Academic literature on the topic 'Carbon nano structures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbon nano structures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Carbon nano structures"
Vajtai, Robert, Sujit K. Biswas, Binqing Wei, Gouwen Meng, Yung Joon Jung, and Pulickel M. Ajayan. "Electrical Characterization of Carbon Nanotube Structures." Nanopages 1, no. 1 (March 2006): 45–68. http://dx.doi.org/10.1556/nano.1.2006.1.2.
Full textMišković, Z. L. "Interactions of ions with carbon nano-structures." Journal of Physics: Conference Series 133 (October 1, 2008): 012011. http://dx.doi.org/10.1088/1742-6596/133/1/012011.
Full textKuchment, Peter, and Olaf Post. "On the Spectra of Carbon Nano-Structures." Communications in Mathematical Physics 275, no. 3 (August 15, 2007): 805–26. http://dx.doi.org/10.1007/s00220-007-0316-1.
Full textDeng, Xiangying, and Yukio Kawano. "Terahertz Plasmonics and Nano-Carbon Electronics for Nano-Micro Sensing and Imaging." International Journal of Automation Technology 12, no. 1 (January 5, 2018): 87–96. http://dx.doi.org/10.20965/ijat.2018.p0087.
Full textMynbaeva, Marina G., Alla A. Sitnikova, Sergey P. Lebedev, Vassili N. Petrov, Demid A. Kirilenko, Irina S. Kotousova, Alexander Smirnov, and Alexander A. Lavrent'ev. "Graphene-on-Porous-Silicon Carbide Structures." Materials Science Forum 740-742 (January 2013): 133–36. http://dx.doi.org/10.4028/www.scientific.net/msf.740-742.133.
Full textThamaraikannan, S., M. R. Sunny, and S. C. Pradhan. "Chirality dependent mechanical properties of carbon nano-structures." Materials Research Express 6, no. 9 (July 3, 2019): 095018. http://dx.doi.org/10.1088/2053-1591/ab29dd.
Full textYamanaka, Shinsuke, Masaki Fujikane, Masayoshi Uno, Hirohiko Murakami, and Osamu Miura. "Hydrogen content and desorption of carbon nano-structures." Journal of Alloys and Compounds 366, no. 1-2 (March 2004): 264–68. http://dx.doi.org/10.1016/s0925-8388(03)00694-7.
Full textYang, Yun Xia, Ranjeet K. Singh, and Paul A. Webley. "Hydrogen adsorption in transition metal carbon nano-structures." Adsorption 14, no. 2-3 (January 23, 2008): 265–74. http://dx.doi.org/10.1007/s10450-007-9089-2.
Full textLu, Xiwen, Jinhang Liu, Ye Ding, Lijun Yang, Zhan Yang, and Yang Wang. "Simulation and fabrication of carbon nanotube–nanoparticle interconnected structures." Mechanical Sciences 12, no. 1 (April 27, 2021): 451–59. http://dx.doi.org/10.5194/ms-12-451-2021.
Full textLiu, Xinye, Gad Licht, Xirui Wang, and Stuart Licht. "Controlled Growth of Unusual Nanocarbon Allotropes by Molten Electrolysis of CO2." Catalysts 12, no. 2 (January 21, 2022): 125. http://dx.doi.org/10.3390/catal12020125.
Full textDissertations / Theses on the topic "Carbon nano structures"
Ghoman, Baljinder Singh. "Hydrogen storage in tubular carbon nano-structures." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611507.
Full textGajbhiye, Sachin Omraj. "Multiscale dynamic analysis of carbon nano-structures and nanocomposites." Thesis, IIT Delhi, 2016. http://eprint.iitd.ac.in:80//handle/2074/8197.
Full textPulikollu, Rajasekhar Venkata. "Nano-Coatings on Carbon Structures for Interfacial Modification." Wright State University / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=wright1135882817.
Full textPozegic, Thomas R. "Nano-modified carbon-epoxy composite structures for aerospace applications." Thesis, University of Surrey, 2016. http://epubs.surrey.ac.uk/809603/.
Full textHu, Wenchong. "FABRICATION OF VERTICALLY ALIGNED CARBON NANOTUBES AND HORIZONTAL NANO-STRUCTURES." UKnowledge, 2002. http://uknowledge.uky.edu/gradschool_theses/241.
Full textHu, Wenchong. "Fabrication of vertically aligned carbon nanotudes and horizontal nano-structures." Lexington, Ky. : [University of Kentucky Libraries], 2002. http://lib.uky.edu/ETD/ukyelen2002t00064/hwcthes.pdf.
Full textTitle from document title page. Document formatted into pages; contains x, 84 p. : ill. Includes abstract. Includes bibliographical references (p. 76-82).
Lee, Chia-Hua. "Carbon nanotube assisted formation of sub-50 nm polymeric nano-structures." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45388.
Full textIncludes bibliographical references (p. 39-43).
A novel processing method was developed for sub-50 nm structures by integrating quantum dots (QDs) on patterned polymer substrates. Poly(styrene-alt-maleic anhydride) (PSMa) was prepared by the initiated chemical vapor deposition (iCVD) method, an alternative to spin-on deposition. The sub-50 nm PSMa polymer patterns were prepared by low energy oxygen plasma etching by using CNTs as the masks. The water soluble, amine-functionalized QDs underwent the nucleophilic acyl substitution reaction with the PSMa containing anhydride functional groups. This integration method is use to incorporate high performance QDs on inexpensive, lightweight flexible substrate.
by Chia-Hua Lee.
S.M.
Dong, S., D. Wang, Ashraf F. Ashour, B. Han, and J. Ou. "Nickel plated carbon nanotubes reinforcing concrete composites: from nano/micro structures to macro mechanical properties." Elsevier, 2020. http://hdl.handle.net/10454/18205.
Full textOwing to their small size, good wettability, uniform dispersion ability and high thermal properties, the nickel-plated carbon nanotubes (Ni-CNTs) with different aspect ratios are used to reinforce reactive powder concrete (RPC) through modifying the nano/micro- structural units of concrete. Incorporating only 0.075 vol% of Ni-CNTs (0.03 vol% of CNTs) can significantly increase mechanical properties of RPC. The enhancement effect on compressive strength caused by the incorporation of Ni-CNTs with aspect ratio of 1000 reaches 26.8%/23.0 MPa, mainly benefiting from the high polymerization C-S-H gels, low porosity, and refined pore structure. The 33.5%/1.92 MPa increases of flexural strength can be attributed to the decrease of large pore, original cracks, molar ratio of CaO to SiO2, and gel water content when Ni-CNTs with aspect ratio of 125 are added. Ni-CNTs with aspect ratio of 1500 have the largest utilization rate of being pulled-out, resulting from the improvement of dispersibility and the pining effect of nickel coating and then leading to the increased toughness. Therefore, incorporating Ni-CNTs can fundamentally modify the nano/micro- scale structural nature of RPC, providing a bottom-up approach for controlling the properties of RPC.
Funding supported from the National Science Foundation of China (51908103 and 51978127) and the China Postdoctoral Science Foundation (2019M651116).
The full-text of this article will be released for public view at the end of the publisher embargo on 7th Dec 2021.
Cox, Barry James. "Mathematical modelling of nano-scaled structures, devices and materials." Access electronically, 2007. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20080129.102240/index.html.
Full textMahajan, Amit. "Ferroelectric : CNTs structures fabrication for advanced functional nano devices." Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14148.
Full textThis work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.
Este trabalho é sobre a combinação de óxidos ferroelétricos funcionais com nanotubos de carbono (CNTs) para aplicações na microeletrónica, como por exemplo em potenciais memórias ferroelétricas não voláteis (Non Volatile Ferroelectric Random Access Memories (NV-FeRAM)) de estrutura tridimensional (3D). A eletrónica miniaturizada é nos dias de hoje omnipresente. A necessidade de reduzir o tamanho dos componentes eletrónicos tem sido estimulada por necessidades de maior desempenho em dispositivos de menores dimensões e a custos cada vez mais baixos. Mas esta tendência de miniaturização da eletrónica desafia consideravelmente os processos de fabrico, os materiais a serem utilizados nas montagens das placas e a fiabilidade, entre outros aspetos. Dispositivos semicondutores e tecnologia de circuitos integrados, juntamente com a embalagem eletrónica associada, constituem a espinha dorsal dos sistemas eletrónicos miniaturizados de alto desempenho. No entanto, à medida que o tamanho diminui e a funcionalização aumenta, a redução das dimensões destes dipositivos é cada vez mais difícil; é bem conhecido que abaixo de um tamanho limite o desempenho do dispositivo deteriora-se. Assim, a miniaturização da eletrónica à base de silício tem limitações. É precisamente neste contexto que desde 2011 o Road Map for Semiconductor Industry (ITRS) sugere tecnologias alternativas às atualmente em uso, designadas por Mais de Moore (More than Moore); sendo uma delas com base em carbono (CNTs e grafeno) [1]. Os CNTs com o seu desempenho único e tridimensionalidade à escala nanométrica, foram considerados como elementos muito promissores para a eletrónica miniaturizada [2]. Nanotubos de carbono possuem uma geometria tubular e um conjunto único de propriedades, incluindo o transporte balístico de eletrões e uma capacidade enorme de transportar a corrente elétrica, o que os tornou de grande interesse para o futuro da microeletrónica [2]. Na verdade, os CNTs podem ter um papel fundamental na miniaturização das memórias ferroelétricas não voláteis (NV-FeRAM). A mudança de uma construção tradicional bidimensional (2D) (ou seja, a duas dimensões, como são os filmes finos) para uma construção tridimensional 3D, com base num arranjo tridimensional de estruturas unidimensionais (1D), como são as estruturas nanotubulares, resultará num desempenho melhorado com deteção de sinal elétrico optimizada, devido à grande contribuição do elétrodo inferior. Uma maneira de conseguir esta configuração 3D é usando nanotubos de carbono. Os materiais ferroelétricos (FE) são polarizados espontaneamente e possuem constantes dielétricas altas e as suas propriedades piroelétricas, piezoelétricas e eletroópticas tornam-nos materiais funcionais importantes na eletrónica, sendo uma das suas aplicações chave em memórias eletrónicas. No entanto, combinar os nanotubos de carbono com óxidos FE funcionais é um desafio. Começa logo com a compatibilidade entre os materiais e o seu processamento, já que as temperaturas de cristalização do FE e as temperaturas de oxidação dos CNTs se sobrepõem. Neste caso, o processamento a baixa temperatura dos óxidos FE é absolutamente fundamental. Dentro deste contexto, neste trabalho foi realizado um estudo sistemático sobre a fabricação e caracterização estruturas combinadas de CNTs – FE, usando métodos de baixa temperatura e de baixo custo. Os FE em estudo foram compostos de titanato zirconato de chumbo (Pb1-xZrxTiO3, PZT), titanato de bário (BaTiO3, BT) e ferrite de bismuto (BiFeO3, BFO). Os diversos aspetos relacionados com a síntese e fabricação, como efeito sobre a estabilidade térmica dos nanotubos de carbono multiparede (multiwall CNTs, MWCNTs), formação da fase FE na presença de MWCNTs e interfaces entre CNTs / FE foram abordados neste trabalho. A resposta ferroelétrica medida localmente através de microscopia de ponta de prova piezoelétrica (Piezoresponse Force Microscopy (PFM)), evidenciou claramente que, mesmo para baixas temperaturas de processamento óxidos FE sobre CNTs mantém a sua natureza ferroelétrica. O trabalho começou pela identificação do comportamento de decomposição térmica em diferentes condições dos nanotubos utilizados neste trabalho. Verificou-se que os MWCNTs purificados são estáveis até 420 ºC no ar, já que não ocorre perda de peso sob condições não isotérmicas, mas foram observadas, por espectroscopia Raman e microscopia eletrónica de transmissão (TEM), alterações na morfologia dos tubos para condições isotérmicas a 400 ºC. Em atmosfera rica em oxigénio os MWCNTs começam a oxidar-se a 200 ºC. No entanto, em atmosfera rica em árgon e sob uma taxa de aquecimento elevada os MWCNTs permanecem estáveis até 1300 ºC com uma sublimação mínima. A energia de ativação para a decomposição destes MWCNTs em ar foi calculada situar-se entre 80 e 108 kJ / mol. Estes resultados são relevantes para a fabricação de estruturas MWCNTs - FE. De facto, demonstramos que o PZT pode ser depositado por sol-gel a baixas temperaturas sobre MWCNTs. E, particularmente interessante foi provar que a presença de MWCNTs diminui a temperatura e tempo para a formação de PZT, em cerca de ~ 100 ºC comensuráveis com uma diminuição na energia de ativação de 68 ± 15 kJ / mol a 27 ± 2 kJ / mol. Como consequência, foi obtido PZT monofásico a 575 ºC para as estruturas MWCNTs – PZT, enquanto que para PZT (na ausência de MWCNTs) a presença da fase de pirocloro era ainda notória a 650 ºC e onde a fase de PZT foi formada por nucleação homogénea. A natureza piezoelétrica das estruturas de MWCNTs - PZT sintetizadas a 500 ºC por 1 h foi provada por PFM. Na continuação deste trabalho foi desenvolvida uma metodologia de baixo custo para revestimento de MWCNTs usando uma combinação entre o processamento sol – gel e o processamento hidrotermal. Neste caso o FE usado como prova de conceito foi o BT. BT é uma perovesquita sem chumbo bem conhecida e utilizada em muitas aplicações microeletrónicas. No entanto, a síntese por reação no estado sólido é normalmente realizada entre 1100 - 1300 ºC o que coloca seriamente em risco a combinação com MWCNTs. Neste âmbito, também se ilustrou claramente a ineficácia da síntese hidrotérmica convencional, devido à formação de carbonatos, nomeadamente BaCO3. As estruturas MWCNTs - BT aqui preparadas são ferroelétricas e exibem resposta electromecânica (15 pm / V). Considera-se que estes resultados têm impacto elevado, uma vez que esta estratégia também pode ser estendida a outros compostos de materiais com elevadas temperaturas de cristalização. Além disso, foi também verificado no decurso deste trabalho que a cobertura de MWCNTs com FE pode ser optimizada, neste caso com funcionalização não covalente dos tubos, ou seja, por exemplo com sodium dodecyl sulfate (SDS).
Books on the topic "Carbon nano structures"
Polonina, Elena, Sergey Leonovich, Sergey Fedosov, and Valeriy Yaglov. Structural concrete with a complex addition of hydrothermal nanosilicon and carbon nanotubes. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1981690.
Full textBanerjee, Diptonil, Amit Kumar Sharma, and Nirmalya Sankar Das. Nano Materials Induced Removal of Textile Dyes from Waste Water. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150502951220101.
Full textBook chapters on the topic "Carbon nano structures"
Todt, Melanie, Franz G. Rammerstorfer, Markus A. Hartmann, Oskar Paris, and Franz D. Fischer. "Shell-Models for Multi-Layer Carbon Nano-Particles." In Shell-like Structures, 585–602. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21855-2_39.
Full textKharlamova, Ganna, Oleksii Kharlamov, Marina Bondarenko, Nadezhda Gubareni, and Veneamin Fomenko. "Hetero-Carbon: Heteroatomic Molecules and Nano-structures of Carbon." In NATO Science for Peace and Security Series B: Physics and Biophysics, 339–57. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7003-4_31.
Full textLi, Xiao Feng, Alan Kin Tak Lau, and Yan Sheng Yin. "Nano-Mechanical Properties of Coiled Carbon Nanotube Reinforced Epoxy Composites." In Advances in Composite Materials and Structures, 673–76. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.673.
Full textKalincsak, Z., L. Balogh, L. Borbas, and J. Takacs. "Stress Analysis of Laser Marked Low Carbon Steel." In Experimental Analysis of Nano and Engineering Materials and Structures, 631–32. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_313.
Full textRussell, B. P., V. S. Deshpande, and N. A. Fleck. "Quasi-Static Compression of Carbon Fibre Square Honeycombs." In Experimental Analysis of Nano and Engineering Materials and Structures, 131. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_64.
Full textAmaro, A. M., M. F. M. S. de Moura, and P. N. B. Reis. "Detection of Low-Velocity Impact Damage in Carbon-Epoxy Plates Using NDT." In Fracture of Nano and Engineering Materials and Structures, 525–26. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4972-2_260.
Full textAngelova, D., and R. Yordanova. "Modeling of Fatigue in a Low-Carbon Roller-Quenched Tempered Steel." In Experimental Analysis of Nano and Engineering Materials and Structures, 257–58. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_127.
Full textChen, Erh-Chiang, and Tzong-Ming Wu. "Crystallization Kinetics and Thermal Behavior of Pcl/Multiwalled Carbon Nanotubes Composites." In Experimental Analysis of Nano and Engineering Materials and Structures, 823–24. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_409.
Full textDavidkov, A., and D. Angelova. "Effect of Corrosion Environment Activity on Fatigue in a Low-Carbon Steel." In Experimental Analysis of Nano and Engineering Materials and Structures, 259–60. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_128.
Full textKim, Jin Bong, Sang Kwan Lee, and Chun Gon Kim. "Comparison of Carbon-Based Nano Materials as Conductive Fillers for Single Layer Microwave Absorber." In Advances in Composite Materials and Structures, 837–40. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.837.
Full textConference papers on the topic "Carbon nano structures"
Gabay, D., A. Yilmaz, A. Boag, and A. Natan. "Time-Dependent Response of Carbon Nano-Structures." In 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2019. http://dx.doi.org/10.1109/iceaa.2019.8879399.
Full textKufazvinei, C., R. W. Leahy, S. M. Lipson, W. J. Blau, F. C. Dillon, T. R. Spalding, M. A. Morris, J. D. Holmes, G. Allan, and J. Patterson. "Growth of carbon nano-structures in ceramic materials." In OPTO-Ireland, edited by Werner J. Blau, David Kennedy, and John Colreavy. SPIE, 2005. http://dx.doi.org/10.1117/12.605325.
Full textZiaei, Afshin, Matthieu Le Baillif, Sébastien Demoustier, and Eric Minoux. "Microwave applications of carbon nanotubes: nano-antennas and nano-switches." In The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, edited by Vijay K. Varadan. SPIE, 2008. http://dx.doi.org/10.1117/12.771501.
Full textKoo, Joseph, S. Lao, Jason Lee, Chris Lam, Jinyong Lee, Tess Moon, Louis Pilato, and Gerry Wissler. "Performance of Clays, Carbon Nanofibers, Multi-Walled Carbon Nanotubes, and Nano-Alumina in Polyamide 11 Nanocomposites." In 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
18th AIAA/ASME/AHS Adaptive Structures Conference
12th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-2565.
Rai, Padmnabh, Srikrishna Pandey, Girish Arabale, Pavel Nikolaev, and Sivaram Arepalli. "Modified carbon nano structures for energy and display applications." In 2011 IEEE 11th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2011. http://dx.doi.org/10.1109/nano.2011.6144647.
Full textMiskovic, Zoran L. "Dynamic polarization of carbon nano-structures by charged particles." In ELECTRONIC, PHOTONIC, PLASMONIC, PHONONIC AND MAGNETIC PROPERTIES OF NANOMATERIALS. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4870208.
Full textBouquet, François, and Berry Sanders. "Space Applications of Hydrogen Storage in Carbon Nano-structures." In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-4733.
Full textKrauser, J., H. G. Gehrke, H. Hofsass, C. Trautmann, and A. Weidinger. "Self-aligned nanowires in tetrahedral amorphous carbon multilayer structures." In 2011 IEEE 11th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2011. http://dx.doi.org/10.1109/nano.2011.6144293.
Full textSatake, Shin-Ichi, and Jun Taniguchi. "Water-Evaporation Characteristics of Nano-Structure Surface." In ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/enic2008-53082.
Full textFauthan, Aishah, Zainab Yunusa, Mohd Nizar Hamidon, and Burhanuddin Yeop Majlis. "Synthesis and characterization of carbon nano structures on Gallium Phosphate." In 2014 IEEE International Conference on Semiconductor Electronics (ICSE 2014). IEEE, 2014. http://dx.doi.org/10.1109/smelec.2014.6920781.
Full textReports on the topic "Carbon nano structures"
Cabasso, Israel, and Youxin Yuan. Nano Structured Activated Carbon for Hydrogen Storge. Project Final Technical Report (May 2, 2005-Dec. 31, 2012). Office of Scientific and Technical Information (OSTI), February 2013. http://dx.doi.org/10.2172/1063989.
Full textSeferis, James C. Structural Foaming at the Nano-, Micro-, and Macro-Scales of Continuous Carbon Fiber Reinforced Polymer Matrix Composites. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada581879.
Full text