Academic literature on the topic 'Carbonaceous nanostructures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbonaceous nanostructures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Carbonaceous nanostructures"
Mansoori Mosleh, Fazel, Yadollah Mortazavi, Negahdar Hosseinpour, and Abbas Ali Khodadadi. "Asphaltene Adsorption onto Carbonaceous Nanostructures." Energy & Fuels 34, no. 1 (December 5, 2019): 211–24. http://dx.doi.org/10.1021/acs.energyfuels.9b03466.
Full textYU, M. S., S. Y. CHENG, Y. C. LIN, and W. C. HO. "ELECTROCHEMICAL STORAGE OF HYDROGEN IN CARBON NANOSTRUCTURES." International Journal of Nanoscience 02, no. 04n05 (August 2003): 307–17. http://dx.doi.org/10.1142/s0219581x03001334.
Full textMandal, Santi M., Tridib K. Sinha, Ajit K. Katiyar, Subhayan Das, Mahitosh Mandal, and Sudipto Ghosh. "Existence of Carbon Nanodots in Human Blood." Journal of Nanoscience and Nanotechnology 19, no. 11 (November 1, 2019): 6961–64. http://dx.doi.org/10.1166/jnn.2019.16628.
Full textFANG, HUI-CHEN, YUN-SHUO HSIEH, YOU-MING TSAU, HSIU-FUNG CHENG, and I.-NAN LIN. "SYNTHESIS OF NANOSTRUCTURE CARBONACEOUS MATERIALS ON TIP USING PLASMA-CHEMICAL-VAPOR-DEPOSITION METHOD." International Journal of Nanoscience 02, no. 04n05 (August 2003): 231–37. http://dx.doi.org/10.1142/s0219581x03001243.
Full textBarra, Ana, Cláudia Nunes, Eduardo Ruiz-Hitzky, and Paula Ferreira. "Green Carbon Nanostructures for Functional Composite Materials." International Journal of Molecular Sciences 23, no. 3 (February 6, 2022): 1848. http://dx.doi.org/10.3390/ijms23031848.
Full textKhanchuk, A. I., V. P. Molchanov, M. A. Medkov, P. S. Gordienko, and V. A. Dostavalov. "Synthesis of carbonaceous nanostructures from natural graphite." Doklady Earth Sciences 452, no. 1 (September 2013): 942–44. http://dx.doi.org/10.1134/s1028334x13090110.
Full textKumar, Rajeev, Harish Kumar Choudhary, A. V. Anupama, Aishwarya V. Menon, Shital P. Pawar, Suryasarathi Bose, and Balaram Sahoo. "Nitrogen doping as a fundamental way to enhance the EMI shielding behavior of cobalt particle-embedded carbonaceous nanostructures." New Journal of Chemistry 43, no. 14 (2019): 5568–80. http://dx.doi.org/10.1039/c9nj00639g.
Full textGhiurea, Marius, Stefan-Ovidiu Dima, Anca-Andreea Turcanu, Radu-Claudiu Fierascu, Cristian-Andi Nicolae, Bogdan Trica, and Florin Oancea. "Carbonaceous Nanostructures Obtained by Hydrothermal Conversion of Biomass." Proceedings 29, no. 1 (October 15, 2019): 56. http://dx.doi.org/10.3390/proceedings2019029056.
Full textKumar, Sanjay, Suneel Kumar, Manisha Sengar, and Pratibha Kumari. "Gold-carbonaceous materials based heterostructures for gas sensing applications." RSC Advances 11, no. 23 (2021): 13674–99. http://dx.doi.org/10.1039/d1ra00361e.
Full textNecolau, Mădălina-Ioana, and Andreea-Mădălina Pandele. "Recent Advances in Graphene Oxide-Based Anticorrosive Coatings: An Overview." Coatings 10, no. 12 (November 25, 2020): 1149. http://dx.doi.org/10.3390/coatings10121149.
Full textDissertations / Theses on the topic "Carbonaceous nanostructures"
Stankevičienė, Inga. "Synthesis and coatings production of carbonaceous nanostructures." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121017_111706-30788.
Full textUnikaliomis savybėmis pasižyminčios anglinės nanostruktūros panaudojamos dangų ir plėvelių gamyboje, kurios pritaikomos nanoelektronikoje, biotechnologijoje ir kitose srityse. Šio darbo tikslas buvo susintetinti daugiasienius anglinius nanovamzdelius ir grafito oksidą, pagaminti ir ištirti jų dangas. Mūsų laboratorijoje daugiasieniai angliniai nanovamzdeliai buvo susintetinti cheminio nusodinimo iš garų fazės metodu. Susintetinto produkto valymui nuo katalizatoriaus priemaišų pirmą kartą buvo panaudoti CCl4 garai. Ištyrus CCl4 garais paveiktą medžiagą buvo pagrįstas šio valymo metodo efektyvumas. Grafito oksidas buvo gautas oksiduojant grafitą Hummers'o metodu. Anglinių nanovamzdelių dangos ant skirtingų pagrindų buvo pagamintos cheminio nusodinimo iš garų fazės metodu bei suformuotos panaudojant medžiagos vandenines suspensijas. Grafito oksido su Kongo raudonojo dažo priedu dangos ir plėvelės buvo pagamintos laboratorijoje sukurtu filtravimo į tirpalą metodu. Anglinių nanovamzdelių ir jų dangų tyrimo rezultatai parodė, kad dangų morfologija priklauso nuo sintezės sąlygų, o paviršiaus savybes nulemia prisijungusių funkcinių grupių pobūdis ir kiekis. Ištyrus grafito oksido plėveles ir dangas buvo nustatyta, kad Kongo raudonojo dažo priedas skatina kompaktiškesnių nanokompozitų susidarymą ir stiprina dangų bei plėvelių patvarumą.
Lau, Desmond, and desmond lau@rmit edu au. "Characterisation of Novel Carbonaceous Materials Synthesised Using Plasmas." RMIT University. Applied Sciences, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20091119.102551.
Full textKubo, Shiori. "Nanostructured carbohydrate-derived carbonaceous materials." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5315/.
Full textNanoporöse kohlenstoffbasierte Materialien sind in der Industrie als Adsorbentien und Katalysatorträger weit verbreitet und gewinnen im aufstrebenden Bereich der Energiespeicherung/erzeugung und für Trennverfahren an wachsender Bedeutung. In der vorliegenden Arbeit wird gezeigt, dass die Kombination aus hydrothermaler Karbonisierung von Zuckern (HTC) mit Templatierungsstrategien einen effizienten Weg zu nanostrukturierten kohlenstoffbasierten Materialien darstellt. HTC ist ein in Wasser und bei niedrigen Temperaturen (130 - 200 °C) durchgeführter Karbonisierungsprozess, bei dem Zucker und deren Derivate einen einfachen Zugang zu hochfunktionalisierten Materialien erlauben. Obwohl diese sauerstoffhaltige Funktionalitäten auf der Oberfläche besitzen, an welche andere chemische Gruppen gebunden werden könnten, was die Verwendung für Trennverfahren und in der verzögerten Wirkstofffreisetzung ermöglichen sollte, ist die mittels HTC hergestellte Kohle für solche Anwendungen nicht porös genug. Das Ziel dieser Arbeit ist es daher, Methoden zu entwickeln, um wohldefinierte Poren in solchen Materialien zu erzeugen. Hierbei führte unter anderem der Einsatz von anorganischen formgebenden mesoporösen Silikapartikeln und makroporösen Aluminiumoxid-Membranen zum Erfolg. Durch Zugabe einer Kohlenstoffquelle (z. B. 2-Furfural), HTC und anschließender Entfernung des Templats konnten poröse kohlenstoffbasierte Partikel und röhrenförmige Nanostrukturen hergestellt werden. Gleichzeitig konnte durch eine zusätzliche Nachbehandlung bei hoher Temperatur (350-750 °C) auch noch die Oberflächenfunktionalität hin zu aromatischen Systemen verschoben werden. Analog zur Formgebung durch anorganische Template konnte mit sog. Soft-Templaten, z. B. PEO-PPO-PEO Blockcopolymeren, eine funktionelle poröse Struktur induziert werden. Hierbei machte man sich die Ausbildung geordneter Mizellen mit der Kohlenstoffquelle D-Fructose zu Nutze. Das erhaltene Material wies hochgeordnete Mikroporen mit einem Durchmesser von ca. 0,9 nm auf. Dieser konnte desweiteren durch Zugabe von Quell-Additiven (z. B. Trimethylbenzol) auf 4 nm in den mesoporösen Bereich vergrößert werden. Zusammenfassend lässt sich sagen, dass beide untersuchten Synthesewege nanostrukturierte kohlenstoffbasierte Materialien mit vielfältiger Oberflächenchemie liefern, und das mittels einer bei relativ niedriger Temperatur in Wasser ablaufenden Reaktion und einer billigen, nachhaltigen Kohlenstoffquelle. Die so hergestellten Produkte eröffnen vielseitige Anwendungsmöglichkeiten, z. B. zur Molekültrennung in der Flüssigchromatographie, in der Energiespeicherung als Anodenmaterial in Li-Ionen Akkus oder Superkondensatoren, oder als Trägermaterial für die gezielte Pharmakotherapie.
Qiu, Jingxia. "Carbonaceous and Hydrogenated Nanostructured Materials for Energy Storage Devices." Thesis, Griffith University, 2015. http://hdl.handle.net/10072/367984.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment
Science, Environment, Engineering and Technology
Full Text
Kubo, Shiori [Verfasser], and Markus Antonietti [Akademischer Betreuer]. "Nanostructured carbohydrate-derived carbonaceous materials / Shiori Kubo. Betreuer: Markus Antonietti." Potsdam : Universitätsbibliothek der Universität Potsdam, 2011. http://d-nb.info/1014619130/34.
Full textIslam, Rakibul. "Electrical and thermal transport properties of polymer/carbonaceous nanostructured composites." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10131/document.
Full textConducting polymer nanocomposites exhibit for instance interesting thermoelectric properties which make them a promising, inexpensive, clean and efficient solution for heat waste harvesting. This thesis reports on properties of polyaniline (PANI) nanostructured composites as a function of various carbonaceous nano-fillers content such as carbon nanotubes (1-D), and 2-D reduced graphene oxide (RGO). SEM, TEM, X-ray diffraction, and Raman spectroscopy have been employed to investigate their structure and morphology. Electrical and thermal conductivity, Seebeck coefficient, and thermoelectric figure of merit (ZT) have been systematically performed. An important increase of electrical conductivity has been observed with increasing filler fraction whereas thermal conductivity only slightly increases, which enhances ZT of several orders of magnitude. Fillers dimension effect is evidenced, but, whatever this dimension, it is shown that, in contrast with thermal conductivity, electrical conductivity follows a percolation behavior through 2D conduction process. This behavior is also observed in the case of the volumetric heat capacity of PANI/RGO nanohybrids which make them potential candidates as high heat capacitive materials. For the first time their heat storage factor is assessed with a new analytical model proposed in this study. The PANI/RGO samples have also been investigated by Dielectric Spectroscopy at different temperatures. Results evidence an interesting charge trapping phenomenon occurring at the PANI/RGO interface which might find promising applications in supercapacitors or gate memory devices
Yeh, Chia-Sung, and 葉佳崧. "Preparation and Characterization of Carbonaceous h-MoO3 Hybrid Nanostructures." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/nc3nj8.
Full text國立中山大學
材料與光電科學學系研究所
107
In this study, metastable hexagonal molybdenum trioxide (h-MoO3) nanorods were prepared by hydrothermal synthesis using ammonium molybdate as a precursor in 90℃ ambience. Furthermore, we tried to prepare carbon dots with sucrose and decorate carbon dots on metastable hexagonal molybdenum trioxide by sonication. In order to investigate h-MoO3 and C-dots@h-MoO3 nanorods'' properties, we characterized them by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, absorption spectroscopy and electrochemistry analyzer. After that, we performed the methylene blue degradation and hydrogen peroxide sensor experiments to analyze the photocatalytic and electricity properties.
Kumar, Rajeev. "Synthesis and development of multifunctional carbonaceous nanostructures for magnetic, optical and catalytic applications." Thesis, 2019. https://etd.iisc.ac.in/handle/2005/4951.
Full textDas, Mahua. "Thin Films Of A Carbonaceous Copper Oxide, Li Doped Cobalt Oxide And Li At Nanometric Dimension : Synthesis Through CVD, Solgel And Electromagnetic Irradiation And Characterisation." Thesis, 2007. https://etd.iisc.ac.in/handle/2005/619.
Full textDas, Mahua. "Thin Films Of A Carbonaceous Copper Oxide, Li Doped Cobalt Oxide And Li At Nanometric Dimension : Synthesis Through CVD, Solgel And Electromagnetic Irradiation And Characterisation." Thesis, 2007. http://hdl.handle.net/2005/619.
Full textBook chapters on the topic "Carbonaceous nanostructures"
Nandhakumar, E., E. Vivek, E. Vaishnavi, M. Prem Kumar, Perumal Devaraji, P. Selvakumar, and N. Senthilkumar. "Carbonaceous Nanostructures-Based Photocatalysts for Sustainable H2 Production." In Materials Horizons: From Nature to Nanomaterials, 257–83. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7188-4_10.
Full textSasirekha, Natarajan, and Yu-Wen Chen. "Carbonaceous Nanomaterials for Environmental Remediation." In Nanostructured Materials for Environmental Applications, 321–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72076-6_13.
Full textPethaiah, Sethu Sundar, J. Anandha Raj, and Mani Ulaganathan. "Carbonaceous Nanostructured Composites for Electrochemical Power Sources." In Advances in Nanostructured Composites, 331–51. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018] | Series: Advances in nanostructured composites ; volume 2 | “A science publishers book.»: CRC Press, 2019. http://dx.doi.org/10.1201/9780429021718-16.
Full text"Hollow Nanostructures for Application in Solar Cells." In Materials for Solar Cell Technologies I, 129–47. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901090-5.
Full textZeynalov, Eldar, Tofik Nagiyev, Jörg Friedrich, and Matanat Magerramova. "Carbonaceous nanostructures in hydrocarbons and polymeric aerobic oxidation mediums." In Fullerens, Graphenes and Nanotubes, 631–81. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-813691-1.00016-6.
Full textNechaev, Yury. "Physical and Chemical Interactions of Hydrogen with Carbonaceous Nanostructures." In Carbon Nanomaterials for Gas Adsorption, 39–130. Pan Stanford Publishing, 2012. http://dx.doi.org/10.1201/b13722-3.
Full textParangi, Tarun, and Manish Kumar Mishra. "Titanium Dioxide as Energy Storage Material: A Review on Recent Advancement." In Titanium Dioxide [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99254.
Full textEl Halya, Nabil, Karim Elouardi, Abdelwahed Chari, Abdeslam El Bouari, Jones Alami, and Mouad Dahbi. "TiO2 Based Nanomaterials and Their Application as Anode for Rechargeable Lithium-Ion Batteries." In Titanium Dioxide - Advances and Applications. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.99252.
Full textHamza, M. "Recent Advances in Enzyme Immobilization in Nanomaterials." In Nanomaterial-Supported Enzymes, 1–66. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901977-1.
Full textConference papers on the topic "Carbonaceous nanostructures"
Huczko, A. "Template-based plasma synthesis of carbonaceous nanostructures." In The 14th international winterschool on electronic properties of novel materials - molecular nanostructures. AIP, 2000. http://dx.doi.org/10.1063/1.1342506.
Full textRomano, Vittorio, Carlo Naddeo, Luigi Vertuccio, Khalid Lafdi, and Liberata Guadagno. "Thermal investigation of tetrafunctional epoxy resin filled with different carbonaceous nanostructures." In VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2016. http://dx.doi.org/10.1063/1.4949727.
Full textAlekseeva, Ye Yu, E. A. Il'ichev, V. N. Inkin, D. M. Migunov, G. N. Petruhin, E. A. Poltoratskii, G. S. Rychkov, and D. V. Shkodin. "Carbon nanostructures' catalytic growth from carbonaceous substrates in comparison with PECCVD method." In International Conference on Micro- and Nano-Electronics 2009, edited by Kamil A. Valiev and Alexander A. Orlikovsky. SPIE, 2009. http://dx.doi.org/10.1117/12.855453.
Full text"NANOSTRUCTURED VS. CARBONACEOUS BIOSENSORS - Comparative Studies for Detection of Phenolic Compounds." In International Conference on Biomedical Electronics and Devices. SciTePress - Science and and Technology Publications, 2012. http://dx.doi.org/10.5220/0003716701040109.
Full textWong, Ching-Ping. "Rational Synthesis of Nanostructured Electrode Materials for High-Performance Supercapacitors." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-2833.
Full text