Academic literature on the topic 'Carbon interaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbon interaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Carbon interaction"
Paryzhak, S. Ya, T. I. Dumych, S. M. Peshkova, E. E. Bila, A. D. Lutsyk, A. Barras, R. Boukherroub, S. Szunerits, and R. O. Bilyy. "Interaction of 4 allotropic modifications of carbon nanoparticles with living tissues." Ukrainian Biochemical Journal 91, no. 2 (April 1, 2019): 41–50. http://dx.doi.org/10.15407/ubj91.02.041.
Full textAyala, J. A., W. M. Hess, F. D. Kistler, and G. A. Joyce. "Carbon-Black-Elastomer Interaction." Rubber Chemistry and Technology 64, no. 1 (March 1, 1991): 19–39. http://dx.doi.org/10.5254/1.3538537.
Full textBittencourt, C., M. Hecq, A. Felten, J. J. Pireaux, J. Ghijsen, M. P. Felicissimo, P. Rudolf, W. Drube, X. Ke, and G. Van Tendeloo. "Platinum–carbon nanotube interaction." Chemical Physics Letters 462, no. 4-6 (September 2008): 260–64. http://dx.doi.org/10.1016/j.cplett.2008.07.082.
Full textBrown, T. C., and B. S. Haynes. "Interaction of carbon monoxide with carbon and carbon surface oxides." Energy & Fuels 6, no. 2 (March 1992): 154–59. http://dx.doi.org/10.1021/ef00032a006.
Full textSoares, Jaqueline S., and Ado Jorio. "Study of Carbon Nanotube-Substrate Interaction." Journal of Nanotechnology 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/512738.
Full textHATTORI, Takeshi, and Miki IWADE. "Carbon Black and Solvent Interaction." Journal of the Japan Society of Colour Material 93, no. 4 (April 20, 2020): 116–20. http://dx.doi.org/10.4011/shikizai.93.116.
Full textZüttel, Andreas, P. Sudan, Ph Mauron, Ch Emmenegger, T. Kiyobayashi, and L. Schlapbach. "Hydrogen Interaction with Carbon Nanostructures." Materials Science Forum 377 (June 2001): 95–0. http://dx.doi.org/10.4028/www.scientific.net/msf.377.95.
Full textZüttel, Andreas, P. Sudan, Ph Mauron, Ch Emmenegger, T. Kiyobayashi, and L. Schlapbach. "Hydrogen Interaction with Carbon Nanostructures." Journal of Metastable and Nanocrystalline Materials 11 (June 2001): 95–0. http://dx.doi.org/10.4028/www.scientific.net/jmnm.11.95.
Full textUmadevi, Deivasigamani, Swati Panigrahi, and Garikapati Narahari Sastry. "Noncovalent Interaction of Carbon Nanostructures." Accounts of Chemical Research 47, no. 8 (July 17, 2014): 2574–81. http://dx.doi.org/10.1021/ar500168b.
Full textWeigert, F. J. "Interaction of perfluorocarbons with carbon." Journal of Fluorine Chemistry 65, no. 1-2 (November 1993): 67–71. http://dx.doi.org/10.1016/s0022-1139(00)80475-3.
Full textDissertations / Theses on the topic "Carbon interaction"
Rahmat, Meysam. "Carbon nanotube - polymer interaction in nanocomposites." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104648.
Full textLes nanocomposites avec des polymères renforcés de nanotubes de carbone ont été le centre d'attention de nombreuses études dans les dernières années. Les propriétés supérieures des nanotubes de carbone et la flexibilité des polymères à être utilisés dans de diverses applications ont créé de grandes attentes pour cette classe de nanocomposites. Des études de modélisation ont démontré un fort potentiel pour ces matériaux, cependant la validation expérimentale de ces propriétés prédites reste un défi. Une des principales difficultés est l'obtention d'une interaction optimale entre les nanotubes et la matrice polymère. Cette interaction influence la dispersion des nanotubes dans le polymère et affecte les propriétés globales du nanocomposite. De ce fait, l'objectif principal de ce travail de recherche a été l'étude de l'interaction entre les nanotubes de carbone et le polymère dans les nanocomposites. A partir d'une revue détaillée de la littérature, la méthode de dynamique moléculaire et la microscopie à force atomique ont été choisies comme techniques numériques et expérimentales pour étudier l'interaction. Dans la partie de modélisation, les propriétés d'interface d'un nanotube à paroi simple avec du poly(methyl methacrylate) ont été obtenues à partir d'une simulation d'un test d'arrachement en trois phases. Une énergie de liaison d'interface de 0.39 kcal/molÅ2 a été calculée par la simulation de dynamique moléculaire. Dans la section expérimentale, une méthode de discrétisation par étapes a été proposée en tant que nouvelle technique de mesure de l'interaction par microscopie à force atomique. De plus, un nouvel paramètre d'interaction, appelé contrainte d'interaction, a été introduit pour évaluer la qualité de l'interaction dans les nanocomposites. La méthode de discrétisation par étapes a été utilisée pour le nanocomposite de poly(methyl methacrylate) avec un nanotube de carbone à paroi simple, et une interaction maximale de contrainte de 7 MPa a été obtenue. Les résultats ont été ensuite utilisés pour la théorie classique de contact et une théorie de contact à l'échelle nano. Les données sur les interactions de contraintes ont été aussi utilisées comme entrées pour des simulations de dynamique moléculaire «gros grains» afin d'obtenir les propriétés d'interface des nanocomposites. Cette nouvelle approche bénéficie de la flexibilité de la méthode de dynamique moléculaire «gros grains» et de la fiabilité des données expérimentales obtenues par la microscopie à force atomique. À partir des résultats de la méthode de dynamique moléculaire «gros grains», l'énergie de liaison d'interface d'un nanocomposite de nanotube de carbone–poly(methyl methacrylate) a été estimée à 0.44 kcal/molÅ2. Cette valeur a été comparée à l'énergie de liaison d'interface obtenue par la méthode de dynamique moléculaire (i.e., 0.39 kcal/molÅ2). La bonne corrélation entre les résultats basés sur des approches numériques et expérimentales démontre la validité de cette étude ainsi que la robustesse des méthodes proposées et des paramètres développés.
Alam, Md Kawsar. "Interaction of electron beams with carbon nanotubes." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/36530.
Full textLourenço, Leandro Miguel de Oliveira. "Phthalocyanines : interaction with carbon structures and as PDT agents." Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13125.
Full textThis dissertation describes the synthesis and characterization of different phthalocyanine (Pc) derivatives, as well as some porphyrins (Pors), for supramolecular interaction with different carbon nanostructures, to evaluate their potential application in electronic nanodevices. Likewise, it is also reported the preparation and biological evaluation of interesting phthalocyanine conjugates for cancer photodynamic therapy (PDT) and microorganisms photodynamic inactivation (PDI). The phthalonitrile precursors were prepared from commercial phthalonitriles by nucleophilic substitution of -NO2, -Cl, or -F groups, present in the phthalonitrile core, by thiol or pyridyl units. After the synthesis of these phthalonitriles, the corresponding Pcs were prepared by ciclotetramerization using a metallic salt as template at high temperatures. A second strategy involved the postfunctionalization of hexadecafluorophthalocyaninato zinc(II) through the adequate substituents of mercaptopyridine or cyclodextrin units on the macrocycle periphery. The different compounds were structurally characterized by diverse spectroscopic techniques, namely 1H, 13C and 19F nuclear magnetic resonance spectroscopies (attending the elemental composition of each structure); absorption and emission spectroscopy, and mass spectrometry. For the specific photophysical studies were also used electrochemical characterization, femtosecond and raman spectroscopy, transmission electron and atomic force microscopy. It was highlighted the noncovalent derivatisation of carbon nanostructures, mainly single wall carbon nanotubes (SWNT) and graphene nanosheets with the prepared Pc conjugates to study the photophysical properties of these supramolecular nanoassemblies. Also, from pyridyl-Pors and ruthenium phthalocyanines (RuPcs) were performed Por-RuPcs arrays via coordination chemistry. The results obtained of the novel supramolecular assemblies showed interesting electron donor-acceptor interactions and might be considered attractive candidates for nanotechnological devices. On the other hand, the amphiphilic phthalocyanine-cyclodextrin (Pc-CD) conjugates were tested in biological trials to assess their ability to inhibit UMUC- 3 human bladder cancer cells. The results obtained demonstrated that these photoactive conjugates are highly phototoxic against human bladder cancer cells and could be applied as promising PDT drugs.
Esta dissertação descreve a síntese e caracterização de diferentes derivados de ftalocianina (Pc), assim como de algumas porfirinas (Pors), para interação supramolecular com diferentes nanoestruturas de carbono para potencial aplicação em nanodispositivos eletrónicos. Igualmente, é também reportado a preparação e avaliação biológica de interessantes conjugados de Pc para a terapia fotodinâmica (PDT) de cancro e para a fotoinativação de microrganismos (PDI). Neste trabalho científico são discutidas as propriedades gerais das Pcs e metodologias sintéticas usadas na sua preparação, bem como algumas das suas importantes aplicações. Os precursores ftalonitrilo foram preparados a partir de ftalonitrilos comerciais por substituições nucleofílicas de grupos -NO2, -Cl ou -F, presentes no núcleo ftalonitrilo, por unidades tiol ou piridilo. As correspondentes Pcs foram preparadas por ciclotetramerização dos ftalonitrilos, previamente sintetizados, na presença de um sal metálico a temperaturas elevadas. Uma segunda estratégia envolveu a pós-funcionalização na periferia do macrociclo da ftalocianina hexadecafluor de zinco(II) com unidades de mercaptopiridina ou ciclodextrina. Os diferentes compostos foram caracterizados estruturalmente por diversas técnicas espectroscópicas, nomeadamente espectroscopia de ressonância magnética nuclear de 1H, 13C e 19F (atendendo à composição elementar de cada estrutura), espectroscopia de absorção e de emissão, e espectrometria de massa. Para estudos fotofísicos específicos foram também usadas a caracterização electroquímica, espectroscopia de femtossegundo e raman, microscopia de transmissão eletrónica e de força atómica. Foi realizado a derivatização não covalente de nanoestruturas de carbono, principalmente nanotubos de carbono de parede simples (SWNT) e nanofolhas de grafeno, com os conjugados de ftalocianina preparados, para dessa forma estudar as propriedades fotofísicas dessas nanoassembleias supramoleculares. Também, a partir de Pors-piridilo e ftalocianinas de ruténio (RuPcs) foram realizadas matrizes de Por-RuPcs via química de coordenação. Os resultados obtidos mostraram interessantes interações eletrónicas doador-aceitador e podem ser considerados candidatos atrativos para diversos dispositivos nanotecnológicos. Por outro lado, os conjugados anfifílicos de ftalocianina-ciclodextrina (Pc-CD) foram testados em ensaios biológicos para avaliar a sua capacidade de inibir células cancerígenas UM-UC-3 da bexiga humana. Os resultados obtidos demonstraram que estes conjugados fotoativos são altamente fototóxicos contra este tipo de células, mostrando-se bastante promissores como agentes em PDT.
Barman, Poulami. "The interaction of peptides with functionalized carbon nanotubes /." Online version of thesis, 2009. http://hdl.handle.net/1850/8688.
Full textCavan, Graeme Patrick. "Interaction of carbon and nitrogen metabolism in Schizosaccharomyces pombe." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259573.
Full textJames, Matthew Philip William. "The interaction of electromagnetic radiation with carbon nanotube fibres." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707916.
Full textHofmann, Mario. "Synthesis and fluid interaction of ultra long carbon nanotubes." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46606.
Full textMIT Barker Library copy printed in pages.
Includes bibliographical references (leaves 49-50).
The successful integration for carbon nanotubes in future electronic applications relies on advances in their synthesis. In this work optimization of growth parameters was conducted to obtain ultra long carbon nanotubes. Their morphology was analyzed by means of different techniques and evidence of the occurrence of nanotube bundles was found. The effect of varying several parameters on the morphology of the obtained nanotubes was investigated and successful growth of ultra long nanotubes was achieved. The settling process, i.e. the sinking of the nanotubes to the substrate, of those nanotubes was investigated by a newly developed in-situ rotation tool and statistical data for their behavior during growth was obtained.
by Mario Hofmann.
S.M.
Ye, Zhou. "Mechanism and the Effect of Microwave-Carbon Nanotube Interaction." Thesis, University of North Texas, 2005. https://digital.library.unt.edu/ark:/67531/metadc4919/.
Full textOwens, Angela C. "An experimental study of fluid structure interaction of carbon composites under low velocity impact." Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Dec/09Dec%5FOwens.pdf.
Full textThesis Advisor: Kwon, Young W. Second Reader: Didoszak, Jarema M. "December 2009." Description based on title screen as viewed on January 26, 2010. Author(s) subject terms: Composite, Carbon, Low Velocity Impact, Fluid Structure Interaction. Includes bibliographical references (p. 49-50). Also available in print.
Bray, Shirley M. "The interaction between carbon dioxide enrichment and salinity on growth and carbon partitioning in Phaseolus vulgaris L." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0018/NQ54822.pdf.
Full textBooks on the topic "Carbon interaction"
Crawford, G. B. On the contribution of bubbles and waves to air-sea COb2s flux, with implications for remote sensing. Boulder, Colo: National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1987.
Find full textDuarte, Pedro. Oceans and the Atmospheric Carbon Content. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textK, Bi͡utner Ė. Planetarnyĭ gazoobmen O₂ i CO₂. Leningrad: Gidrometeoizdat, 1986.
Find full textPark, Geun-Ha. Procedures to create near real-time seasonal air-sea CO₂ flux maps. Miami, Fla: United States Dept. of Commerce, National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, 2010.
Find full textAdams, Jonathan. Vegetation—Climate Interaction: How Plants Make the Global Environment. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2007.
Find full textInternational Symposium CO₂ in the Oceans (2nd 1999 Tsukuba Center of Institutes). Proceedings of the 2nd International Symposium CO₂ in the Oceans: The 12th Global Environment Tsukuba, 18-22 January 1999, Tsukuba Center of Institutes. [Tsukuba, Ibaraki, Japan]: Center for Global Environmental Research, National Institute for Environmental Studies, 1999.
Find full textCarbon and nutrient fluxes in continental margins: A global synthesis. Berlin: Springer Verlag, 2010.
Find full textEnting, I. G. Future emissions and concentrations of carbon dioxide: Key ocean/atmosphere/land analyses. Australia: CSIRO, 1994.
Find full textKumar, M. Dileep. Biogeochemistry of the North Indian Ocean. New Delhi: Indian National Science Academy, 2006.
Find full textBorisenkov, Evgeniĭ Panteleĭmonovich. Krugovorot ugleroda i klimat. Moskva: Gidrometeoizdat, 1988.
Find full textBook chapters on the topic "Carbon interaction"
Adams, Jonathan. "Plants and the carbon cycle." In Vegetation—Climate Interaction, 181–220. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-00881-8_7.
Full textPenco, A., T. Svaldo-Lanero, M. Prato, C. Toccafondi, R. Rolandi, M. Canepa, and O. Cavalleri. "Graphite Nanopatterning Through Interaction with Bio-organic Molecules." In Carbon Nanostructures, 221–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20644-3_28.
Full textAdams, Jonathan. "The direct carbon dioxide effect on plants." In Vegetation—Climate Interaction, 221–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-00881-8_8.
Full textBulyarskiy, Sergey, Alexandr S. Basaev, Darya A. Bogdanova, and Alexandr Pavlov. "Oxygen Interaction with Electronic Nanotubes." In Doping of Carbon Nanotubes, 103–13. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_4.
Full textZhao, Rui, and Yong Geng. "Interaction Among Stakeholders Involved in Carbon Labeling Scheme." In Carbon Labeling Practice, 77–133. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2583-1_3.
Full textKumar, P. A., Raghuveer Polisetty, and Y. P. Abrol. "Interaction between Carbon and Nitrogen Metabolism." In Photosynthesis: Photoreactions to Plant Productivity, 339–50. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2708-0_13.
Full textSaurov, Alexandr, Sergey Bulyarskiy, Darya A. Bogdanova, and Alexandr Pavlov. "Nitrogen Interaction with Carbon Nanotubes: Adsorption and Doping." In Doping of Carbon Nanotubes, 115–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_5.
Full textShironosova, G. P., O. L. Gas’kova, G. A. Pal’yanova, and V. G. Zimbalist. "Experimental study of gold solubility in hydrothermal solutions with/without carbon dioxide." In Water-Rock Interaction, 829–31. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203734049-206.
Full textLebedeva, I. V., A. A. Knizhnik, A. M. Popov, Yu E. Lozovik, and B. V. Potapkin. "Study of Interaction Between Graphene Layers: Fast Diffusion of Graphene Flake and Commensurate-Incommensurate Phase Transition." In Carbon Nanostructures, 177–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20644-3_21.
Full textSrinivasan, Sampath, and Ayyappanpillai Ajayaghosh. "Interaction of Carbon Nanotubes and Small Molecules." In Supramolecular Soft Matter, 381–406. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118095331.ch19.
Full textConference papers on the topic "Carbon interaction"
Chakraborty, Poulami, Sanjay Kumar, Ram Kishen Fotedar, and Nagaiyar Krishnamurthy. "Interaction of α-silicon carbide with lead-lithium eutectic." In CARBON MATERIALS 2012 (CCM12): Carbon Materials for Energy Harvesting, Environment, Nanoscience and Technology. AIP, 2013. http://dx.doi.org/10.1063/1.4810028.
Full textChakraborty, Himanshu, and Alok Shukla. "Large scale configuration interaction calculations of linear optical absorption of decacene." In CARBON MATERIALS 2012 (CCM12): Carbon Materials for Energy Harvesting, Environment, Nanoscience and Technology. AIP, 2013. http://dx.doi.org/10.1063/1.4810072.
Full textIkematsu, Kaori, and Siio Itiro. "Carbon copy metaphor." In OzCHI '17: 29th Australian Conference on Human-Computer Interaction. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3152771.3156164.
Full textWaters, Ruth A., J. M. Thomas, R. M. Clement, and N. R. Ledger. "Comparison of carbon monoxide and carbon dioxide laser-tissue interaction." In Optics, Electro-Optics, and Laser Applications in Science and Engineering, edited by Steven L. Jacques. SPIE, 1991. http://dx.doi.org/10.1117/12.44119.
Full textSreckovic, Milesa Z., B. Kaludjerovic, S. Bojanic, N. Ivanovic, V. Rajkovic, S. Ristic, and Z. Fidanovski. "Laser interaction with carbon-type materials." In OPTIKA '98: Fifth Congress on Modern Optics, edited by Gyorgy Akos, Gabor Lupkovics, and Andras Podmaniczky. SPIE, 1998. http://dx.doi.org/10.1117/12.320994.
Full textEl-Hajj, H., U. Odi, and A. Gupta. "Carbonate reservoir interaction with supercritical carbon dioxide." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2013. http://dx.doi.org/10.2523/iptc-16561-abstract.
Full textEl-Hajj, H., U. Odi, and A. Gupta. "Carbonate reservoir interaction with supercritical carbon dioxide." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2013. http://dx.doi.org/10.2523/16561-abstract.
Full textGorbunov, Andre A., A. Graff, O. Jost, and Wolfgang Pompe. "Mechanism of carbon nanotube synthesis by laser ablation." In Nonresonant Laser-Matter Interaction (NLMI-10), edited by Mikhail N. Libenson. SPIE, 2001. http://dx.doi.org/10.1117/12.431225.
Full textLain-Jong Li, Fuming Chen, Yumeng Shi, Keke Zhang, and Xiaochen Dong. "Interaction between fluorene-based polymers and carbon nanotubes/carbon nanotube field-effect transistors." In 2008 2nd IEEE International Nanoelectronics Conference. IEEE, 2008. http://dx.doi.org/10.1109/inec.2008.4585451.
Full textBoroznina, N. P., A. A. Grechko, I. V. Zaporotskova, S. V. Boroznin, and P. A. Zaporotskov. "Study of carbon dioxide interaction with modified functional amino group of carbon nanotubes." In THE 2ND INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0033060.
Full textReports on the topic "Carbon interaction"
Nemat-Nasser, Sia, and Yitzhak Tor. Self Assembly of Carbon Nanotubes by Ionic Charge Interaction. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada478629.
Full textMcCarty, J. G. Interaction of carbon and sulfur on metal catalysts. Progress report. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/10118270.
Full textMcCarty, J. G., and J. Vajo. Interaction of carbon and sulfur on metal catalysts: Technical progress report. Office of Scientific and Technical Information (OSTI), February 1989. http://dx.doi.org/10.2172/10118243.
Full textJeffrey D. Evanseck, Jeffry D. Madura, and Jonathan P. Mathews. Use of molecular modeling to determine the interaction and competition of gases within coal for carbon dioxide sequestration. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/882469.
Full textEvanseck, Jeffrey, Jeffry Madura, and Jonathan Mathews. Use of Molecular Modeling to Determine the Interaction and Competition of Gases Within Coal for Carbon Dioxide Sequestration. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/915749.
Full textJeffrey D. Evanseck and Jeffry D. Madura. Use of Molecular Modeling to Determine the Interaction and Competition of Gases within Coal for Carbon Dioxide Sequestration. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/922134.
Full textJeffrey D. Evanseck, Jeffry D. Madura, and Jonathan P. Mathews. USE OF MOLECULAR MODELING TO DETERMINE THE INTERACTION AND COMPETITION OF GASES WITHIN COAL FOR CARBON DIOXIDE SEQUESTRATION. Office of Scientific and Technical Information (OSTI), May 2005. http://dx.doi.org/10.2172/841533.
Full textJeffrey D. Evanseck, Jeffry D. Madura, and Jonathan P. Mathews. USE OF MOLECULAR MODELING TO DETERMINE THE INTERACTION AND COMPETITION OF GASES WITHIN COAL FOR CARBON DIOXIDE SEQUESTRATION. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/826305.
Full textCseke, Leland. Nutrient cycling for biomass: Interactive proteomic/transcriptomic networks for global carbon management processes within poplar-mycorrhizal interactions. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1325004.
Full textLueking, Angela, John Badding, and Vinent Crespi. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1228777.
Full text