2+. Des particules de très petites tailles (5-10 nm) ont ainsi pu être mises en évidence
APA, Harvard, Vancouver, ISO, and other styles
5

Ponnuchamy, Veerapandian. "Towards A Better Understanding of Lithium Ion Local Environment in Pure, Binary and Ternary Mixtures of Carbonate Solvents : A Numerical Approach." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENY004/document.

Full text
Abstract:
En raison de l'augmentation de la demande d'énergie, ressources écologiques respectueux de l'environnement et durables (solaires, éoliennes) doivent être développées afin de remplacer les combustibles fossiles. Ces sources d'énergie sont discontinues, étant corrélés avec les conditions météorologiques et leur disponibilité est fluctuant dans le temps. En conséquence, les dispositifs de stockage d'énergie à grande échelle sont devenus incontournables, pour stocker l'énergie sur des échelles de temps longues avec une bonne compatibilité environnementale. La conversion d'énergie électrochimique est le mécanisme clé pour les développements technologiques des sources d'énergie alternatives. Parmi ces systèmes, les batteries Lithium-ion (LIB) ont démontré être les plus robustes et efficaces et sont devenus la technologie courante pour les systèmes de stockage d'énergie de haute performance. Ils sont largement utilisés comme sources d'énergie primaire pour des applications populaires (ordinateurs portables, téléphones cellulaires, et autres). La LIB typique est constitué de deux électrodes, séparés par un électrolyte. Celui-ci joue un rôle très important dans le transfert des ions entre les électrodes fournissant la courante électrique. Ce travail de thèse porte sur les matériaux complexes utilisés comme électrolytes dans les LIB, qui ont un impact sur les propriétés de transport du ion Li et les performances électrochimiques. Habituellement l'électrolyte est constitué de sels de Li et de mélanges de solvants organiques, tels que les carbonates cycliques ou linéaires. Il est donc indispensable de clarifier les propriétés structurelles les plus importantes, et leurs implications sur le transport des ions Li+ dans des solvants purs et mixtes. Nous avons effectué une étude théorique basée sur la théorie du fonctionnelle densité (DFT) et la dynamique moléculaire (MD), et nous avons consideré des carbonates cyclique (carbonate d'éthylène, EC, et carbonate de propylène, PC) et le carbonate de diméthyle, DMC, linéaire. Les calculs DFT ont fourni une image détaillée des structures optimisées de molécules de carbonate et le ion Li+, y compris les groupes pures Li+(S)n (S =EC,PC,DMC et n=1-5), groupes mixtes binaires, Li+(S1)m(S2)n (S1,S2=EC,PC,DMC, m+n=4), et ternaires Li+(EC)l(DMC)m(PC)n (l+m+n=4). L'effet de l'anion PF6 a également été étudié. Nous avons aussi étudié la structure de la couche de coordination autour du Li+, dans tous les cas. Nos résultats montrent que les complexes Li+(EC)4, Li+(DMC)4 et Li+(PC)3 sont les plus stables, selon les valeurs de l'énergie libre de Gibbs, en accord avec les études précédentes. Les énergies libres de réactions calculés pour les mélanges binaires suggèrent que l'ajout de molécules EC et PC aux clusters Li+ -DMC sont plus favorables que l'addition de DMC aux amas Li+-EC et Li+-PC. Dans la plupart des cas, la substitution de solvant aux mélanges binaires sont défavorables. Dans le cas de mélanges ternaires, la molécule DMC ne peut pas remplacer EC et PC, tandis que PC peut facilement remplacer EC et DMC. Notre étude montre que PC tend à substituer EC dans la couche de solvation. Nous avons complété nos études ab-initio par des simulations MD d'une ion Li immergé dans les solvants purs et dans des mélanges de solvants d'intérêt pour les batteries, EC:DMC(1: 1) et EC:DMC:PC(1:1:3). MD est un outil très puissant et nous a permis de clarifier la pertinence des structures découvertes par DFT lorsque le ion est entouré par des solvants mélangés. En effet,la DFT fournit des informations sur les structures les plus stables de groupes isolés, mais aucune information sur leur stabilité ou de la multiplicité (entropie) lorsqu'il est immergé dans un environnement solvant infinie. Les données MD, ainsi que les calculs DFT nous ont permis de donner une image très complète de la structure locale de mélanges de solvants autour le ion lithium, sensiblement amélioré par rapport aux travaux précédents
Due to the increasing global energy demand, eco-friendly and sustainable green resources including solar, or wind energies must be developed, in order to replace fossil fuels. These sources of energy are unfortunately discontinuous, being correlated with weather conditions and their availability is therefore strongly fluctuating in time. As a consequence, large-scale energy storage devices have become fundamental, to store energy on long time scales with a good environmental compatibility. Electrochemical energy conversion is the key mechanism for alternative power sources technological developments. Among these systems, Lithium-ion (Li+) batteries (LIBs) have demonstrated to be the most robust and efficient, and have become the prevalent technology for high-performance energy storage systems. These are widely used as the main energy source for popular applications, including laptops, cell phones and other electronic devices. The typical LIB consists of two (negative and positive) electrodes, separated by an electrolyte. This plays a very important role, transferring ions between the electrodes, therefore providing the electrical current. This thesis work focuses on the complex materials used as electrolytes in LIBs, which impact Li-ion transport properties, power densities and electrochemical performances. Usually, the electrolyte consists of Li-salts and mixtures of organic solvents, such as cyclic or linear carbonates. It is therefore indispensable to shed light on the most important structural (coordination) properties, and their implications on transport behaviour of Li+ ion in pure and mixed solvent compositions. We have performed a theoretical investigation based on combined density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations, and have focused on three carbonates, cyclic ethylene carbonate (EC) and propylene carbonate (PC), and linear dimethyl carbonate (DMC). DFT calculations have provided a detailed picture for the optimized structures of isolated carbonate molecules and Li+ ion, including pure clusters Li+(S)n (S=EC, PC, DMC and n=1-5), mixed binary clusters, Li+(S1)m(S2)n (S1, S2 =EC, PC, DMC, with m+n=4), and ternary clusters Li+(EC)l(DMC)m(PC)n with l+m+n=4. Pure solvent clusters were also studied including the effect of PF6- anion. We have investigated in details the structure of the coordination shell around Li+ for all cases. Our results show that clusters such as Li+(EC)4, Li+(DMC)4 and Li+(PC)3 are the most stable, according to Gibbs free energy values, in agreement with previous experimental and theoretical studies. The calculated Gibbs free energies of reactions in binary mixtures suggest that the addition of EC and PC molecules to the Li+-DMC clusters are more favourable than the addition of DMC to Li+-EC and Li+-PC clusters. In most of the cases, the substitution of solvent to binary mixtures are unfavourable. In the case of ternary mixtures, the DMC molecule cannot replace EC and PC, while PC can easily substitute both EC and DMC molecules. Our study shows that PC tends to substitute EC in the solvation shell. We have complemented our ab-initio studies by MD simulations of a Li-ion when immersed in the pure solvents and in particular solvents mixtures of interest for batteries applications, e.g. , EC:DMC (1:1) and EC:DMC:PC(1:1:3). MD is a very powerful tool and has allowed us to clarify the relevance of the cluster structures discovered by DFT when the ion is surrounded by bulk solvents. Indeed, DFT provides information about the most stable structures of isolated clusters but no information about their stability or multiplicity (entropy) when immersed in an infinite solvent environment. The MD data, together the DFT calculations have allowed us to give a very comprehensive picture of the local structure of solvent mixtures around Lithium ion, which substantially improve over previous work
APA, Harvard, Vancouver, ISO, and other styles
6

Martin, Gunther. "Lithiumgewinnung aus Primärrohstoffen unter Verwendung elektrodialytischer Verfahren." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-229579.

Full text
Abstract:
Vor dem Hintergrund des steigenden Lithiumbedarfs und der Ungleichverteilung der weltweiten Lithiumvorkommen gilt es auch, kleinere, heimische Vorkommen, wie die Zinnwalditlagerstätte bei Zinnwald/Cínovec, für eine mögliche Lithiumgewinnung zu untersuchen. Hierfür wurden zur Darstellung von Lithiumcarbonat zwei Verfahren entwickelt, optimiert und ökonomisch bewertet. Dabei konnte gezeigt werden, dass insbesondere das Direktcarbonatisierungsverfahren mit überkritischem CO2 aufgrund des geringen Chemikalienverbrauchs, der hohen Selektivität für Lithium, als auch dem breiten Anwendungsspektrum für weitere primäre und sekundäre Lithiumressourcen ein vielversprechender Ansatz für eine technische Umsetzung darstellt. Des Weiteren wurde die elektrodialytische Darstellung von Lithiumhydroxid untersucht und optimiert. Mittels einer erstellten Simulation wurden hierfür nicht nur Anforderungen an prozessierbare Ausgangslösungen definiert, sondern auch ein Aufbau zur Erhöhung der Prozessstabilität entwickelt, der eine kontinuierliche Filtration eines oder mehrerer Kreisläufe der Elektrodialyse erlaubt.
APA, Harvard, Vancouver, ISO, and other styles
7

Staněk, Vladimír. "Vlastnosti aprotických elektrolytů pro lithno-iontové akumulátory." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-221040.

Full text
Abstract:
The present work deals with the properties of suitable electrolytes for lithium-ion batteries. The first part described in the current issue of electrolytes for lithium-ion batteries, types of solvents and their properties and methods of measurement properties. The second part is devoted to the measurement of the properties of solvents and electrolytes such as relative permittivity, density and viscosity. Measurement of relative permittivity was focused on the measurement of the solvent mixture with varying the percentage of the solvent. Viscosity and density were measured on a solvent with a lithium salt added (final electrolyte).
APA, Harvard, Vancouver, ISO, and other styles
8

Marriott, Caedmon. "Lithium and calcium isotope fractionation and Li/Ca ratio incorporation into calcium carbonate as potential geochemical proxies." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hee-Youb, Song. "In Situ Probe Microscopic Studies on Graphite Electrodes for Lithium-ion Batteries." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/217175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kiemde, Abdoul Fattah. "Development of direct boron extraction process from the salar de Hombre Muerto (Argentina) brines within the framework of battery-grade lithium carbonate (Li₂CO₃) production." Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0121.

Full text
Abstract:
Les saumures continentales comme celles du salar de Hombre Muerto dans le Nord-Ouest de l'Argentine sont des ressources importantes en sels minéraux dissous qui pourraient être extraits pour des applications industrielles, particulièrement dans la production des batteries lithium-ion. Cependant, l'extraction des sels de lithium à partir des saumures s'accompagne de la production d'énormes quantités de déchets solides tels que des sels mixtes de sodium, de calcium, de magnésium et de potassium, mais aussi des sels de bore. Dans les installations industrielles actuelles, le lithium est extrait à partir des saumures concentrées par évaporation solaire sans nécessairement co-valoriser ces sels. Dans certaines installations industrielles, le bore est extrait par des alcools très solubles dans les saumures avec une co-extraction du lithium. Lorsqu'il n'est pas co-valorisé, le bore est stocké avec les sels de sodium, de calcium, de magnésium et de potassium dans des décharges, ce qui peut poser des problèmes environnementaux. Le développement de nouveaux procédés d'extraction de lithium est donc nécessaire pour éviter l'évaporation solaire et réduire la quantité de déchets générés. En outre, la co-valorisation de certains sels est envisageable, comme le bore, qui peut être utilisé dans l'agriculture, le nucléaire, les détergents, les produits pharmaceutiques et dans les industries de production de verre et de céramique. Dans ce contexte, cette recherche se penche sur le développement d'un procédé d'extraction directe du bore et du lithium à partir des saumures du salar de Hombre Muerto en combinant un procédé d'extraction liquide-liquide et un procédé d'électrodialyse afin de valoriser le bore et de produire du carbonate de lithium de haute qualité pour la fabrication des batteries lithium-ion. Un solvant d'extraction composé de 2 mol L⁻¹ de 2-butyl-1-octanol dilué dans du kérosène a été utilisé pour extraire sélectivement 94,2% de bore d'une saumure native du salar de Hombre Muerto. Pour cela, il est nécessaire d'utiliser quatre mélangeurs-décanteurs avec un rapport des volumes des phases organique et aqueuse O/A=4 sans ajuster le pH de la saumure (pH=7.5). Le bore peut ensuite être entièrement désextrait du solvant d'extraction chargé en bore en une étape à l'aide d'une solution de désextraction constituée d'hydroxyde de sodium à 0,1 mol L⁻¹ avec un rapport des volumes des phases O/A=4. Suite à l'extraction extrêmement sélective du bore et à la désextraction, le bore peut être cristallisé sous forme de borax (Na₂B₄O₇•2H₂O, pureté=99%). La combinaison d'une opération d'extraction liquide-liquide du bore avec des opérations d'électrodialyse et de précipitation ont permis de produire du borax de haute qualité, du carbonate de lithium de qualité batterie, de l'hydroxyde de magnésium et du carbonate de sodium. Les opérations d'électrodialyse ont été réalisées dans des cellules à trois compartiments. La réduction de l'eau dans l'électrodialyseur génère des ions hydroxydes qui réagissent avec le magnésium dans l'étape I pour former un hydroxyde de magnésium (Mg(OH)₂). Les étapes II et III combinent une opération d'électrodialyse et une opération de précipitation en présence de dioxyde de carbone (CO₂) pour produire du carbonate de sodium (Na₂CO₃) et du carbonate de lithium (Li₂CO₃). L'hydroxyde de magnésium (Mg(OH)₂), le carbonate de sodium (Na₂CO₃) et le carbonate de lithium (Li₂CO₃) ont été successivement produits par ce procédé avec des puretés respectives de 71,20 %, 99,99 % et 99,90 %. Plus important encore, la combinaison de l'extraction liquide-liquide du bore et de l'électrodialyse a contribué à réduire la consommation énergétique des opérations d'électrodialyse de 32%. À la fin du procédé, la charge totale dissoute (CTD) de la saumure a été réduite de 99,8 %. Cette saumure appauvrie en sels peut être recyclée dans le procédé
Continental brines as those of the salar de Hombre Muerto in the northwest Argentina are important resources of dissolved salts which could potentially be extracted economically for industrial purposes, particularly in the production of lithium-ion batteries. However, the extraction of lithium salts from brines is accompanied by the production of huge amounts of solid waste including mixed salts of sodium, calcium, magnesium, potassium, chlorides and boron. In the current facilities, lithium is processed from brines concentrated by solar evaporation without significant co-valorization of these salts. In some facilities, boron is extracted by highly soluble alcohols within the brines with co-extraction of lithium. When it is not co-valorized, boron is stored as well as sodium, calcium, magnesium and potassium in stockpiles with potential environmental concerns. Hence, development of new processes is mandatory to bypass solar evaporation and reduce industrial waste. Furthermore, it can be even envisaged to co-valorize some of these salts such as boron that can be used in agriculture, nuclear, detergent, pharmaceutical, glass and ceramic industries. In this context, this research delves into the development of direct boron and lithium extraction from the salar de Hombre Muerto brines by combining solvent extraction and electrodialysis process in order to valorize boron and produce high-grade lithium carbonate for lithium-ion batteries. Extraction solvent composed of 2 mol L⁻¹ 2-butyl-1-octanol in kerosene was employed to selectively extract 94.2% boron from a native brine of the salar de Hombre Muerto in four mixers-settlers at pH=7.5, phase volume ratio O/A=4 and 25 °C. Then, the boron-loaded extraction solvent was fully stripped by 0.1 mol L⁻¹ sodium hydroxide at phase volume ratio O/A=4 and 25 °C. This highly selective and efficient extractant allowed to crystallize boron as borax (Na₂B₄O₇•2H₂O, purity=99%). Solvent extraction of boron was successfully implemented in a three-stage process combining electrodialysis and precipitation operations leading to the production of high-grade borax, high-grade lithium carbonate, magnesium hydroxide and sodium carbonate. Each of three stages was composed of three compartments in which water was reduced in the cathodic compartment and oxidized in the anodic compartment. By combining electrodialysis and precipitation via the hydroxide anions (OH−) produced in the cathodic compartment, stage I enabled magnesium production as magnesium hydroxide (Mg(OH)₂). Stages II and III combined electrodialysis and precipitation employing carbon dioxide (CO2). Therefore, sodium and lithium were produced as sodium carbonate (Na₂CO₃) and lithium carbonate (Li₂CO₃). Magnesium hydroxide (Mg(OH)₂), sodium carbonate (Na₂CO₃) and lithium carbonate (Li₂CO₃) were successively produced along the process with purities of 71.2%, 99.99% and 99.9%, respectively. Most importantly, combining solvent extraction of boron and electrodialysis contributed to reduce the energy consumption by 32%. At the end of the process, the total dissolved solid (TDS) of the brine was decreased by 99.8%. This brine depleted of salts can be recycled in the process
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Carbonate de lithium"

1

Attiah, Abdul-Redha Dinar. Diffusion of tritium in neutron irradiated lithium fluoride and lithium carbonate. Salford: University of Salford, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bradley, J. J. The pitfalls of attempted suicide: Hazards of lithium carbonate therapy. London: Medical Protection Society, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schneider, Lutz. Lithium and Lithium Carbonate: A Medicinal Product for Depression, Alzheimer and Dementia, for Improving Well-Being and Managing Stress. Independently Published, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Feinstein, Robert E., and Brian Rothberg. Violence. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199326075.003.0013.

Full text
Abstract:
Potentially violent patients need immediate attention and evaluation to determine their risk of imminent violence. A past history of violence is the best predictor of future violent behavior, and individuals who have committed violent acts in the past and have been arrested for assaultive behavior represent the highest risk; people who carry weapons or have access to weapons are of relatively high risk. Individuals with violent impulses who are either intoxicated or are in withdrawal have the most extreme risk for imminent violence. The treatment of acute aggression or agitation involves the judicious use of sedative-anxiolytics or low doses of second-generation antipsychotics. SSRIs have been used to treat aggressive, impulsive, and violent symptoms, particularly in individuals with head injuries, and lithium carbonate can reduce impulsive aggression to extremely low levels in some aggressive patients. Two Tarasoff decisions have become national standards for clinical practice regarding “duty to warn” and “duty to protect” all potential victims of life-threatening danger from a homicidal patient.
APA, Harvard, Vancouver, ISO, and other styles
5

Huff, Brigitte. Vergleich der Pharmakokinetik von Lithium-Carbonat in einer neuen Retardzubereitung und Lithium-Acetat in einer Normaltablette (Quilonum®): Untersuchung an gesunden freiwilligen Versuchspersonen nach oraler Verabreichung der beiden Lithiumsalze. 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Carbonate de lithium"

1

Gooch, Jan W. "Lithium Carbonate." In Encyclopedic Dictionary of Polymers, 431. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lewis, Moira, Courtenay Norbury, Rhiannon Luyster, Lauren Schmitt, Andrea McDuffie, Eileen Haebig, Donna S. Murray, et al. "Lithium Carbonate." In Encyclopedia of Autism Spectrum Disorders, 1747. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1698-3_100821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Murthy, Sree Prathap Mohana. "Lithium Carbonate." In Get Through MRCPsych: Preparation for the CASC, Second edition, 138–44. 2nd ed. London: CRC Press, 2022. http://dx.doi.org/10.1201/9780429073007-33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Calby, E. R., P. J. Elving, and William D. Stillwell. "Purification of Lithium Carbonate." In Inorganic Syntheses, 1–2. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132326.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Wei, Weijie Chen, Yuzhi Li, and Kejing Wang. "Study on Preparation of Lithium Carbonate from Lithium-Rich Electrolyte." In Light Metals 2019, 923–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05864-7_112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shi, Lei, Tao Qu, Dachun Liu, Yong Deng, Bin Yang, and Yongnian Dai. "Process of Thermal Decomposition of Lithium Carbonate." In The Minerals, Metals & Materials Series, 107–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36556-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clark, David C., and Jan Fawcett. "Does Lithium Carbonate Therapy for Alcoholism Deter Relapse Drinking?" In Recent Developments in Alcoholism, 315–28. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-1678-5_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chandler, Mark, C. T. Gualtieri, and Jeffrey J. Fahs. "Other Psychotropic Drugs: Stimulants, Antidepressants, the Anxiolytics, and Lithium Carbonate." In Psychopharmacology of the Developmental Disabilities, 119–45. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4613-8774-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Amsterdam, Jay D., and Greg Maislin. "The Suppression of Recurrent Herpes Simplex Virus Infections with Lithium Carbonate." In Psychiatry and Biological Factors, 257–68. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5811-4_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dong, Liang, Licong Huang, Fuxiao Liang, and Cuihua Li. "LiDFOB in sulfolane-carbonate solvents for high-voltage lithium-ion batteries." In Advances in Energy and Environment Research, 33–36. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315212876-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Carbonate de lithium"

1

Zhang, Kuiwen, Karthik Puduppakkam, and Anthony Shelburn. "Development and Validation of a Reduced Chemical Kinetic Mechanism of Dimethyl Carbonate and Ethylene Carbonate." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2085.

Full text
Abstract:
<div class="section abstract"><div class="htmlview paragraph">With the rapid development of electric vehicles, the demands for lithium-ion batteries and advanced battery technologies are growing. Today, lithium-ion batteries mainly use liquid electrolytes, containing organic compounds such as dimethyl carbonate and ethylene carbonate as solvents for the lithium salts. However, when thermal runaway occurs, the electrolyte decomposes, venting combustible gases that could readily be ignited when mixed with air and leading to pronounced heat release from the combustion of the mixture. So far, the chemical behavior of electrolytes during thermal runaway in lithium-ion batteries is not comprehensively understood. Well-validated compact chemical kinetic mechanisms of the electrolyte components are required to describe this process in CFD simulations. In this work, submechanisms of dimethyl carbonate and ethylene carbonate were developed and adopted in the Ansys Model Fuel Library (MFL). Further improvements were made to enhance the kinetic consistency between these submechanisms and the base mechanism of the MFL. These mechanisms were validated using recently published experimental datasets over a wide range of conditions and show satisfactory performance. Analysis of the simulated results has revealed the important reaction pathways in the decomposition of dimethyl carbonate and ethylene carbonate. The species involved in the most critical pathways were selected as key species in the subsequent mechanism reduction using Ansys Reaction Workbench. Multiple mechanism reduction approaches were applied in combination to reduce the mechanism described here to 38 species and 177 reactions. This mechanism is ready to be used in CFD simulation.</div></div>
APA, Harvard, Vancouver, ISO, and other styles
2

Ren, Nan, Yu-ting Wu, and Chong-fang Ma. "Preparation and Experimental Study of Mixed Carbonates With High Maximum Using Temperature." In ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/es2012-91401.

Full text
Abstract:
In order to meet the demands of future high-temperature solar thermal power generation, 37 kinds of mixed carbonate molten salts were prepared by mixing potassium carbonate, lithium carbonate, sodium carbonate in accordance with different proportions in this paper. Melting point of molten salt, as the most important basic character, is the primary parameter to select molten salt. Melting point and decomposition temperature are measured by Simultaneous Thermal Analyzer. The results show that melting points of major ternary carbonates are close at around 400°C and decomposition temperatures of most ternary carbonate are between 800 and 850°C. In accordance with energy variation, when the system is cooled from the molten state, precipitates of crystalline phases is orderly. Crystallization temperatures of some samples are much higher than their melting points. Therefore, through comparative experimental study of heating and cooling, 10 kinds of mixed carbonates with low melting point and crystallization temperature were selected primarily. Then, latent heat, density and thermal stability of these mixed salts were studied.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Jian, Li-jun Li, Gong-xiu He, and Ke Chen. "Fabricating of Lithium-Battery-Grade Precursor Salt Cobaltous Carbonate." In 2010 International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2010. http://dx.doi.org/10.1109/icicta.2010.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yamada, Yuki, Yasuhiro Koyama, Takeshi Abe, and Zempachi Ogumi. "Charge-Discharge Behavior of Graphite in Propylene Carbonate-Containing Electrolytes." In 1st International Electric Vehicle Technology Conference. 10-2 Gobancho, Chiyoda-ku, Tokyo, Japan: Society of Automotive Engineers of Japan, 2011. http://dx.doi.org/10.4271/2011-39-7236.

Full text
Abstract:
<div class="section abstract"><div class="htmlview paragraph">The electrochemical intercalation of lithium-ion into natural graphite cannot take place in propylene carbonate (PC)-based electrolytes. Continuous decomposition of PC, accompanied by the exfoliation of graphite, is observed instead of the intercalation of lithium-ion. One of the plausible hypotheses to explain this behavior is that PC-solvated lithium-ion intercalates into graphite during the first charge, resulting in the exfoliation of graphite. Therefore, we consider that the solvation structure of lithium-ion in PC-based electrolytes should strongly influence the charge-discharge behavior of natural graphite.</div><div class="htmlview paragraph">We studied the charge-discharge properties of natural graphite in binary electrolytes consisting of PC and dimethyl carbonate (DMC) with various mixing ratios. The average solvation numbers of PC molecules per lithium-ion (<i>N</i><sub>PC,ave</sub>) in PC:DMC binary electrolytes were evaluated with Raman spectroscopy. We examined the correlation between the solvation number of PC molecules and the charge-discharge behavior of natural graphite and discuss the mechanism of the exfoliation of graphite.</div></div>
APA, Harvard, Vancouver, ISO, and other styles
5

Voropaeva, Daria, and Andrey Yaroslavtsev. "Nafion Solvated by Ethylene Carbonate, Dimethyl Carbonate and Dimethylacetamide as Electrolyte for Lithium Metal Batteries." In ECP 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/ecp2022-12667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bgatova, Nataliya, Eugene Zavyalov, Olga Solovjeva, Svetlana Shatskaya, Iuliia Taskaeva, Nikita Khotskin, Vitaliy Isupov, Viktoriia Makarova, Anna Dotsenko, and Yuri Borodin. "NEUROPROTECTIVE EFFECTS OF LITHIUM CARBONATE IN CONDITIONS OF TUMOR GROWTH." In 2018 11th International Multiconference Bioinformatics of Genome Regulation and Structure\Systems Biology (BGRS\SB). IEEE, 2018. http://dx.doi.org/10.1109/csgb.2018.8544772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Iwaki, Hiroyuki, Gong Jin, Tomohiko Furuhata, and Norio Arai. "Reaction Characteristics of Wastepaper Gasification With CO2 Catalyzed by Molten Carbonate Salts." In 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26076.

Full text
Abstract:
In this paper, wastepaper gasification with steam and carbon dioxide was tested in the presence of molten carbonate salt catalysts. Reactions with steam or carbon dioxide were first compared. Hydrogen was mainly produced by gasification with steam, but no carbon monoxide was generated. For the case where carbon dioxide was used as a reactant instead of steam, generation of carbon monoxide greatly increased via the Boudouard reaction. Different ratios of mixtures of lithium, sodium and potassium carbonates were examined. Lithium was found to play a critical role in the various catalyst combinations. The reaction rate with respect to carbon conversion was approximately first order for low carbon conversions. The rate constants were investigated at different temperatures (923–1023K) and the activation energies were determined. In addition, the flexibility of this technique was examined with three different types of wastepaper. These results suggest the applicability of this process for the effective use of wastepaper and recovery of carbon dioxide.
APA, Harvard, Vancouver, ISO, and other styles
8

Yoon, Sungjae, Sangyup Lee, Paul Maldonado Nogales, and Soon Ki Jeong. "Impacts of Lithium Salt on Interfacial Reactions between SiO and Ethlyene Carbonate-Based Solutions in Lithium Secondary Batteries." In International Conference on Advanced Materials, Mechanics and Structural Engineering. Switzerland: Trans Tech Publications Ltd, 2024. http://dx.doi.org/10.4028/p-ldtpq6.

Full text
Abstract:
This study investigates the influence of lithium salt on the interfacial reactions that occur between SiO and ethylene carbonate-based solutions in lithium secondary batteries. Electrochemical reactions occurring at a SiO electrode were examined to gain insights into the effects of lithium salts, such as LiPF6, LiBF4, LiClO4, and LiCF3SO3, on the interfacial resistance. The SiO electrode exhibited a relatively high reversible capacity and Coulomb efficiency in an electrolyte solution containing LiCF3SO3. The interfacial resistance was the highest in the solution containing LiPF6 and the lowest in the solution containing LiBF4. The findings from this investigation are expected to offer valuable insights for optimizing the design and performance of lithium secondary batteries by manipulating interfacial reactions.
APA, Harvard, Vancouver, ISO, and other styles
9

"The effect of lithium carbonate on angiogenesis of hepatocellular carcinoma-29." In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Azam, Reem, Tasneem ElMakki, Sifani Zavahir, Zubair Ahmad, Gago Guillermo Hijós, and Dong Suk Han. "Lithium capture in Seawater Reverse Osmosis (SWRO) Brine using membrane-based Capacitive Deionization (MCDI) System." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0013.

Full text
Abstract:
Lithium-battery based industries including vehicles, electronics, fusion and thermonuclear, consume lithium rapidly, which raises the need for developing a lithium recovery system. Lithium global market consumption in 2016 was reported to be 35% in batteries manufacturing. The total content of lithium in seawater and oceans is estimated at 2.5 × 1014 kg, with an average concentration of 0.17 mg/L. Salt lakes contain 1,000–3,000 mg/L of lithium, while geothermal water up to 15 mg/L. In 2020, the US Geological Survey (USGS) reported that the total Li resource is about 80 million ton. In nature, lithium does not exist as pure metal owing to its high reactivity with water, air, and nitrogen. Commonly lithium is mined from metallic minerals from earth or brine salt marsh and used in various fields in the form of lithium carbonate (60%), lithium hydroxide (23%), lithium metal (5%), lithium chloride (3%), and butyl lithium (4%). The extraction of 1 kg of lithium needs around 5.3 kg of lithium carbonate. The amount required to produce lithium-ion batteries (LIB) for cell phones or electric cars is estimated to be 0.8 kg/s of lithium metal, which is equivalent to 25,000 tons per year. As we use this much of LIB, this will end up having significant amounts of lithium battery waste, thus recovering LIBS and using it as cathode electrode in MCDI is an excellent way with benefit. This work proposes to efficiently utilize seawater reverse osmosis (SWRO) brine as a medium to recover lithium from seawater followed by its selective capture of lithium element using SLIB as MCDI cathode electrode material. Thus, these attempts could be closer to an improved and more effective loop of lithium targeted capture-reuse system.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Carbonate de lithium"

1

Leece, A., and C. Jiang. A preliminary techno-economic assessment of lithium extraction from flowback and produced water from unconventional shale and tight hydrocarbon operations in Western Canada. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331879.

Full text
Abstract:
In the path towards decarbonization, rechargeable lithium-ion batteries are critical for the widespread adoption of electric vehicles and renewable energy storage systems. To meet the growing demand for this mineral, various sources of lithium are being explored. This study evaluated the technical and economic feasibility of direct lithium extraction (DLE) from flowback and produced waters (FPW) of the Duvernay shale reservoir development near Fox Creek, Alberta and the Montney tight reservoir development in Northeast British Columbia using ion-exchange sorbents. Results indicate that lithium extraction from FPW using DLE technology is a viable option, with fluid pH, temperature, total suspended solids, and organic carbon affecting extraction efficiencies. In the assessment of Duvernay-based FPW fluids processed at a selected centralized facility, approximately 93 tonnes of lithium carbonate, or 105 tonnes of lithium hydroxide monohydrate could be produced annually, based on an average lithium content of 45.1 mg/L and a capacity of approximately 475,000 m3 per year. A discounted cash flow analysis determined the after-tax and royalty internal rate of return of 22% in the production of lithium carbonate (Li2CO3), and 38% in the production of lithium hydroxide monohydrate (LiOH·H2O) from the Duvernay development area. Comparatively, in the assessment of Montney brine fluids processed at a modelled centralized facility, approximately 117 tonnes of lithium carbonate or 134 tonnes of lithium hydroxide monohydrate could be produced annually, based on an average lithium content of 57.7 mg/L and a capacity of approximately 475,000 m3 per year. A discounted cash flow analysis determined the after-tax and royalty internal rate of return of 29% in the production of lithium carbonate and 48% in the production of lithium hydroxide monohydrate from the Dawson Creek Montney development area. These findings demonstrate the economic feasibility of extracting and refining lithium into battery-grade products from a novel source based on forecasted commodity prices and the development of a domestic battery supply chain system. Further investigation of DLE technology, a strategic resource sampling and analysis program, and investigation into the minimum scale of lithium extraction development are recommended.
APA, Harvard, Vancouver, ISO, and other styles
2

Lanagan, M. T., I. Bloom, and T. D. Kaun. Lithium-ferrate-based cathodes for molten carbonate fuel cells. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Coyle, R. T., T. M. Thomas, and P. Schissel. Corrosion of selected alloys in eutectic lithium-sodium-potassium carbonate at 900C. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/6211643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hayden, Neal. Development of an MMPI scale to predict therapeutic response to lithium carbonate. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.3302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cobranchi, D. P., G. R. Phillips, D. E. Johnson, R. M. Barton, D. J. Rose, E. M. Eyring, and S. Petrucci. Kinetics of Complexation of Lithium Perchlorate with 18-Crown-6 in Propylene Carbonate. Fort Belvoir, VA: Defense Technical Information Center, June 1988. http://dx.doi.org/10.21236/ada196943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jiang, C., and X. Zhang. Direct lithium extraction from raw and CO2-mineralization treated oilfield brine using an electrochemically assisted lithium-ion sieve: a preliminary feasibility study. Natural Resources Canada/CMSS/Information Management, 2024. https://doi.org/10.4095/pwwq3wrg5m.

Full text
Abstract:
Quatre (4) échantillons de saumure, différents dérivés d'un reflux et d'eau produite (FPW) provenant des opérations de fracturation hydraulique du réservoir de gaz étanche de Montney dans le nord-est de la Colombie-Britannique (BC), au Canada, ont été utilisés pour l'extraction directe du lithium (DLE) en utilisant la méthode électrochimique. technologie de tamis au lithium-ion assisté (eLIS) dans cette étude. Parmi les quatre échantillons de saumure, l'un était la saumure brute d'origine sans prétraitement, les trois autres échantillons de saumure ont été traités différemment en utilisant la minéralisation du CO2 et la précipitation chimique. La teneur en lithium (Li) et en impuretés (par exemple Ca, Mg, etc.) dans les échantillons de saumure traités était sensiblement différente, et une certaine quantité de perte de Li a été signalée lors des traitements. Dans cette étude eLIS, un oxyde de lithium et de manganèse commercial (LMO) dans une composition chimique de LiMn2O4 a été utilisé comme matériau adsorbant pour toutes les expériences. Le LMO a été protoné avant la fabrication de l'électrode eLIS. Le LMO proné a été chargé sur un feutre de carbone poreux (CF) pour former une électrode de travail. Des tests comparatifs ont été effectués sur les quatre échantillons de saumure dans trois conditions de test eLIS définies. Les performances de l'électrode LMO en termes de changement de potentiel d'électrode, de courant appliqué, de capacité Li, d'efficacité faradique (FE) et de cyclabilité électrochimique ont été étudiées. Les résultats expérimentaux ont révélé l'avantage potentiel du processus eLIS par rapport à l'adsorption chimique du DLE à partir de la saumure des champs pétrolifères. Bien que cette étude n'ait pas pu démontrer une récupération apparemment accrue du lithium à partir des saumures après le traitement de minéralisation du CO2 et la précipitation chimique, une réduction des précipitations d'hydroxydes et/ou de carbonates de calcium (Ca) et/ou de magnésium (Mg) sur les électrodes LMO a été observée pour les échantillons de saumure épuisés. des cations bivalents via la minéralisation du CO2. Nous attendons une autre étude collaborative dans le cycle de financement CMIN B22 avec une plate-forme de test améliorée et un processus eLIS avancé.
APA, Harvard, Vancouver, ISO, and other styles
7

Hsu, H. S., J. H. DeVan, and M. Howell. Equilibrium solubilities of LiFeO/sub 2/ and (Li,K)/sub 2/CrO/sub 4/ in molten alkali carbonates at 650/sup 0/C. [Lithium and potassium chromates]. Office of Scientific and Technical Information (OSTI), August 1986. http://dx.doi.org/10.2172/5279867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography