Academic literature on the topic 'Carbon-heteroatom Bond Forming Reactions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbon-heteroatom Bond Forming Reactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Carbon-heteroatom Bond Forming Reactions"

1

Corma, A., A. Leyva-Pérez, and Maria J. Sabater. "Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions." Chemical Reviews 111, no. 3 (March 9, 2011): 1657–712. http://dx.doi.org/10.1021/cr100414u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lumb, Jean-Philip, and Kenneth Esguerra. "Cu(III)-Mediated Aerobic Oxidations." Synthesis 51, no. 02 (December 3, 2018): 334–58. http://dx.doi.org/10.1055/s-0037-1609635.

Full text
Abstract:
CuIII species have been invoked in many copper-catalyzed transformations including cross-coupling reactions and oxidation reactions. In this review, we will discuss seminal discoveries that have advanced our understanding of the CuI/CuIII redox cycle in the context of C–C and C–heteroatom aerobic cross-coupling reactions, as well as C–H oxidation reactions mediated by CuIII–dioxygen adducts.1 General Introduction2 Early Examples of CuIII Complexes3 Aerobic CuIII-Mediated Carbon–Heteroatom Bond-Forming Reactions4 Aerobic CuIII-Mediated Carbon–Carbon Bond-Forming Reactions5 Bioinorganic Studies of CuIII Complexes from CuI and O2 5.1 O2 Activation5.2 Biomimetic CuIII Complexes from CuI and Dioxygen5.2.1 Type-3 Copper Enzymes and Dinuclear Cu Model Complexes5.2.2 Particulate Methane Monooxygenase and Di- and Trinuclear Cu Model Complexes5.2.3 Dopamine–β-Monooxygenase and Mononuclear Cu Model Complexes6 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
3

Takemoto, Yoshiji, and Hideto Miyabe. "ChemInform Abstract: Asymmetric Carbon-Heteroatom Bond-Forming Reactions." ChemInform 42, no. 18 (April 7, 2011): no. http://dx.doi.org/10.1002/chin.201118241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Daoust, Benoit, Nicolas Gilbert, Paméla Casault, François Ladouceur, and Simon Ricard. "1,2-Dihaloalkenes in Metal-Catalyzed Reactions." Synthesis 50, no. 16 (July 9, 2018): 3087–113. http://dx.doi.org/10.1055/s-0037-1610174.

Full text
Abstract:
1,2-Dihaloalkenes readily undergo simultaneous or sequential difunctionalization through transition-metal-catalyzed reactions, which makes them attractive building blocks for complex unsaturated motifs. This review summarizes recent applications of such transformations in C–C and C–heteroatom bond forming processes. The facile synthesis of stereodefined alkene derivatives, as well as aromatic and heteroatomic­ compounds, from 1,2-dihaloalkenes is thus outlined.1 Introduction2 Synthesis of 1,2-Dihaloalkenes3 C–C Bond Forming Reactions4 C–Heteroatom Bond Forming Reactions5 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
5

Miyabe, Hideto, and Yoshiji Takemoto. "Cascade radical reactions via carbon-carbon/heteroatom bond-forming process." Universal Organic Chemistry 2, no. 1 (2014): 1. http://dx.doi.org/10.7243/2053-7670-2-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hosoya, Keisuke, Minami Odagi, and Kazuo Nagasawa. "Guanidine organocatalysis for enantioselective carbon-heteroatom bond-forming reactions." Tetrahedron Letters 59, no. 8 (February 2018): 687–96. http://dx.doi.org/10.1016/j.tetlet.2017.12.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Corma, A., A. Leyva-Perez, and Maria J. Sabater. "ChemInform Abstract: Gold-Catalyzed Carbon-Heteroatom Bond-Forming Reactions." ChemInform 42, no. 29 (June 27, 2011): no. http://dx.doi.org/10.1002/chin.201129225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Banerjee, Bubun. "Microwave-assisted Carbon-carbon and Carbon-heteroatom Bond Forming Reactions - Part 1A." Current Microwave Chemistry 7, no. 1 (June 23, 2020): 3–4. http://dx.doi.org/10.2174/221333560701200422091717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Banerjee, Bubun. "Microwave-assisted Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions - Part 1B." Current Microwave Chemistry 7, no. 2 (August 6, 2020): 84–85. http://dx.doi.org/10.2174/221333560702200714141435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Banerjee, Bubun. "Microwave-assisted Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions - Part 2A." Current Microwave Chemistry 8, no. 2 (December 6, 2021): 56–57. http://dx.doi.org/10.2174/221333560802211028163413.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Carbon-heteroatom Bond Forming Reactions"

1

Maluenda, Borderas Irene. "(N-heterocyclic carbene) : metal catalysed carbon-carbon and carbon-heteroatom bond-forming reactions." Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/76274/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cazin, Catherine Suzanne Julienne. "Catalysis of carbon-carbon and carbon-heteroatom bond-forming reactions : the importance of the palladium source." Thesis, University of Exeter, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hoskins, Travis Justin Christopher. "Carbon-carbon bond forming reactions." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/29769.

Full text
Abstract:
Thesis (M. S.)--Chemical Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Dr. Christopher Jones; Committee Co-Chair: Dr. Pradeep Agrawal; Committee Member: Dr. Sujit Banerjee; Committee Member: Dr. Tom Fuller. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
4

Casitas, Montero Alícia. "Reactivity of well-defined organometallic copper(III) complexes in carbon-heteroatom bond forming reactions." Doctoral thesis, Universitat de Girona, 2012. http://hdl.handle.net/10803/81985.

Full text
Abstract:
This thesis is focused on the unexplored field of organometallic copper(III) chemistry. Arylcopper(III) complexes have been proposed as key intermediates in Ullmann condensation reactions that consist in the coupling of aryl halides and heteroatom nucleophiles catalyzed by copper. The study of the reactivity of well-defined arylcopper(III) complexes may provide a better understanding of the mechanism of Ullmann condensation reactions, which is still under intense debate. In this doctoral dissertation we study the feasibility of well-defined arylcopper(III) complexes, which are stabilized within macrocyclic ligands, to participate in C-heteroatom bond forming reactions. We develop copper-catalyzed C-N and C-O bond forming reactions, as well halide exchange reactions, including fluorinations, based on Cu(I)/Cu(III) catalytic cycle within model aryl halide substrates. We uncover the fundamental understanding of the two-electron redox steps, oxidative addition and reductive elimination, at copper.
Aquesta tesi es centra en el camp de la química organometàl•lica del coure(III) que roman sense explorar. Els complexos arilcoure(III) s'han proposat com a intermedis clau en les reaccions de condensació Ullmann que consisteixen en l'acoblament d'halurs d'arils i nucleòfils basats en heteroàtoms catalitzades amb coure. L'estudi de la reactivitat de complexos arilcoure(III) ben definits pot proporcionar una millor comprensió del mecanisme de les reaccions de condensació Ullmann, el qual es troba sota un intens debat. En aquesta tesi doctoral s'estudia la viabilitat del complexos arilcoure(III), estabilitzats en lligands macrocíclics, de participar en reaccions de formació d'enllaç carboni-heteroàtom. S'han desenvolupat reaccions de formació d'enllaç C-N i C-O així com reaccions d'intercanvi d'halurs, on s'inclouen fluoracions, catalitzades amb coure i basades en un cicle catalític Cu(I)/Cu(III) utilitzant substrats models d'halur d'aril. S'ha obtingut una comprensió fonamental de les etapes redox a dos electrons, addició oxidant i eliminació reductiva, en coure.
APA, Harvard, Vancouver, ISO, and other styles
5

Graßl, Simon [Verfasser], and Paul [Akademischer Betreuer] Knochel. "Elaboration of electrophilic carbon heteroatom bond forming reactions using organozinc reagents / Simon Graßl ; Betreuer: Paul Knochel." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2020. http://d-nb.info/1210424398/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bentz, Emilie Louise Marie. "Zinc enolate coupling : carbon-carbon bond forming reactions." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gates, Bradley Durward. "Novel thermal and electrochemical carbon-carbon bond-forming reactions /." The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487847761307998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mori-Quiroz, Luis Martin. "Transition metal catalyzed Carbon-nitrogen bond forming reactions." Revista de Química, 2015. http://repositorio.pucp.edu.pe/index/handle/123456789/101381.

Full text
Abstract:
Las reacciones de formación de enlaces carbono-nitrógeno (C–N) son transformaciones fundamentales en la naturaleza y también procesos básicos para la preparación de moléculas y materiales relevantes a las actividades humanas. El desarrollo de reacciones nuevas y eficientes para la formación de enlaces C–N es, por lo tanto, de gran interés en los ámbitos académico e industrial. El progreso logrado en los últimos 20 años se ha enfocado, principalmente, en procesos de formación de enlaces Csp2–N; sin embargo, hay una creciente gama de reacciones catalizadas por metales de transición que permite la introducción de nitrógeno en estructuras alquílicas (formación de enlaces Csp3–N). Este artículo describe una selección de métodos catalíticos modernos para la formación de enlaces C–N.
Carbon-nitrogen (C–N) bond forming reactions are fundamental transformations in nature and also basic processes for the preparation of molecules and materials relevant to human activities. The development of new and efficient reactions for the formation of C–N bonds are therefore of great interest in academic and industrial settings. Progress in the last 20 years has focused mainly in Csp2–N bond forming processes; however, there is growing range of transition metal catalyzed reactions for the introduction of nitrogen in alkyl frameworks (Csp3–N bond formation). This article describes a selection of modern catalytic methods for the formation of C–N bonds.
APA, Harvard, Vancouver, ISO, and other styles
9

Tamuang, Suparb. "Mesoporous silica supported catalysts for carbon-carbon bond forming reactions." Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3738/.

Full text
Abstract:
The synthesis and characterisation of well-ordered mesoporous silicas, MCM-41, MCM-48, SBA-1, and SBA-2 has been carried out successfully. All of the synthesised materials possess the expected characteristic ordering as confirmed by powder X-ray diffraction. Moreover, surface modification of these mesoporous silicas had also been achieved through the incorporation of alkylamine groups and attachment of an asymmetric organometallic nickel-salen complex. The catalytic activity of the amino and nickel complex-modified mesoporous silica materials was examined for carbon-carbon bond forming reactions; Knoevenagel condensation of benzaldehyde and ethylcyanoacetate, and Kumada-Corriu coupling reaction between an organobromide and Grignard reagent, respectively. All the NH2-mesoporous silica catalysts result in high conversion (>95%) and can easily be reused by washing with water. Furthermore, the catalytic performances of the asymmetric nickel-salen complex bound to mesoporous silicas were found to be greater than 60% which is comparable to the homogenous nickel complex catalyst (62% conversion) but are more easily recycled. The further modification of catalysts to capture the remaining surface silanol groups in the modified-mesoporous silicas has been carried out by using chlorotrimethylsilane to obtain the surface functionalised with trimethyl groups instead of silanols. The methylated catalysts with MCM-41 and MCM-48 as support demonstrate better recyclability, while this was not observed in the cage-like SBA-1 and SBA-2 supports catalyst as the presence of additional trimethylsilyl groups could cause more pore blocking.
APA, Harvard, Vancouver, ISO, and other styles
10

Miller, Karen M. (Karen Marie). "Selective, nickel-catalyzed carbon-carbon bond-forming reactions of alkynes." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32482.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2005.
Vita.
Includes bibliographical references.
Catalytic addition reactions to alkynes are among the most useful and efficient methods for preparing diverse types of substituted olefins. Controlling both regioselectivity and (EIZ)- selectivity in such transformations presents a significant challenge. In reactions that also involve the creation of a new stereocenter, the development of enantioselective processes is highly desirable. Several novel, nickel-catalyzed carbon-carbon bond-forming reactions of alkynes that display excellent regioselectivity and (E/Z)-selectivity are described. These reactions afford synthetically useful allylic and homoallylic alcohols, often with high enantioselectivity. A highly enantioselective method for the nickel-catalyzed reductive coupling of alkynes and aldehydes has been realized using the commercially available (+)- neomenthyldiphenylphosphine as a chiral ligand. Allylic alcohols are afforded with complete (E/Z)-selectivity, generally >95:5 regioselectivity, and in up to 96% ee. In conjuction with ozonolysis, this process is complementary to existing methods of enantioselective [alpha]-hydroxy ketone synthesis. In alkene-directed, nickel-catalyzed reductive couplings of 1,3-enynes with aldehydes and epoxides, the conjugated alkene dramatically enhances reactivity and uniformly directs regioselectivity, independent of the nature of the other alkyne substituent (aryl, alkyl (1°, 2°, 3°)) or the degree of alkene substitution (mono-, di-, tri-, and tetrasubstituted). The highly substituted 1,3-diene products are useful in organic synthesis and, in conjunction with a Rh-catalyzed, siteselective hydrogenation, afford allylic and homoallylic alcohols that previously could not be prepared in high regioselectivity (or at all) with related Ni-catalyzed alkyne coupling reactions. Enantiomerically enriched terminal epoxides can be employed to afford enantiomerically enriched homoallylic alcohols. P-chiral, monodentate ferrocenyl phosphine ligands are efficient promoters of catalytic, asymmetric reductive coupling reactions of 1,3-enynes with aromatic aldehydes and with ketones. The latter represents the first catalytic intermolecular reductive coupling of alkynes and ketones, asymmetric or otherwise, to be reported. Both of these methods afford chiral 1,3-dienes in excellent regioselectivity and modest enantioselectivity. Nickel-catalyzed reductive couplings of 1,6-enynes and aldehydes also display very high (>95 : 5) regioselectivity. Use of a monodentate phosphine as an additive leads to formation of the opposite regioisomer in equal and opposite selectivity (5: >95). These results provide strong evidence for an interaction between the remote alkene and the metal center during the regioselectivity-determining step.
by Karen M. Miller..
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Carbon-heteroatom Bond Forming Reactions"

1

M, Roberts Stanley, ed. Metal catalysed carbon-carbon bond-forming reactions. Chichester, West Sussex, England: John Wiley, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roberts, Stanley M., Jianliang Xiao, John Whittall, and Tom E. Pickett, eds. Catalysts for Fine Chemical Synthesis, Volume 3, Metal Catalysed Carbon-Carbon Bond-Forming Reactions. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470862017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sharma, Rakesh Kumar, and Bubun Banerjee. Green-Bond Forming Reactions: Carbon-Carbon and Carbon-Heteroatom. de Gruyter GmbH, Walter, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sharma, Rakesh Kumar, and Bubun Banerjee. Green-Bond Forming Reactions: Carbon-Carbon and Carbon-Heteroatom. de Gruyter GmbH, Walter, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sharma, Rakesh Kumar, and Bubun Banerjee. Green-Bond Forming Reactions: Carbon-Carbon and Carbon-Heteroatom. de Gruyter GmbH, Walter, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fagnou, Keith. New rhodium-catalyzed carbon-carbon and carbon-heteroatom bond forming reactions for organic synthesis. 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Danheiser, Rick L. Asymmetric Carbon-Carbon Bond Forming Reactions. Wiley & Sons, Incorporated, John, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roberts, Stanley M., John Whittall, Jianliang Xiao, and Tom E. Pickett. Metal Catalysed Carbon-Carbon Bond-Forming Reactions. Wiley & Sons, Incorporated, John, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Roberts, Stanley M., John Whittall, Jianliang Xiao, and Tom E. Pickett. Catalysts for Fine Chemical Synthesis - Metal Catalysed Carbon-Carbon Bond-Forming Reactions. Wiley & Sons Australia, Limited, John, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Quach, Tan Dai. Organotrifluoroborate salts in palladium-catalyzed carbon-carbon and copper-mediated carbon-nitrogen bond forming reactions. 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Carbon-heteroatom Bond Forming Reactions"

1

Koser, Gerald F. "Heteroatom-Heteroatom-Bond Forming Reactions." In Hypervalent Iodine Chemistry, 173–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46114-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Koser, Gerald F. "C-Heteroatom-Bond Forming Reactions." In Hypervalent Iodine Chemistry, 137–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46114-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Atta-ur-Rahman and Zahir Shah. "Stereoselective Carbon-Carbon Bond Forming Reactions." In Stereoselective Synthesis in Organic Chemistry, 185–396. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8327-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parashar, Rakesh Kumar. "Carbon-Carbon Double Bond Forming Reactions." In Reaction Mechanisms in Organic Synthesis, 148–90. West Sussex, United Kingdom: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118681299.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wolfe, John P., Joshua D. Neukom, and Duy H. Mai. "Synthesis of Saturated Five-Membered Nitrogen Heterocycles via Pd-Catalyzed CN Bond-Forming Reactions." In Catalyzed Carbon-Heteroatom Bond Formation, 1–34. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527633388.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maruoka, Keiji. "Asymmetric Carbon-Carbon Bond-Forming Reactions: Asymmetric Cycloaddition Reactions." In Catalytic Asymmetric Synthesis, 465–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471721506.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mikami, Koichi, and Takeshi Nakai. "Asymmetric Carbon-Carbon Bond-Forming Reactions: Asymmetric Ene Reactions." In Catalytic Asymmetric Synthesis, 543–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471721506.ch17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kanai, Motomu, and Masakatsu Shibasaki. "Asymmetric Carbon-Carbon Bond-Forming Reactions: Asymmetric Michael Reactions." In Catalytic Asymmetric Synthesis, 569–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471721506.ch18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Parashar, Rakesh Kumar. "Transition Metal-Mediated Carbon-Carbon Bond Forming Reactions." In Reaction Mechanisms in Organic Synthesis, 191–223. West Sussex, United Kingdom: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118681299.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Trost, Barry M., and Chulbom Lee. "Asymmetric Carbon-Carbon Bond-Forming Reactions: Asymmetric Allylic Alkylation Reactions." In Catalytic Asymmetric Synthesis, 593–649. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471721506.ch19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography