Academic literature on the topic 'Carbon fibre (CF)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbon fibre (CF).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Carbon fibre (CF)"

1

Li, Nan, Xiuxiu Yang, Feng Bao, Yunxing Pan, Chenghao Wang, Bo Chen, Lishuai Zong, Chengde Liu, Jinyan Wang, and Xigao Jian. "Improved Mechanical Properties of Copoly(Phthalazinone Ether Sulphone)s Composites Reinforced by Multiscale Carbon Fibre/Graphene Oxide Reinforcements: A Step Closer to Industrial Production." Polymers 11, no. 2 (February 1, 2019): 237. http://dx.doi.org/10.3390/polym11020237.

Full text
Abstract:
The properties of carbon fibre (CF) reinforced composites rely heavily on the fibre-matrix interface. To enhance the interfacial properties of CF/copoly(phthalazinone ether sulfone)s (PPBES) composites, a series of multiscale hybrid carbon fibre/graphene oxide (CF/GO) reinforcements were fabricated by a multistep deposition strategy. The optimal GO loading in hybrid fibres was investigated. Benefiting from the dilute GO aqueous solution and repeated deposition procedures, CF/GO (0.5%) shows a homogeneous distribution of GO on the hybrid fibre surface, which is confirmed by scanning electron microscopy, atomic force microscope, and X-ray photoelectron spectroscopy, thereby ensuring that its PPBES composite possesses the highest interlaminar shear strength (91.5 MPa) and flexural strength (1886 MPa) with 16.0% and 24.1% enhancements, respectively, compared to its non-reinforced counterpart. Moreover, the incorporation of GO into the interface is beneficial for the hydrothermal ageing resistance and thermo-mechanical properties of the hierarchical composite. This means that a mass production strategy for enhancing mechanical properties of CF/PPBES by regulating the fiber-matrix interface was developed.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, J. "Interfacial features of polyamide 6 composites filled with oxidation modified carbon fibres." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, no. 9 (May 22, 2009): 2135–41. http://dx.doi.org/10.1243/09544062jmes1402.

Full text
Abstract:
Polyacrylonitrile (PAN)-based carbon fibres were surface treated by ozone modification method and air-oxidation treatment. The interfacial properties of carbon fibre reinforced polyamide 6 (CF/PA6) composites were investigated by means of the single fibre pull-out tests. The surface characteristics of carbon fibres were characterized by X-ray photoelectron spectroscopy (XPS). As a result, it was found that interfacial shear strength values of the composites with ozone-treated carbon fibre are greatly increased. XPS results show that ozone treatment increases the amount of carboxyl groups on the carbon fibre surface, thus the interfacial adhesion between carbon fibre and PA6 matrix is effectively promoted. The effect of surface treatment of carbon fibres on the tribological properties of CF/PA6 composites was comparatively investigated. Experimental results revealed that surface treatment can effectively improve the interfacial adhesion between carbon fibre and PA6 matrix. Thus the wear resistance was significantly improved.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Qiangjun, Yong C. Wang, Constantinos Soutis, Colin G. Bailey, and Yuan Hu. "Fire Safety Assessment of Epoxy Composites Reinforced by Carbon Fibre and Graphene." Applied Composite Materials 27, no. 5 (July 14, 2020): 619–39. http://dx.doi.org/10.1007/s10443-020-09824-4.

Full text
Abstract:
Abstract This paper presents a coupled numerical investigation to assess the reaction to fire performance and fire resistance of various types of epoxy resin (ER) based composites. It examines the fire response of carbon fibre (CF) reinforced ER (CF/ER), ER with graphene nanoplatelets (GNP/ER) and CF reinforced GNP/ER (CF/GNP/ER). Thermal, physical and pyrolysis properties are presented to assist numerical modelling that is used to assess the material ability to pass the regulatory vertical burn test for new aircraft structures and estimate in-fire and post-fire residual strength properties. Except for the CF/GNP/ER composite, all other material systems fail the vertical burn test due to continuous burning after removal of the fire source. Carbon fibres are non-combustible and therefore reduce heat release rate of the ER composite. By combining this property with the beneficial barrier effects of graphene platelets, the CF/GNP/ER composite with 1.5 wt% GNP and 50 wt% CF self-extinguishes within 15 s after removal of the burner with a relatively small burn length. Graphene drastically slows down heat conduction and migration of decomposed volatiles to the surface by creating improved char structures. Thus, graphene is allowing the CF/GNP/ER composite panel to pass the regulatory vertical burn test. Due to low heat conduction and reduced heat release rate, the maximum temperatures in the CF/GNP/ER composite are low so the composite material retains very high in-fire and post-fire mechanical properties, maintaining structural integrity. In contrast, temperatures in the CF/ER composite are much higher. At a maximum temperature of 86 °C, the residual in-fire tensile and compressive mechanical strengths of CF/GNP/ER are about 87% and 59% respectively of the ambient temperature values, compared to 70% and 21% respectively for the CF/ER composite that has a temperature of 140 °C at the same time (but the CF/ER temperature will be higher due to continuing burning). Converting mass losses of the composites into char depth, the post-fire mechanical properties of the CF/GNP/ER composite are about 75% of the ambient condition compared to about 68% for the CF/ER composite.
APA, Harvard, Vancouver, ISO, and other styles
4

Hofmann, Marcel, Dirk Wenzel, Bernd Gulich, Heike Illing-Günther, and Daisy Nestler. "Development of Nonwoven Preforms Made of Pure Recycled Carbon Fibres (rCF) for Applications of Composite Materials." Key Engineering Materials 742 (July 2017): 555–61. http://dx.doi.org/10.4028/www.scientific.net/kem.742.555.

Full text
Abstract:
For the development of an efficient and economic recycling process of carbon fibers (CF) still many technological challenges have to be mastered. One of them is the removal of all extraneous natural and synthetic fibres, e.g. polyester sewing threads. The objective of the research was to develop an in-line process for the removal of those extraneous fibres, which result from mechanical processes such as tearing. A promising approach for the removal of extraneous fibres from cut-off carbon-fibre material (CF) has been identified, getting recycled carbon fibres (rCF). For that purpose, the use of modern laser technologies is particularly promising. However, the focus was not the development of new laser systems, but the adaptation of existing technologies and their integration into textile processing steps for carbon fibre recycling. In addition to the removal of the extraneous fibres, the degree of CF losses and quality degradation due to fibre damage have been analysed and compared with optimum fibre characteristics. The separation has been experimented and corresponding laser parameters have been defined. Finally, the obtained carbon-fibre material has been tested with regard to its processability in textile manufacturing processes (dry non-woven fabric production) up to carbon fibre reinforced plastics (CFRP). For the evaluation of the material for potential applications, test plates from irradiated and non-irradiated material have been used. The performed tensile and flexural tests have proved that the irradiated material has similar properties compared to the non-exposed one.
APA, Harvard, Vancouver, ISO, and other styles
5

Kovačević, Stana, Snježana Brnada, Ivana Schwarz, and Ana Kiš. "Bicomponent Carbon Fibre within Woven Fabric for Protective Clothing." Polymers 12, no. 12 (November 27, 2020): 2824. http://dx.doi.org/10.3390/polym12122824.

Full text
Abstract:
For the purpose of this research, six types of woven fabrics with different proportions of bicomponent carbon fibres (CF), differently distributed in the fabric, were woven and tested. Fibre composition in the core and sheath was determined with X-ray spectroscopy (EDS). Two types of bicomponent CF were selected which are characterised by different proportions of carbon and other polymers in the fibre core and sheath and different cross-sections of the fibres formed during chemical spinning. Physical-mechanical properties were investigated, as well as deformations of fabrics after 10,000, 20,000 and 30,000 cycles under biaxial cyclic stress on a patented device. Tests of the surface and vertical electrostatic resistance from fabric front to back side and from the back side to the fabric front were conducted. According to the obtained results and statistical analyses, it was concluded that the proportion of CF affects the fabric’s physical and mechanical properties, the electrostatic resistance as well as the deformations caused by biaxial cyclic stresses. A higher proportion of CF in the fabric and a higher proportion of carbon on the fibre surface, gave lower electrostatic resistance, i.e., better conductivity, especially when CFs are woven in the warp and weft direction. The higher presence of CF on the front of the fabric, as a consequence of the weave, resulted in a lower surface electrostatic resistance.
APA, Harvard, Vancouver, ISO, and other styles
6

Hao, Siqi, Lizhe He, Jiaqi Liu, Yuhao Liu, Chris Rudd, and Xiaoling Liu. "Recovery of Carbon Fibre from Waste Prepreg via Microwave Pyrolysis." Polymers 13, no. 8 (April 10, 2021): 1231. http://dx.doi.org/10.3390/polym13081231.

Full text
Abstract:
Management of waste from carbon fibre composites has become a significant societal issue as the application of composite grows across many industries. In this study, carbon fibres (CF) were successfully recovered from cured carbon fibre/epoxy (CF/EP) prepreg under microwave pyrolysis at 450, 550 and 650 °C followed by oxidation of any residual char. The recovered fibres were investigated for their tensile properties, surface morphologies and the elements/functional groups presented on the surface. The chemical compositions of gaseous and oil pyrolysis products were also analysed. The microwave pyrolysis effectively pyrolyzed the epoxy (EP) resin. Char residue remained on the fibre surface and the amount of char reduced as the pyrolysis temperature increased. Compared to virgin fibres, the recovered fibre suffered from a strength reduction by less than 20%, and this reduction could be mitigated by reducing the pyrolysis temperature. The surface of recovered fibre remained clean and smooth, while the profile of elements and functional groups at the surface were similar to those of virgin fibres. The main gaseous products were CO, H2, CO2 and CH4, whilst the liquid product stream included phenolic and aromatic compounds.
APA, Harvard, Vancouver, ISO, and other styles
7

Mudhukrishnan, M., P. Hariharan, and S. K. Malhotra. "Characterization of Glass Fibre/Carbon Fibre Hybrid Thermoplastics Composite Laminates Fabricated by Film Stacking Method." Applied Mechanics and Materials 787 (August 2015): 518–22. http://dx.doi.org/10.4028/www.scientific.net/amm.787.518.

Full text
Abstract:
The Fibre Reinforced Plastic (FRP) composites are extensively used for a wide variety of applications in automobile, aerospace, chemical, biomedical and civil engineering fields due to their excellent properties. Composite materials offer significant advantages in strength-to-weight ratio and corrosion resistance over metallic materials. Initially FRP composites were based mainly on thermoset polymers because of the ease of manufacturing. But, recently FRP composites using thermoplastics matrices are gaining importance because of their advantages over thermoset composites. In the present work, FRP laminates were fabricated using glass fabric and carbon fabric as reinforcements and thermoplastic polymer (polypropylene) as matrix. Fiber Reinforced Thermoplastics (FRTP) laminates of glass fibre /polypropylene (GF/PP), carbon fibre/ polypropylene (CF/PP) and glass-carbon fibre /polypropylene (GF/CF/PP) hybrid composite laminates were fabricated by film stacking method using hot compression molding press under optimum process parameters (pressure, temperature and dwell time). The fabricated FRTP laminates were tested for various mechanical and physical properties viz., tensile strength/modulus, flexural strength/modulus, izod impact strength, moisture absorption, barcol hardness and density as per relevant ASTM standards. The results of the tests carried out on three materials were compared. It was observed that hybrid laminate (GF/CF/PP) is superior in flexural strength/modulus as compared to GF/PP but the little lower mechanical properties compared to CF/PP laminates. But use of hybrid laminates has great cost advantage compared to CF/PP.
APA, Harvard, Vancouver, ISO, and other styles
8

Agarwal, Jyoti, Smita Mohanty, and Sanjay K. Nayak. "Polypropylene hybrid composites: Effect of reinforcement of sisal and carbon fibre on mechanical, thermal and morphological properties." Journal of Polymer Engineering 41, no. 6 (April 20, 2021): 431–41. http://dx.doi.org/10.1515/polyeng-2019-0355.

Full text
Abstract:
Abstract Polypropylene (PP)/sisal fibre (SF)/carbon fibre (CF) hybrid composites were prepared by melt blending process at a variable weight percentage (wt%) of carbon: sisal fibre loading (20:10, 15:15, 10:20, and 5:25). MA-g-PP (MgP) as a compatibiliser was used to improve the dispersion of the fibres within the PP matrix. The composites were subjected to mechanical tests to optimize the fibre content of CF: SF. Incorporation of 20 wt% of CF and 10 wt% of SF with 5 wt% MgP resulted in higher mechanical performance of about 67.02 and 112% over that of PP/SF composite. Similarly, the impact strength was found to be optimum which enhanced to the tune of 39.62% as compared with PP/SF composites. Halpin Tsai model was used to compare the theoretical tensile modulus of PP/SF/MgP composites and PP/SF/CF/MgP hybrid composites with experimental evaluated values. Fracture toughness parameters such as K IC (critical stress intensity factor) and G IC (critical strain energy release rate) are determined for PP/SF/MgP composites and PP/SF/CF/MgP hybrid composites and compared by using single edge notch test. DSC study showed higher melting temperature (T m ) of PP/SF/CF/MgP composites as compared to PP revealing the enhancement in thermal stability. TGA/DTG study revealed the synergistic effect of the hybrid composite thus confirming the hybridisation effect of the system. DMA study showed that the hybridisation of CF and SF within the matrix polymer contributes to an increase in the storage modulus (Eʹ). Morphological observation by SEM confirmed that the carbon fibres and sisal fibres are well uniformly dispersed within the PP matrix, in the presence of MgP.
APA, Harvard, Vancouver, ISO, and other styles
9

Tanaka, Kazuto, Daiki Kugimoto, and Tsutao Katayama. "Effects of Temperature on the Fibre Matrix Interfacial Shear Strength of Carbon Nanotube Grafted Carbon Fibre Reinforced Heat Resistant Resin." Key Engineering Materials 827 (December 2019): 488–92. http://dx.doi.org/10.4028/www.scientific.net/kem.827.488.

Full text
Abstract:
Transportation sector is required to reduce CO2 emissions as environmental problems are becoming more serious. Carbon fibre reinforced thermoplastic (CFRTP) are expected to be applied to the structural parts of automobiles and aircrafts because of their superior mechanical properties such as high specific strength, high specific stiffness and high recyclability. One of the problems in using CFRTP for the structural parts is heat resistance, and it is necessary to clarify the mechanical properties under their service environmental temperature. The tensile strength of CFRTP at high temperatures decreases with temperature rise. The fibre matrix interfacial shear strength is reported to be improved by grafting of carbon nanotubes (CNTs) on the surface of carbon fibre. In this study, in order to clarify the effects of temperature on the fibre matrix interfacial shear strength of CNTs grafted carbon fibre reinforced PPS resin, single fibre pull-out test was conducted. While the interfacial shear strength of CNT grafted-CF/PPS is higher than that of As-received-CF/PPS at 25 °C, no significant difference was found in the interfacial shear strength of As-received-CF/PPS and CNT grafted-CF/PPS at 80 °C.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Haiming, Junzong Feng, Liangjun Li, Yonggang Jiang, and Jian Feng. "Preparation of a carbon fibre-reinforced carbon aerogel and its application as a high-temperature thermal insulator." RSC Advances 12, no. 22 (2022): 13783–91. http://dx.doi.org/10.1039/d2ra00276k.

Full text
Abstract:
A carbon fiber reinforced carbon aerogel (CF/CA) was prepared by impregnating polyacrylonitrile (PAN) fibre felts with a resorcinol (R)–furfural (F) sol containing a salt (ZnCl2), followed by ageing and pyrolysis. The RF sol containing the salt was synthesized by direct polymerisation of R and F in methanol (MeOH) using ZnCl2 as a salt template. Compared with the traditional sol–gel method for preparing CF/CAs, this procedure eliminates the need for solvent-exchange and supercritical-fluid drying processes. This novel strategy may lead to lower-cost and large scale industrial processes of CF/CAs.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Carbon fibre (CF)"

1

Bin, Junid Ramli. "Multiscale carbon fibre composites with epoxy-graphite nanoplatelet matrices." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/multiscale-carbon-fibre-composites-with-epoxygraphite-nanoplatelet-matrices(332f171a-d7a8-4346-90c1-fa08e42b058b).html.

Full text
Abstract:
This thesis reports the effects of incorporating graphite nanoplatelets (GNPs) to epoxy-carbon fibre (CF) laminates to produce multiscale composites. A grade of epoxy resin typical for the application in aerospace engineering, triglycidyl-p-aminophenol (TGPAP), was used in this work cured with 4,4'-diaminodiphenyl sulfone (DDS). To improve the processability of TGPAP, a diluent, the diglycidyl ether of bisphenol F (DGEBF), was added to formulations. Compositions of TGPAP/DGEBF/DDS were optimised using response surface methodology (RSM) with the target response being to obtain high glass transition temperature (Tg) and low resin viscosity. From RSM, the optimum values were obtained at 55.6 wt. % of DGEBF and a stoichiometric ratio of 0.60. Before addition into epoxy, GNPs were treated either covalently using 3-aminopropyltriethoxysilane (APTS) or non-covalently using a commercial surfactant, Triton X-100 (abbreviated as A-GNPs and T-GNPs, respectively). After treatment, XPS analysis showed a new peak at 100 eV for A-GNPs indicating silicon and the C/O ratio increased from 11.0 to 26.2 for T-GNPs relative to unmodified GNPs (U-GNPs), suggesting attachment of the modifier molecules had occurred. Nanocomposites (NCs) were prepared by incorporate GNPs into epoxy using mechanical mixing. Rheological percolation threshold of GNP-epoxy suspensions were determined using oscillatory-shear rheometry as 3.9 wt. % for AR-GNPs, 3.6 wt. % for U-GNPs, 3.2 wt. % for A-GNPs and 3.5 wt. % for T-GNPs, suggesting surface treatment improved dispersion. At 4 wt. % of GNPs, flexural strain of NCs was decreased relative to neat epoxy by 46% for AR-GNPs, 48.6% for U-GNPs, 4.6% for A-GNPs and 30.8% for T-GNPs but flexural moduli showed small increases of 6.1-7.4%. Fracture toughness (K1C) also improved. For example, the K1C increased from 0.80 ± 0.04 MPa.m1/2 for neat epoxy to 1.32 ± 0.01 MPa.m1/2 for NCs containing 6 wt. % of U-GNPs possibly due to the branching of cracks resulting from the embedded GNPs. Due to their mechanical performance, A-GNPs were used to fabricate epoxy/CF/A-GNPs multiscale composites. Multiscale composites showed inferior properties relative to a comparable conventional composite in flexural testing, interlaminar shear strength (ILSS) and interlaminar fracture toughness mode II (G11C) due to weaker bonding at the matrix-CF interface. However, multiscale composites showed ~40% higher capability than conventional composite to absorb energy during impact due to greater interfaces formed by the inclusion of A-GNPs into the system.
APA, Harvard, Vancouver, ISO, and other styles
2

Swarbrick, Arthur L. "Understanding the impact of coatings on the friction performance of carbon fibre ceramic composite brakes." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/15055.

Full text
Abstract:
In the railway industry, and premium luxury and super sports sectors of the automotive industry, traditional cast iron brake discs are gradually being replaced with advanced composites such as carbon fibre reinforced carbon silicon carbide (Cf/C-SiC). These materials offer the ability to operate at higher temperatures, whilst displaying improved friction performance, and vastly reduced wear rates. Their primary benefit comes from being approximately one third of the density of the incumbent material used in the industry, grey cast iron (GCI), a cast iron with a high proportion of graphite flakes formed during solidification. This reduced density means that brake discs manufactured from Cf/C-SiC materials are a highly suitable proposition for a future automotive market, where weight saving in an attempt to meet ever restrictive CO2 emissions is a must. The understanding surrounding the friction mechanisms involved with these new materials has been lacking, until recently, with the majority of the international research focused on the manufacturing methods. Research has shown that friction performance, particularly bedding friction, is highly dependent on the successful formation of a friction transfer film (FTF) at the surface of any disc, comprised from wear debris from both the disc and pad. Prior research carried out at Loughborough University has identified that Cf/C-SiC materials do not readily form such a layer, as might be seen on a GCI equivalent, due to the intrinsically heterogeneous nature of the composite material.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Yuan. "Friction surface development and its structure on carbon fibre reinforced silicon carbide disc." Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/10003.

Full text
Abstract:
Carbon fibre reinforced ceramic composites (Cf/C-SiC) have been explored as lightweight and durable disc in a friction brake. This composite was manufactured through infiltration of liquid silicon into a Cf/C perform. It has heterogeneous microstructure, composed of three key phases, silicon carbide, Cf/C, and un-reacted residual silicon. The development of the transfer layer on the friction surface of Cf/C-SiC was studied through microstructural image registration of the surface after a range of braking stops on a laboratory-scale dynamometer test rig. When an organic pad was used as the counter face brake pad, it was found that a steady transfer layer was developed in silicon regions right after initial stops; in carbon-fibre/carbon (Cf/C) regions and most of the silicon carbide region, the friction surfaces were unsteady and any possible friction transfer layers were hardly built up. Large voids and cracks/crevices likely became pools to quickly and efficiently collect the transferred materials generated by the friction, but the compacts formed inside the pools were susceptible to be stripped off by further braking operation. Three types of friction surfaces were generalized: type I, the friction transfer layer had a steady relationship with the matrix and respectable longevity; type II, the transfer layer had an unstable relationship with the matrix and poor durability; type III, the friction transfer layer had a steady relationship with the matrix but short lifetime. After testing against organic pads under the laboratory scale dynamometer testing condition, the friction surface of each key phase in Cf/C-SiC composites disc was studied by transmission electron microscopy (TEM). It was found that the transfer layer developed on Si consists of fine particles of metal silicides, silicates and minerals. The substrate damage of Si was not observed, while the precipitates having high oxygen content were found in the substrate. Formation of an interfacial bonding between transfer layer and silicon substrate is believed to be the key factor for the formation of a stable transfer layer on Si. However, the interfacial bonding between transferred materials and SiC was not detected. Kinks are common features developed on the friction surface of SiC. The interface between carbon fibre and carbon matrix was experienced mechanical damage, in form of microcracks, and the transferred material was developed in the interface. Instead of transfer layer, a thin amorphous film, produced by friction induced amorphisation of carbon fibre, was developed on top of carbon fibre.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Qiuhong. "Carbon Nanotubes on Carbon Fibers: Synthesis, Structures and Properties." Dayton, Ohio : University of Dayton, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1272515887.

Full text
Abstract:
Thesis (Ph.D. in Materials Engineering) -- University of Dayton.
Title from PDF t.p. (viewed 06/23/10). Advisor: Liming Dai. Includes bibliographical references (p. 136-162). Available online via the OhioLINK ETD Center.
APA, Harvard, Vancouver, ISO, and other styles
5

André, Natália Manente. "Friction spot joining of aluminum alloy 2024-t3 and carbon-fiber-reinforced polyphenylene sulfide composite laminate with additional pps film interlayer." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/8275.

Full text
Abstract:
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2016-10-21T11:41:37Z No. of bitstreams: 1 DissNMA.pdf: 5169564 bytes, checksum: 024c06d911b0aca7d5ad498353cc25ef (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-11-08T18:38:42Z (GMT) No. of bitstreams: 1 DissNMA.pdf: 5169564 bytes, checksum: 024c06d911b0aca7d5ad498353cc25ef (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-11-08T18:38:48Z (GMT) No. of bitstreams: 1 DissNMA.pdf: 5169564 bytes, checksum: 024c06d911b0aca7d5ad498353cc25ef (MD5)
Made available in DSpace on 2016-11-08T18:38:54Z (GMT). No. of bitstreams: 1 DissNMA.pdf: 5169564 bytes, checksum: 024c06d911b0aca7d5ad498353cc25ef (MD5) Previous issue date: 2015-11-30
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Friction Spot Joining (FSpJ) is a prize-winning joining technique for hybrid metal-polymer composite structures. This master thesis was devised to investigate the feasibility of FSpJ of metal-composite structures with additional film interlayer. Friction spot joints of aluminum alloy 2024-T3 and carbon-fiberreinforced polyphenylene sulfide laminate composite with additional PPS film interlayer were successfully produced. The highest peak temperature achieved during the joining process was 417°C. DSC analysis demonstrated that the degree of crystallinity decreased for the composite (from 22% to 12%) and increased for the PPS film (from 7% to 27%) after joining. TGA analysis indicated that no extensive thermo-mechanical degradation induced by the joining process occurred. The main bonding mechanisms of FSp joint were identified as macro- and micro-mechanical interlocking, as well as adhesion forces. The process-related microstructural effects were evaluated and correlated to the local mechanical performance of the joining parts through micro and nanohardness. Further, mechanical grinding, sandblasting and plasma activation surface pre-treatments were performed on the composite part to enhance the adhesion between the joining parts. The generated surface features due to the surface pre-treatments were correlated to the mechanical performance of the joints. Sandblasted specimens showed the best mechanical performance among the surface pre-treatments used in this work. The lap shear strength of joints with interlayer (2703 ± 114 N up to 3069 ± 166 N) was up to 55% higher than the corresponding joints without film. The fatigue life of the joints with interlayer was 4 times longer in comparison with those without interlayer; superior fatigue strength was also observed. The durability of the joints was evaluated through hydrothermal accelerated aging; the maximum reduction in initial strength was 12.4% for 28 days of aging. Finally, the failure mechanisms of the joints were discussed, demonstrating a mixture of adhesivecohesive failure mode.
A União Pontual por Fricção (FSpJ) é uma técnica internacionalmente premiada para união de estruturas híbridas metal-compósito polimérico. Esta dissertação de mestrado investigou a viabilidade técnica da produção de juntas metal-compósito com filme polimérico intermediário através do FSpJ. Juntas de alumínio 2024-T3 e laminado compósito de poli(sulfeto de fenileno) (PPS) reforçado com fibras de carbono com filme intermediário de PPS foram produzidas com sucesso. A máxima temperatura processual identificada foi de 417°C. Análises de DSC demonstraram decréscimo no grau de cristalinidade do compósito (de 22% para 12%) e acréscimo no caso do filme intermediário (de 7% para 27%) depois de submetidos ao processo de união. Análises de TGA não identificaram evidências de ocorrência de degradação termomecânica dos componentes poliméricos das juntas induzida pelo FSpJ. Os principais mecanismos de união identificados na interface das juntas foram macro- e micro-ancoramento mecânico, além de forças adesivas. As mudanças microestruturais induzidas pelo processo de união foram investigadas e correlacionadas com o desempenho mecânico local dos componentes da junta através de medidas de micro e nanodureza. Pré-tratamentos superficiais de lixamento, jateamento de areia e ativação por plasma foram realizados no componente compósito a fim de aprimorar a adesão entre os componentes a serem unidos. As superfícies pré-tratadas foram caracterizadas e suas propriedades foram correlacionadas com a resistência mecânica das juntas correspondentes. As amostras jateadas produziram juntas com a melhor resistência mecânica entre os pré-tratamentos superficiais investigados neste estudo. A resistência ao cisalhamento das juntas com filme (2703 ± 114 N até 3069 ± 166 N) apresentou-se até 55% superior à resistência das respectivas juntas sem filme. A vida em fadiga das juntas com filme apresentou-se cerca de 4 vezes mais longa em comparação às juntas sem filme. A durabilidade das juntas foi investigada através de envelhecimento hidrotérmico acelerado, sendo que a máxima redução em resistência ao cisalhamento foi de 12,4% para 28 dias de envelhecimento. Finalmente, os mecanismos de falha das juntas foram discutidos, demonstrando a predominância do modo coesivo de falha.
APA, Harvard, Vancouver, ISO, and other styles
6

Esteves, João Victor Almeida. "União pontual por fricção (“friction spot joining”) de alumínio 6181-T4 com compósito laminado de poli(sulfeto de fenileno) e fibra de carbono (CF-PPS)." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/7345.

Full text
Abstract:
Submitted by Izabel Franco (izabel-franco@ufscar.br) on 2016-09-20T18:30:12Z No. of bitstreams: 1 DissJVAE.pdf: 4217973 bytes, checksum: 5bff49bb1884d56f5cb1d7e47edfd24f (MD5)
Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-09-21T18:13:46Z (GMT) No. of bitstreams: 1 DissJVAE.pdf: 4217973 bytes, checksum: 5bff49bb1884d56f5cb1d7e47edfd24f (MD5)
Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-09-21T18:13:57Z (GMT) No. of bitstreams: 1 DissJVAE.pdf: 4217973 bytes, checksum: 5bff49bb1884d56f5cb1d7e47edfd24f (MD5)
Made available in DSpace on 2016-09-21T18:23:53Z (GMT). No. of bitstreams: 1 DissJVAE.pdf: 4217973 bytes, checksum: 5bff49bb1884d56f5cb1d7e47edfd24f (MD5) Previous issue date: 2015-02-26
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
The friction spot joining (FSpJ) emerges as an alternative and innovative technique for producing polymer-metal hybrid structures. This technique was developed and patented by HZG / Germany in 2012. The process uses a combination of tools that by friction generates heat leading to the formation of a polymer layer through the interface and mechanical interlocking between the joints partners. Previous studies have demonstrated the technical feasibility of producing hybrid joints by FSpJ, however, no studies have demonstrated the influence of the process parameters on the joints properties. This study aimed to produce hybrid joints of 6181-T4 aluminum alloy and carbon fiber reinforced poly(phenylene sulfide) laminate composite (CF-PPS) by FSpJ and investigate the influence of process and aluminum surface treatment on the structure and the mechanical strength of these joints. The proper combination of these parameters resulted in hybrid joints with single lap shear force of up to 1861 N (29 MPa) and 3522 N (55 MPa) for double lap joints. This level of shear strength is similar or superior to others metal / polymeric composite joints produced by conventional joining techniques, demonstrating the potential of the FSpJ. The rotational speed (RS) was the parameter with the greatest influence on the shear strength of the joints, followed by the joining time (JT), tool plunge depth (PD) and joining force (JF). Joints that had predominantly cohesive fracture showed higher shear strength. Joints that were cooled at lower rates showed higher joint shear strength, regardless the heat input, due to lower residual stress at the interface of these joints. Through simple aluminum surface treatment (griding followed by acid pickling) it was possible to achieve an increasing up to 160% in the shear strength of the joints.
A união pontual por fricção (“Friction Spot Joining – FSpJ”) desponta como uma técnica alternativa e inovadora para produzir estruturas híbridas metal-polímero. Esta técnica foi desenvolvida e patenteada pela HZG / Alemanha em 2012. O processo utiliza uma combinação de ferramentas que através da fricção sobre o metal gera calor levando a formação de camada polimérica na interface e de travamento mecânico entre as chapas. Estudos anteriores demonstraram a viabilidade técnica para produção de juntas híbridas, porém, não há estudos demonstrando efetivamente a influência dos parâmetros de união nas propriedades das juntas. Este estudo teve como objetivo produzir juntas híbridas de alumínio 6181-T4 e compósito laminado de poli(sulfeto de fenileno) e fibra de carbono (CF-PPS) por FSpJ, e investigar a influência de parâmetros de processo e tratamento superficial do alumínio sobre a estrutura e a resistência mecânica dessas juntas. A combinação apropriada desses parâmetros resultou em juntas híbridas com força máxima em cisalhamento de até 1861 N (29 MPa) na geometria junta pontual sobreposta simples e de 3522 N (55 MPa) na geometria de junta sobreposta dupla. Esse nível de resistência mecânica é similar ou superior ao de outras juntas metal-compósito polimérico produzidas por técnicas convencionais de união, demonstrando o potencial da técnica FSpJ. A velocidade rotacional (VR) foi o parâmetro com maior influência na resistência ao cisalhamento das juntas, seguida pelo tempo de união (TU), profundidade de penetração (PP) e força de união (FU). As juntas com falha predominantemente coesiva apresentaram resistência ao cisalhamento superior. Foi verificado que juntas produzidas em menores taxas de resfriamento apresentam maior desempenho mecânico, independentemente do aporte térmico utilizado, devido a menor tensão residual na interface dessas juntas. Através de tratamentos superficiais simples no alumínio (lixamento seguido de decapagem ácida) foi possível alcançar aumento de até 160% na resistência ao cisalhamento das juntas.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Yu. "Etude d'interface entre matrice polymère et renforts à base de carbone, à l'aide d'observations multiéchelles et multimodales en microscopie électronique." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLC059/document.

Full text
Abstract:
Cette thèse vise à étudier le comportement multiéchelle (nano-, micro- et macroscopique) des composites, basé sur une étude fine utilisant les techniques les plus modernes pour comprendre les interfaces et les quantifier. Deux séries de renforts sur une échelle micrométrique, des fibres de carbone (CF) et des matériaux à base de graphène ont été utilisées ici. Pour améliorer l'interaction entre les nanorenforts et la matrice polymère, deux voies principales ont été utilisées dans cette thèse : l'oxydation des renforts et la greffe de nanotubes de carbone sur leur surface.L'étude en elle-même a été menée à une échelle microscopique pour étudier la résistance interfaciale entre une fibre de carbone (CF) et la matrice époxy, avec des essais de traction effectués in situ dans la chambre d'un microscope à double colonne MEB-FIB (microscope électronique à balayage couplé à un faisceau d'ions focalisé). Le faisceau d'ions a été utilisé pour découper une éprouvette de traction du composite contenant à la fois de l'époxy et de la CF. Le champ de tractiona été appliqué via le nanomanipulateur et l'essai a été observé via les deux colonnes ionique et électronique (sous deux angles de vue différents) et a permis d'estimer le champ de déformation, et donc la résistance interfaciale au moment de la rupture. Une expérience similaire a été menée sur un composite où les renforts sont des nanoplaquettes de graphène.Enfin, l'étude en microscopie électronique en transmission de la région de l'interface entre l'époxy et les renforts a révélé la présence d'une interphase et a permis de mesurer son épaisseur et donner une indication de sa nature. À cette fin, une analyse EELS (spectroscopie par pertes d'énergie des électrons) a été effectuée, permettant de mesurer la densité de l'échantillon très localement (taille de sonde de l'ordre du dixième de nanomètre) en travers ou parallèlement à l'interface. Un scénario sur les modes de liaison chimique entre les deux milieux en fonction du traitement de surface utilisé permet d'expliquer la nature des interphases observées
This thesis aims to investigate the multiscale (nano-, micro-, and macro-scopic) behavior of the composites based on a fine investigation using the most modern techniques, to understand the interfaces and to quantify them. Two series of reinforcements on a micrometer scale, carbon fibers (CFs) and graphene-based materials, were studied here. To improve the interactions between these nanofillers and the surrounding polymer matrix, two major routes were used in this thesis: the oxidation of the fillers and the grafting of carbon nanotubes on their surface.The study itself was conducted on a microscopic scale on the interfacial strength between CFs and the epoxy matrix, with tensile tests carried out in-situ in the chamber of a double-column FIB-SEM microscope (scanning electron microscope coupled to a focused ion beam). The ion beam was used to mill a thin bond-shaped tensile specimen of composite containing both an epoxy and a CF part. Thetensile stress field was applied using the nanomanipulator and the test was observed both via the ionic and the electronic columns (with two different angles of view) to estimate the strain field, hence the interfacial strength when the failure is observed. A similar experiment was led on a composite with GNPs.Finally, the transmission electron microscopy (TEM) study of the interface region between the epoxy and the graphene-based nanofillers revealed the existence of an interphase and allowed to measure its thickness and give an indication of its nature. For this purpose, an EELS (electron energy-loss spectroscopy) analysis was carried out, making it possible to measure the density of the sample very locally (probe size of the order of a tenth of a nanometer) across or parallelly to an interface. A scenario on the chemical bonding modes between the two media as a function of the surface treatment used makes it possible to explain the nature of the observed interphases
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Carbon fibre (CF)"

1

García-Arrieta, Sonia, Essi Sarlin, Amaia De La Calle, Antonello Dimiccoli, Laura Saviano, and Cristina Elizetxea. "Thermal Demanufacturing Processes for Long Fibers Recovery." In Systemic Circular Economy Solutions for Fiber Reinforced Composites, 81–97. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22352-5_5.

Full text
Abstract:
AbstractThe possibility of recycling glass (GF) and carbon fibers (CF) from fiber-reinforced composites by using pyrolysis was studied. Different fibers from composite waste were recovered with thermal treatment. The recycled fibers were evaluated as a reinforcement for new materials or applications. The main objective was to evaluate the fibers obtained from the different types of industrial composite waste considering the format obtained, the cleanliness and the amount of inorganic fillers and finally, the fibers quality. These characteristics defined the processes, sectors and applications in which recycled fibers can replace virgin fibers. These fibers were also evaluated and validated with tensile testing and compared to the tensile strength of virgin GF and CF.
APA, Harvard, Vancouver, ISO, and other styles
2

Kempe, G., H. Krauss, and G. Korger-Roth. "Adhesion and Welding of Continuous Carbon-Fiber Reinforced Polyether Etherketone (CF-PEEK/APC2)." In Developments in the Science and Technology of Composite Materials, 105–12. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0787-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Copani, Giacomo, Maryam Mirpourian, Nikoletta Trivyza, Athanasios Rentizelas, Winifred Ijomah, Sarah Oswald, and Stefan Siegl. "New Business Models and Logistical Considerations for Composites Re-use." In Systemic Circular Economy Solutions for Fiber Reinforced Composites, 385–415. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22352-5_19.

Full text
Abstract:
AbstractThe growing use of composites in various industries such as aerospace, automotive and wind turbine has increased environmental concerns regarding their waste disposal methods. Deploying circular economy practices to reuse composites could play a crucial role in the future. In this regard, this chapter addresses the development and implementation of new business models for composites re-use, as fundamental enabler for the industrial exploitation and diffusion of technological and methodological innovations developed in the FiberEUse project. Seven products were chosen as representatives for composites reuse application in four industrial sectors: sanitary, sports equipment, furniture and automotive. Re-use business models are presented describing their value proposition, with particular reference to the provision of advanced product-service bundles, the revenue models (including schemes such as leasing), as well as new supply chain configurations entailing new partnership between producers and recyclers to access post-use composites to re-use. Given the importance of reverse supply networks, the potential reverse logistics pathways for mechanical recycling of Glass Fiber Reinforced Plastic (GFRP), thermal recycling of Carbon Fiber Reinforced Plastic (CFRP) and remanufacturing of CF composites waste in Europe for 2020 and 2050 have been investigated. We concluded that the optimal reverse logistics network needs to be decentralized in more than one country in Europe. Therefore, it is suggested that policy makers address regulation to allow the transportation of waste between European countries to facilitate the development of recycling networks for composites reuse.
APA, Harvard, Vancouver, ISO, and other styles
4

"CF – Carbon Fiber." In Encyclopedia of Tribology, 346. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_100173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ge, Jia, Wei Tan, Giuseppe Catalanotti, Brian G. Falzon, John McClelland, Colm Higgins, Yan Jin, and Dan Sun. "Understanding Chip Formation in Orthogonal Cutting of Aeronautical Thermoplastic CF/PEKK Composites Based on Finite Element Method." In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220584.

Full text
Abstract:
There has been an enormous increase in using of carbon fiber reinforced thermoplastic (CFRTP) especially carbon fiber reinforce polyetherketoneketone (CF/PEKK) in automotive and aeronautical industries. However, fundamental material removal mechanism of such material has never been elucidated in the literature. In this work, finite-element (FE) method is deployed and microscale numerical model considering fiber, matrix and interface has been established to understand the mechanisms of chip formation in orthogonal cutting of unidirectional (UD) thermoplastic CF/PEKK composites. Chip formation and subsequent surface / subsurface damage with different fiber orientations (0°, 45°, 90°, 135°) are modelled and compared. Results suggest that, for CF/PEKK, the chip formation mechanism is significantly affected by the fiber orientation and the most severe subsurface damage can be seen at fiber orientation 135°, as a result of bending fracture below the ideal machined surface.
APA, Harvard, Vancouver, ISO, and other styles
6

de Jesús Pellegrini Cervantes, Manuel, Margarita Rodríguez Rodriguez, Susana Paola Arredondo Rea, Ramón Corral Higuera, and Carlos Paulino Barrios Durstewitz. "Recycled Conductive Mortar." In Masonry for Sustainable Construction [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.109000.

Full text
Abstract:
Due to the urgent need to care for the environment, the use of recycled materials is necessary. The creation of multifunctional materials with content of recycled materials presents an alternative to reduce the use of natural resources. This is through the addition of recycled fine aggregate, product of industrial waste in its manufacture, such as graphite powder (GP) and carbon fiber (CF), turning it into conductive recycled mortar (CRM). The sustainability of this new material brings great ecological benefits, such as the reduction in the use of fine aggregates, which are naturally present in rivers, and also, lower production of construction waste sent to landfills. In this research, an evaluation of the effect of the addition of carbon fiber and graphite powder on wet, dry and hardened electrical properties, electrical percolation in dry state, and flowability of the mixture of recycled conductive mortar in a wet state-based on cement―fine aggregate from waste blocks―graphite powder was carried out. The results obtained showed the effect of the addition of GP and CF to the mortar mix, mainly the reduction of its flowability, caused by the physical interaction between the recycled sand or recycled fine aggregate RFA and the carbon fiber CF, as well as the graphite powder GP.
APA, Harvard, Vancouver, ISO, and other styles
7

Joon, Seema, and S. K. Dhawan. "EMI Shielding Properties of Conducting Poly (aniline-co-o-toluidine)-CF-Novolac Composites." In Smart Materials Design for Electromagnetic Interference Shielding Applications, 411–38. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815036428122010012.

Full text
Abstract:
A study was made to design a copolymer of aniline and o-toluidine and its composite with carbon fiber (CF) in making PANIoTCFN sheets for controlling electromagnetic interference. PANIoTTCFN composite synthesized by emulsion polymerization was physically blended with different proportions of novolac resin to prepare a composite sheet by hot press compression moulding. In-situ incorporation of carbon fiber into the copolymer during the synthesis leads to the formation of composites with improved mechanical, thermal, electrical, and shielding properties. Structural and morphological studies were carried out by FTIR, XRD, and SEM. PANIoTCFN composite sheets with 50 % loading of novolac resin have a flexural strength of 52.4 MPa and exhibited shielding effectiveness of 26 dB at a thickness of 1.48 mm of the composite sheet, which reveals that these composite sheets can be used for EMI shielding applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Kumar, Rakesh, and S. K. Dhawan. "Fabrication and Microwave Shielding Properties of Free-Standing Conducting Polymer-Carbon Fiber Thin Sheets." In Smart Materials Design for Electromagnetic Interference Shielding Applications, 355–410. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815036428122010011.

Full text
Abstract:
EMI is a 20th -century radiation pollution that not only results in various health hazards but also weakens the electronic system's performance. With the rapid global development in various fields, this problem is increasing consistently. To ensure the uninterrupted performance of electronic gadgets and avoid the effects on human health, EMI shielding has become a necessity. In the recent past, a large number of materials having a wide range of conductivity and good electromagnetic attributes have been exploited for EMI shielding applications. Initially used metallic shields, due to their high cost weight, corrosion propensity, and reflection-based shielding, have been replaced by various types of materials. Among them, intrinsically conducting polymers (ICPs) like polyaniline, polythiophene, polypyrrole, etc., and their composites with various types of conductive and/or magnetic fillers have played a significant role. Among all the conducting polymers, polyaniline has been studied the most due to its special properties like moderately high conductivity, ease of synthesis, proton doping, low cost, and high environmental stability. Most of the developments related to EMI shielding have been focused on the synthesis of new materials with high shielding effectiveness (SE). For this purpose, polyaniline and its composites have been widely explored due to its appropriate properties. But the commercial use of polyaniline for EMI shielding applications has always been hampered due to its infusibility and limited processability. Also, limited work has been done for the fabrication of polyaniline composites in the form of sheets that have sufficient SE along with improved thermal and mechanical stability. The work presented in this chapter is based on the fabrication of lightweight, thin sheets of polyaniline composites for EMI shielding application in the X-band of microwave range (8.2-12.4 GHz). The polyaniline-CF-novolac (PACN) composite sheets thus obtained were finally tested for EMI shielding applications using vector network analyzer (VNA) in the X-band of microwave range. Characterization of all the composites and/or their sheets was done by UV-vis, FT-IR, SEM, TGA, electrical conductivity (standard four-probe method), flexural strength, and flexural modulus measurements.
APA, Harvard, Vancouver, ISO, and other styles
9

Rubans, S. R., R. Raja, Sabitha Jannet, N. Venkateshwaran, S. Gurusideswar, and Naresh Kakur. "Effects of Infill Speed and Heat Treatment on Mechanical Properties of Carbon Fiber Reinforced Polyethylene Terephthalate Glycol (CF-PETG) Composites." In Reference Module in Materials Science and Materials Engineering. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-820352-1.00255-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Carbon fibre (CF)"

1

Alexandrescu, Laurentia, Mihai Georgescu, Maria Sönmez, Anton Ficai, Roxana Trusca, and Ioana Lavinia Ardelean. "Polyamide/Polyethylene/Carbon Fibre Polymer Nanocomposites." In The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.i.2.

Full text
Abstract:
Polyamide and polyethylene are well known as engineering thermoplastic materials that are widely used in industrial applications for their good mechanical and thermal properties. The paper presents the study of the new nanostructured polymer composites based on polyamide/ compatibilizers/polyethylene/carbon fibres nanoparticles-PA/PE-g-MA/PE/CF in order to obtain, by injection, centre pivot liner, centre plates, and other components for the railway industry, with impact resistance higher than 5-8 kJ/m², abrasion resistance below 100 mm3, resistance to temperatures of -40 - 240°C, resistance to impact and to outdoor applications, with temperatures ranging from -40 to +60°C, in rain, snow or sunshine. The influence of carbon fibres nanoparticles (CF) on the rheological and physico-mechanical properties of the polyamide was studied. The nanocomposites based on polyamide/ compatibilizers/ polyethylene/carbon fibres nanoparticles were characterized by scanning electron microscopy (SEM) and Fourier transformation infrared spectrum (FT-IR) and in terms of physico-mechanical properties. The studied nanocomposites have higher values compared to the blank samples, and the requirements of the railway of impact strength of 5 KJ/m2. Carbon fiber concentrations greater than 1.5% result in decreases in impact strength values, similar to traction resistance values, but not lower than standard values. This leads to the conclusion that the percentages of carbon fibers in the range of 0.1-1.5% achieve maximum values of physical-mechanical parameters.
APA, Harvard, Vancouver, ISO, and other styles
2

VENKATACHALAM,, VINOTHINI, JON BINNER, THOMAS REIMER, BUCKARD ESSER, STEFANO MUNGIGUERRA, and RAFFAELE SAVINO. "PROCESSING OF ULTRA-HIGH TEMPERATURE CERAMIC MATRIX COMPOSITES (UHTCMCS) THROUGH RF ENHANCED CHEMICAL VAPOUR INFILTRATION (RF-CVI)." In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35775.

Full text
Abstract:
Carbon fibre (Cf) reinforced Ultra High Temperature Ceramic (UHTC) Matrix Composites (UHTCMCs) have proven to be excellent materials that can survive nearly 3000°C in highly oxidizing environments along with a good specific strength. Consequently, they have excellent potential for use in aerospace applications such as rocket nozzle throats and thermal protection systems (TPS). Due to the presence of the carbon fibres, UHTCMCs offer high strength and modulus combined with excellent thermal shock behaviour whilst the presence of the ultra-high temperature ceramic phase protects the carbon fibres at the application temperatures. High temperature oxidation, thermal ablation behaviour and mechanical properties of the UHTCMC’s relies heavily on the bonding between the carbon fibre and matrices especially the oxides formed to avoid any progressive failure and predict the life of the components. In the present investigation, a radio frequency assisted chemical vapor infiltration (RF-CVI) technique has been used to make the 2.5D Cf reinforced ZrB2, ZrB2/carbon matrices composites with various interphase materials. The advantage of RF heating is that it creates an inverse temperature profile in the sample, which means that the infiltration starts from inside and progresses outwards. This allows the time needed for processing to be reduced very significantly compared to the conventional CVI process. This presentation will report on the latest results from the research that has been undertaken at the University of Birmingham, including the results from a wide range of testing that has been undertaken at both DLR in Germany and the University of Naples in Italy.
APA, Harvard, Vancouver, ISO, and other styles
3

Kumar, Kundan, C. Jariwala, R. Pillai, N. Chauhan, and P. M. Raole. "Preparation & characterization of SiO2 interface layer by dip coating technique on carbon fibre for Cf/SiC composites." In ADVANCED MATERIALS AND RADIATION PHYSICS (AMRP-2015): 4th National Conference on Advanced Materials and Radiation Physics. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4929204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Uuanxin, Ying Wang, Yuanming Xia, and Shaik Jeelani. "Dynamic Tensile Properties of Carbon Fiber and Carbon Fiber Reinforced Aluminum." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15732.

Full text
Abstract:
In this study, dynamic and quasi-static tensile behaviors of carbon fiber and unidirectional carbon fiber reinforced aluminum composite have been investigated. The complete stress-strain curves of fiber bundles and the composite at different strain rate were obtained. The experimental results show that carbon fiber is a strain rate insensitive material, but the tensile strength and critical strain of the Cf/Al composite increased with increasing of strain rate because the strain rate strengthening effect of aluminum matrix. Based on experimental results, a fiber bundles model has been combined with Weibull strength distribution function to establish a one-dimensional damage constitutive equation for the Cf/Al composite.
APA, Harvard, Vancouver, ISO, and other styles
5

Yuuki, Hisakura, Kitahara Kenichi, Sugihara Makoto, Imajo Akihiko, and Hamada Hiroyuki. "Mechanical Properties of GF/CF Hybrid ABS Composite by DFFIM." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66280.

Full text
Abstract:
GF reinforced polymer composites to improve the mechanical properties by increasing fiber content, but there is a limit. On the contrary, CF reinforced polymer composites are superior to the GF composites at a lower CF content in tensile and bending properties. However, CF is more expensive than GF. In this study, acrylonitrile butadiene styrene (ABS) was reinforced with single and hybrid reinforcing of glass fibers (GF) and carbon fibers (CF). The composites consisting of GF/ABS, CF/ABS and GF/CF/ABS were fabricated by direct fiber feeding injection molding (DFFIM). The reinforcing fiber was directly fed at the vent hole of the barrel in the DFFIM process. The effects of fiber Tex, fiber numbers and processing parameters on properties of the composites were investigated. Tensile, bending and Izod impact testing was conducted to compare mechanical properties of GF/ABS composites, CF/ABS composites and hybrid GF/CF/ABS composites. Morphology of the composites was observed by scanning electron microscopy. In addition, the cost advantage of each composite was compared with their mechanical properties. From the results, the addition of carbon fiber improved tensile, bending and impact properties of the hybrid composites. SEM photographs indicated that carbon fiber tended to agglomerate during the DFFIM process. The hybrid GF/CF/ABS composites presented an equivalent improvement in tensile and bending properties as compared to the CF/ABS composites. It can be noted that the low CF content was suitable for enhanced mechanical performances of the hybrid GF/CF/ABS composites. Therefore, the hybrid composites can be manufactured at a low cost as compared to the similar mechanical properties of the CF/ABS composites.
APA, Harvard, Vancouver, ISO, and other styles
6

Gill, Amaninder Singh, Darian Visotsky, Laine Mears, and Joshua D. Summers. "Cost Estimation Model for PAN Based Carbon Fiber Manufacturing Process." In ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8724.

Full text
Abstract:
A polyacrilonitrile (PAN) based carbon fiber manufacturing cost estimation model driven by weight is presented in this study. One of the biggest limiting factors in the large scale use of carbon fiber (CF) in manufacturing is its high cost. The costs involved in manufacturing the carbon fiber have been formalized into a cost model in order to facilitate the understanding of these factors. This can play a key role in manufacturing CF in a cost effective method. This cost model accounts for the fixed and variable costs involved in all stages of manufacturing, in addition to accounting for price elasticity.
APA, Harvard, Vancouver, ISO, and other styles
7

YOUNG, DEVIN, BRITANNIA VONDRASEK, and MICHAEL CZABAJ. "INVESTIGATION OF MECHANICAL PROPERTIES OF COMPOSITES-BASED SHEET LAMINATION ADDITIVE MANUFACTURING PROCESS." In Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36463.

Full text
Abstract:
The Composites-Based Additive Manufacturing (CBAM) system is a novel sheet lamination process combining mats of randomly oriented carbon fiber (CF) reinforcement with thermoplastic matrix materials to fabricate composite objects. This study investigated the suitability of three ASTM test standards for tensile, inplane shear, and interlaminar fracture properties of two CBAM material systems: CF reinforced Nylon-12 (CF/PA12) and CF reinforced polyether ether ketone (CF/PEEK). The tensile, in-plane shear, and interlaminar fracture tests were well suited for the CF/PEEK material, though high variability was found in the interlaminar fracture response. The CF/PA12 material system exhibited high plasticity and evidence of a poor fiber-matrix interface. This was shown by fiber pullout in the tensile tests and the presence of voids observed on the in-plane shear surfaces. The interlaminar fracture test method was invalid for the CF/PA12 material due to a large process zone invalidating. These results show CF/PEEK to be a promising material system for the CBAM process while CF/PA12 requires further development.
APA, Harvard, Vancouver, ISO, and other styles
8

ZHANG, DANDAN, XINGKANG SHE, YIPENG HE, WESLEY A. CHAPKIN,, VI T. BREGMAN, RUMIN WANG, and ALAN TAUB. "BRIDGING OF CARBON FIBERS IN CF/EPOXY COMPOSITES USING ELECTROSTATICALLY INDUCED CNT ALIGNMENT." In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35765.

Full text
Abstract:
Carbon fiber reinforced polymer (CFRP) composites are lightweight materials with superior strength but are expensive due to the increased cost of carbon fibers (CFs). The addition of carbon nanotubes (CNTs) to polymer nanocomposites are becoming an excellent alternative to CF due to their unique combination of electrical, thermal, and mechanical properties. With the application of an electric field across the CNT/polymer mixture before curing, CNTs will not only be aligned along the electric field direction, but also form networks after reaching to a certain degree of alignment. In this study, an alternating current (AC) electric field was applied continuously to CNT/CF/Epoxy hybrid composites before curing. By cutting off the applied voltage when the monitored electric current increased, the degree of networking of CNTs between two CF tows was controlled. The relative electric field strength around the end of conductive carbon fiber tows in the epoxy matrix was modeled using COMSOL Multiphysics. It increased after applying AC electric field parallel to the CF tows, thereby increasing the alignment degree of CNTs and building a network to bridge the CF tows. The preliminary results indicate that the microhardness and tensile modulus between two CF tows are increased due to the networking of CNTs in this area. The fracture surface of the specimens after tensile tests were characterized to reveal more details of the microstructure.
APA, Harvard, Vancouver, ISO, and other styles
9

Yao, Riwu, Jianfeng Shi, and Jinyang Zheng. "Mechanical Enhancement and Strain Sensing of Electrofusion Joint With Carbon-Fiber-Reinforced Polyethylene." In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93347.

Full text
Abstract:
Abstract Electrofusion (EF) technology is widely used for connecting plastic pipes or composite pipes. For these pipes used in natural gas transportation and nuclear power plant, the higher and higher operation pressure makes the strength of EF joint a limitation in the pressure pipeline systems. In this paper, high density polyethylene (HDPE) filled with different contents of short-cut carbon fiber (CF) was prepared by melt mixing and injection molding. Scanning electron microscopy imagines indicated a good dispersion of CF in HDPE matrix. Experiments were carried out to evaluate the mechanical and electrical properties of the HDPE-CF composite. The addition of CF improved the elastic modulus and yield stress of the composite compared with neat HDPE. The enhanced mechanical properties of HDPE-CF composite can improve the strength of EF joints, and bursting tests revealed a burst pressure of 8.11 MPa, which is 41.8% higher than that of neat HDPE EF joint. Based on the improved electrical conductivity, the electrical resistance of EF joint induced by the strain under internal pressure can be monitored for structural health monitoring of the pipeline. Thus, the combination of mechanical enhancement and strain sensing of EF joint with carbon-fiber-reinforced polyethylene can improve the strength and reliability of pressure pipeline.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhou, Chongyao, Zhiming Huang, Yongtian Kang, Dagang Zhang, Naiquan Ye, and Svein Sævik. "The Study of a New Concept of Flexible Pipe With Carbon Fiber/Epoxy Reinforced Inner Sheath." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61069.

Full text
Abstract:
Flexible pipe has been widely used in offshore industry for many years. The traditional composite structure of flexible pipe consists of many layers, including multiple metallic layers, such as tensile armor, pressure armor and carcass, as well as nonmetallic layers, such as sheath and liner. Typical flexible pipe is heavy and requires complex manufacturing process, especially pressure armor and carcass manufacturing. Therefore, there is a desire to find a replacement to pressure armor and carcass. With the recent development of a new composite material with lighter weight and higher strength, it now becomes possible. This new composite material is called epoxy compounded carbon fiber (EP/CF). Carbon fiber is 10 times stronger than steel, while it is only 1/5 of the steel weight. Epoxy protects carbon fiber from environmental conditions such as high temperature and corrosion, also bond carbon fiber together and help to redistribute the loading between carbon fibers. This paper is to present a new concept of flexible pipe by applying the EP/CF material to flexible design. In this new flexible concept, EP/CF is used to strengthen the inner sheath by surface activation treatment of sheath material. This provides excellent hoop strength to resist the inner pressure, hence provides a good replacement to the pressure armor and carcass. A new FEA analysis method with ABAQUS is also presented in this paper. In the analysis approach, all helix fibers are modelled using predefined beam element, and EP/CF reinforced inner sheath is modeled using laminated composite shell. Nonlinear FEA analysis is carried out in ABAQUS to investigate the tension and bending behavior of flexible pipe with reinforced inner sheath, including the performance of inner pressure resistance, which is one of the key performances. Analysis is also carried out to study the benefit of using EP/CF on outer sheath reinforcement for collision protection. Lastly, the economics and feasibility of this concept are discussed, and conclusions are drawn.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography