Academic literature on the topic 'Carbon fibre'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbon fibre.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Carbon fibre"

1

Zhao, Guanghui, Jijia Zhong, and Y. X. Zhang. "Research Progress on Mechanical Properties of Short Carbon Fibre/Epoxy Composites." Recent Patents on Mechanical Engineering 12, no. 1 (February 20, 2019): 3–13. http://dx.doi.org/10.2174/2212797612666181213091233.

Full text
Abstract:
Background: Short carbon fibre reinforced epoxy composites have many advantages such as high strength-to-weight ratio, corrosion resistance, low cost, short fabrication time and easy manufacturing. Researches on the mechanical performance of the composites are mainly carried out by means of experimental techniques and numerical calculation. Objective: The study aims to report the latest progress in the studies of mechanical properties of short carbon fibre reinforced epoxy composites. Methods: Based on recently published patents and journal papers, the experimental studies of short carbon fibre reinforced epoxy composites are reviewed and the effects of short carbon fibre on the mechanical properties of the composites are discussed. Numerical studies using representative volume element in simulating macroscopic mechanical properties of the short fibre reinforced composites are also reviewed. Finally, future research of short carbon fibre reinforced epoxy composites is proposed. Results: Experimental techniques, experimental results and numerical simulating methods are discussed. Conclusion: Mechanical properties of epoxy can be improved by adding short carbon fibres. Fiber surface treatment and matrix modification are effective in enhancing interfacial adhesion between fiber and matrix, and as a result, better mechanical performance is achieved. Compared to the studies on equivalent mechanical properties of the composites, researches on the micro-mechanism of interaction between fiber and matrix are still in infancy due to the complexity of both the internal structure and reinforcing mechanism.
APA, Harvard, Vancouver, ISO, and other styles
2

Bakar, Mimi Azlina Abu, Sahrim Ahmad, Wahyu Kuntjoro, and Salmiah Kasolang. "Effect of Carbon Fibre Ratio to the Impact Properties of Hybrid Kenaf/Carbon Fibre Reinforced Epoxy Composites." Applied Mechanics and Materials 393 (September 2013): 136–39. http://dx.doi.org/10.4028/www.scientific.net/amm.393.136.

Full text
Abstract:
Effects of the incorporation of untreated and treated hybrid kenaf/carbon fibre reinforced epoxy composites on the impact properties were studied. Hybrid kenaf/carbon fibres and thermoset matrices were hand-laid up and characterized in terms of its mechanical properties. The kenaf fibres were alkali treated whilst the carbon fibres were gamma radiation treated before use as reinforcement in the epoxy resin matrix. The reinforcing effects of kenaf hybridized with carbon fibre in epoxy composites were evaluated at various fibre loadings with overall fibre contents 20 wt%. Hybrid composites with different ratios of kenaf fibre : carbon fibre ; 0.9:0.1, 0.8:0.2, 0.7:0.3 and 0.6:0.4 were prepared. Impact tests of untreated and treated hybrid kenaf/carbon fibres were performed. The fractured surfaces of these composites were investigated by using scanning electron microscopic technique (SEM) to determine the interfacial bonding between the matrix and the fibre reinforcement. It was found that the treated hybrid composites increased the impact strength by 26% compared to the untreated ones.
APA, Harvard, Vancouver, ISO, and other styles
3

Xiao, Jie, Han Shi, Lei Tao, Liangliang Qi, Wei Min, Hui Zhang, Muhuo Yu, and Zeyu Sun. "Effect of Fibres on the Failure Mechanism of Composite Tubes under Low-Velocity Impact." Materials 13, no. 18 (September 17, 2020): 4143. http://dx.doi.org/10.3390/ma13184143.

Full text
Abstract:
Filament-wound composite tubular structures are frequently used in transmission systems, pressure vessels, and sports equipment. In this study, the failure mechanism of composite tubes reinforced with different fibres under low-velocity impact (LVI) and the radial residual compression performance of the impacted composite tubes were investigated. Four fibres, including carbon fiber-T800, carbon fiber-T700, basalt fibre, and glass fibre, were used to fabricate the composite tubes by the winding process. The internal matrix/fibre interface of the composite tubes before the LVI and their failure mechanism after the LVI were investigated by scanning electric microscopy and X-ray micro-computed tomography, respectively. The results showed that the composite tubes mainly fractured through the delamination and fibre breakage damage under the impact of 15 J energy. Delamination and localized fibre breakage occur in the glass fibre-reinforced composite (GFRP) and basalt fibre-reinforced composite (BFRP) tubes when subjected to LVI. While fibre breakage damage occurs globally in the carbon fibre-reinforced composite (CFRP) tubes. The GFRP tube showed the best impact resistance among all the tubes investigated. The basalt fibre-reinforced composite (BFRP) tube exhibited the lowest structural impact resistance. The impact resistance of the CFRP-T700 and CFRP-T800 tube differed slightly. The radial residual compression strength (R-RCS) of the BFRP tube is not sensitive to the impact, while that of the GFRP tube is shown to be highly sensitive to the impact.
APA, Harvard, Vancouver, ISO, and other styles
4

Tanaka, Kazuto, Takanobu Nishikawa, Kazuhiro Aoto, and Tsutao Katayama. "Effect of Carbon Nanotube Deposition Time to the Surface of Carbon Fibres on Flexural Strength of Resistance Welded Carbon Fibre Reinforced Thermoplastics Using Carbon Nanotube Grafted Carbon Fibre as Heating Element." Journal of Composites Science 3, no. 1 (January 12, 2019): 9. http://dx.doi.org/10.3390/jcs3010009.

Full text
Abstract:
In recent years, carbon fibre reinforced thermoplastics (CFRTP) are expected to be used as lightweight structural materials for mass-produced vehicles. CFRTP with thermoplastics as matrix allows us to weld them using melting of matrix by heating. We have been developing a direct resistance heating method, which uses carbon fibres as the resistance heating element. Carbon nanotube (CNT) is expected to be used as additive to FRP and we reported that the fibre/matrix interfacial shear strength was improved by grafting CNT on the surface of carbon fibres and tensile lap-shear strength was improved by using CNT grafted carbon fibre as the heating element for welding. For the practical use of CFRTP for structural parts, flexural strength is also necessary to be evaluated. In this study, flexural test was carried out to clarify the effect of CNT deposition time to the surface of carbon fibres on flexural strength of resistance welded CFRTP using CNT grafted carbon fibre as the heating element. The highest flexural strength was obtained when CNT10, for which CNT is grafted on the carbon fibres for deposition time of 10 min, was used for the heating element of resistance welding. In the case of CNT deposition time of 60 min, the lowest flexural strength was obtained because of the poor impregnation of the resin into the carbon fibre due to the excess CNT on the carbon fibres.
APA, Harvard, Vancouver, ISO, and other styles
5

Hengstermann, Martin, Karl Kopelmann, Andreas Nocke, Anwar Abdkader, and Chokri Cherif. "Development of a new hybrid yarn construction from recycled carbon fibres for high-performance composites: Part IV: Measurement of recycled carbon fibre length." Journal of Engineered Fibers and Fabrics 15 (January 2020): 155892502091072. http://dx.doi.org/10.1177/1558925020910729.

Full text
Abstract:
Due to the increasing application of carbon fibre–reinforced plastics, the use of recycled carbon fibres can help reduce the tremendous amount of carbon fibre waste growing worldwide. In this context, the processing of longer recycled carbon fibres (>40 mm mean length) into hybrid yarn constructions offers a promising solution. The characterisation of recycled carbon fibre length is essential for textile processes. However, to suit the atypical fibre characteristics of recycled carbon fibres compared to standard natural or man-made-fibres, the development of an adequate measuring technique is required. Investigations on the state of the art suggest that an adapted fibrograph method might pose an appropriate measuring system. Therefore, new test equipment and an alternative image analysing method based on pixel greyscale values were developed. To enable a calibration process, different samples with cut carbon fibre from carded and drafted slivers were intensively tested and compared. In addition, an adapted reference method was investigated by combining single fibre measurement and image processing techniques. In a final step, recycled carbon fibres samples with unknown fibre length were tested. Results proved that the presented measuring system is adequate for the testing of longer recycled carbon fibres in webs or slivers. All measured values were close to the measured reference length values (deviation ±4%).
APA, Harvard, Vancouver, ISO, and other styles
6

SHEWALE, JITESH, Chandrashekhar Choudhari, and Anil Kumar Singh Bankoti. "Carbon and natural fiber reinforced polymer hybrid composite: Processes, applications, and challenges." Journal of Mechanical Engineering and Sciences 16, no. 2 (June 30, 2022): 8873–91. http://dx.doi.org/10.15282/jmes.10.15282.16.2.2022.06.0702.

Full text
Abstract:
Composites have recently emerged as the ideal material for weight reduction in a wide range of technical applications. Hybrid composites offer special properties that enable them to meet a wide range of design objectives more efficiently and affordably than conventional composites. Natural fiber-based hybrid composites are also less damaging to the environment and have a reduced carbon footprint. The hybridization of natural fibres with synthetic fibres can substantially minimise the problems associated with natural fibre composites, since the advantages of one kind of fibre can outweigh the disadvantages of another. Several research have been carried out to investigate the different characteristics of carbon-natural fibre reinforced hybrid composites and to evaluate their suitability for a variety of technological applications. The objective of this work is to provide an overview of the materials and manufacturing processes currently utilised to fabricate carbon-natural fibre reinforced hybrid composites. This paper also attempts to discuss the reported mechanical, damping, and other characteristics of the resultant hybrid composites. This article provides a factual overview of the development accomplished so far in the field of hybrid composites constructed from carbon-natural fibres.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, J. "Interfacial features of polyamide 6 composites filled with oxidation modified carbon fibres." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, no. 9 (May 22, 2009): 2135–41. http://dx.doi.org/10.1243/09544062jmes1402.

Full text
Abstract:
Polyacrylonitrile (PAN)-based carbon fibres were surface treated by ozone modification method and air-oxidation treatment. The interfacial properties of carbon fibre reinforced polyamide 6 (CF/PA6) composites were investigated by means of the single fibre pull-out tests. The surface characteristics of carbon fibres were characterized by X-ray photoelectron spectroscopy (XPS). As a result, it was found that interfacial shear strength values of the composites with ozone-treated carbon fibre are greatly increased. XPS results show that ozone treatment increases the amount of carboxyl groups on the carbon fibre surface, thus the interfacial adhesion between carbon fibre and PA6 matrix is effectively promoted. The effect of surface treatment of carbon fibres on the tribological properties of CF/PA6 composites was comparatively investigated. Experimental results revealed that surface treatment can effectively improve the interfacial adhesion between carbon fibre and PA6 matrix. Thus the wear resistance was significantly improved.
APA, Harvard, Vancouver, ISO, and other styles
8

MC, Nandini. "Studies on Mechanical and Flexural Strength of Carbon Nano Tube Reinforced with Hemp/Vinyl Ester/Carbon Fiber Laminated Hybrid Composite." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 699–708. http://dx.doi.org/10.22214/ijraset.2021.38035.

Full text
Abstract:
Abstract: In Recent days, the natural fibres from renewable natural resources offer the potential to act as a reinforcing material for polymer composites alternative to the use of glass, carbon and other man-made fibres. Among various fibres, Hemp is most widely used natural fibre due to its advantages like easy availability, low density, low production cost and satisfactory mechanical properties. Composite materials play a vital role in the field of materials to meet the stringent demands of light weight, high strength, corrosion resistance and near-net shapes. Composite is a structural material that consists of two or more combined constituents that are combined at a macroscopic level and are not soluble in each other. Composites are having two phases that are reinforcing phase like fiber, particle, or flakes & matrix phase like polymers, metals, and ceramics. In this project an attempt is made to prepare different combination of composite materials using hemp/carbon fiber and Carbon nano tube reinforcement and vinyl ester as the matrix material respectively. Composites were prepared according to ASTM standards and following test are carried out Tensile, Flexural and ILSS test. The effect of addition of Carbon nano tubes in hemp/vinyl ester/carbon fibers has been studied & it has been observed that there is a significant effect of fibre loading and performance of hemp/carbon fiber reinforced vinyl ester based hybrid composites with improved results Keywords: Hemp fiber, Vinyl ester, Carbon fiber, Tensile, Flexural and ILSS Test
APA, Harvard, Vancouver, ISO, and other styles
9

Feih, S., and A. P. Mouritz. "Tensile properties of carbon fibres and carbon fibre–polymer composites in fire." Composites Part A: Applied Science and Manufacturing 43, no. 5 (May 2012): 765–72. http://dx.doi.org/10.1016/j.compositesa.2011.06.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Salahuddin, Bidita, Shaikh N. Faisal, Tajwar A. Baigh, Mohammed N. Alghamdi, Mohammad S. Islam, Bing Song, Xi Zhang, Shuai Gao, and Shazed Aziz. "Carbonaceous Materials Coated Carbon Fibre Reinforced Polymer Matrix Composites." Polymers 13, no. 16 (August 18, 2021): 2771. http://dx.doi.org/10.3390/polym13162771.

Full text
Abstract:
Carbon fibre reinforced polymer composites have high mechanical properties that make them exemplary engineered materials to carry loads and stresses. Coupling fibre and matrix together require good understanding of not only fibre morphology but also matrix rheology. One way of having a strongly coupled fibre and matrix interface is to size the reinforcing fibres by means of micro- or nanocarbon materials coating on the fibre surface. Common coating materials used are carbon nanotubes and nanofibres and graphene, and more recently carbon black (colloidal particles of virtually pure elemental carbon) and graphite. There are several chemical, thermal, and electrochemical processes that are used for coating the carbonous materials onto a carbon fibre surface. Sizing of fibres provides higher interfacial adhesion between fibre and matrix and allows better fibre wetting by the surrounded matrix material. This review paper goes over numerous techniques that are used for engineering the interface between both fibre and matrix systems, which is eventually the key to better mechanical properties of the composite systems.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Carbon fibre"

1

Farrow, G. J. "Acoustic emission in carbon fibres and carbon fibre reinforced plastics." Thesis, University of Salford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wong, Doris Wai-Yin. "Toughening of epoxy carbon fibre composites using dissolvable phenoxy fibres." Thesis, Queen Mary, University of London, 2013. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8710.

Full text
Abstract:
The aim of this study is to investigate a novel toughening approach for liquid mouldable carbon fibre/epoxy composites. The toughening mechanism is based on the use of thermoplastics for the toughening of epoxy resins in which polymer blends are formed, leading to phase separated morphologies which allows for various toughening mechanisms to take place. Instead of standard melt or solution blending, the thermoplastic in this study is introduced as solid phenoxy fibres, which are combined with dry carbon fabric preforms. These phenoxy fibres remain solid during resin infusion and dissolve when the laminates are heated and phase separation takes place before curing completed. The main benefits of this approach are that the viscosity of matrix resin remains low, which makes liquid moulding of these laminates possible. Localised and selective toughening of particular regions within a structure can also be achieved. Process time and cost can also be reduced by eliminating the polymer blending process. It was found that modification with phenoxy improved composite Mode-I interlaminar toughness significantly, with an increase of up to 10-folds for bifunctional epoxy composite and 100% for tetrafunctional epoxy composite, while tensile properties were not adversely affected. It was found that it is possible to combine the dissolvable phenoxy fibres with an undissolved aramid interleaf to improve toughness and damage properties. However, the phenoxy-epoxy systems had lowered environmental stability and degraded after hot-wet and solvent conditioning.
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Wenjiao. "Electromechanical response of carbon nanotube/carbon fibre epoxy composites." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123267.

Full text
Abstract:
Carbon fibre (CF) reinforced polymers have become the most widely used composites in theaerospace industry. However, ensuring the integrity of composite structures remains one of themain challenges. By measuring the change in electrical resistance of these materials, it is feasibleto monitor strains and damage initiation and accumulation in-situ and in real-time. The objectiveof this work is to investigate the potential of adding carbon nanotubes (CNTs) to existing CFpolymersto improve strain self-sensing. First, the DC and AC conductivities of epoxy containingdifferent CNT weight concentrations are measured in order to characterize the percolationthreshold. Second, the variation in electrical resistance as a function of electrode distance isinvestigated for CF-epoxy and CF-CNT-epoxy composites. The results show that the addition ofCNTs increases through-thickness conductivity by primarily reducing CF-CF contact resistancerather than increasing the number of CF-CF contacts. In addition, the presence of CNTsengenders a more homogeneous CF-CF contact resistance distribution. Third, theelectromechanical behaviours of CF-epoxy and CF-CNT-epoxy composites are compared viatension, compression, and flexure experiments while simultaneously monitoring electricresponses. The addition of CNTs results in: 1) improved sensitivity under compression due to thecreation of more CF-CF contacts; 2) better linearity under tension due to a more gradual changein CF-CF contact resistance; 3) better electric response reproducibility and repeatability due tomore homogeneous distribution of CF-CF contact resistance. Finally, an existing analyticalmodel is modified to estimate the change in surface resistance on both the tension andcompression sides of flexural specimens using the results of tension- and compression-only testsas inputs. The modelling data is then compared with the measured change in surface resistanceunder flexural load and shows good agreement. The model advances CF-CF contact as thedominating mechanism in the change of surface resistance under mechanical loading—especiallyin compression.
Les polymères à fibre de carbone (FC) sont de nos jours les composites les plus largementutilisés dans le domaine aéronautique. Cependant, assurer l'intégrité de ces structures compositesreste l'un des principaux défis. En mesurant la variation de la résistance électrique descomposites polymère-FC, il est possible de surveiller les déformations et les dommages in-situen temps réel. L'objectif de ce travail est d'étudier l'influence de l'addition de nanotubes decarbone (NTCs) dans des polymère-FC sur la capacité d'auto-détection des déformations et desendommagements structurels. Premièrement, les conductivités continues et alternatives derésines époxy contenant différentes concentrations en poids de NTC sont mesurées afin decaractériser le seuil de percolation. Deuxièmement, la variation de la résistance électrique enfonction de la distance de l'électrode est étudiée pour les composites époxy-FC et époxy-CFNTC. Les résultats démontrent que l'ajout de NTC augmente la conductivité à travers l'épaisseur,en réduisant principalement la résistance de contact FC-FC plutôt que d'augmenter le nombre decontacts FC-FC. De plus, l'ajout de NTC permet une répartition plus homogène de la résistancedes contacts FC-FC. Troisièmement, les comportements électromécaniques peuvent êtrecomparés en mesurant les réponses électriques d'échantillons en temps réel soumis à des tests detraction, compression, et flexion. L'ajout de NTC conduit à: 1) une amélioration de la sensibilitésous contraintes de compression due à davantage de contacts FC-FC créés, 2) une meilleurelinéarité de la résistance électrique sous contraintes de traction due à un changement plusprogressif de la résistance de contact FC-FC, 3) une meilleure reproductibilité et répétabilité desréponses électriques grâce à une répartition plus homogène de la résistance de contact FC-FC.Enfin, un modèle analytique est modifié pour estimer la variation de la résistance de surface enflexion en utilisant les résultats des essais de traction et de compression comme donnéesd'entrée. Les données obtenues par le modèle sont ensuite comparées avec la variation de larésistance de surface mesurée lors des essais en flexion, et présentent une bonne corrélation. Cemodèle démontre en plus que la variation des contacts FC-FC domine la variation de résistancede surface sous chargement mécanique, en particulier la compression.
APA, Harvard, Vancouver, ISO, and other styles
4

Ibarra, Gonzalez Nagore. "Carbon nanotube staple yarn/carbon composites in fibre form." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thornton, Matthew James. "Catalytic carbon deposition on 3-dimensional carbon fibre supports." Thesis, University of Nottingham, 2005. http://eprints.nottingham.ac.uk/10137/.

Full text
Abstract:
Catalytic carbon deposition reactions, using methane, ethane or synthetic natural gas (1.8 vol. % propane, 6.7 vol. % ethane and balance methane) as the carbon-containing gas feedstock with or without the addition of hydrogen, have been investigated over nickel, cobalt and iron catalysts supported on 3-dimensional carbon fibre supports, using both a horizontal tube furnace and an isothermal, isobaric induction furnace. The transition metal catalysts were prepared by impregnating 3-dimensional carbon fibre supports with a methanolic solution of the metal nitrate, using a wet impregnation technique, and the effects of temperature, gas composition and deposition time on their catalytic behaviour was studied. Samples were characterised using a number of complementary techniques, including X-ray diffraction, scanning electron microscopy, polarised light microscopy, transmission electron microscopy, thermogravimetric analysis, digital photography and weight change measurements. The findings from these techniques were used to explain the observed type and amount of carbon deposited. Nickel was found to be the most active catalyst and methane was found to be a poor carbon precursor for the catalytic deposition of carbon, from these findings nickel was chosen as the catalyst and ethane and synthetic natural gas were used as the carbon precursors, with and without the addition of hydrogen. The activity of the nickel catalyst was found to be dependant on a number of factors; weight percent used, temperature, gas feedstock used and deposition time. It was found, in all cases, that increasing the deposition temperature resulted in higher deposition rates, ethane was found to yield higher deposition rates than synthetic natural gas and the effect of hydrogen addition had a negligible effect upon the rate of carbon deposition for the reactions carried out in ethane whereas it was significant for the reactions carried out in synthetic natural gas. The majority of the carbon deposition took place in the first three hours of deposition, with extended deposition times only yielding small increases in the overall rate of carbon deposition. The type of carbon deposited varied from filamentous carbon i.e. carbon nanotubes, nanofibres and microcoils, to encapsulation. The factors affecting the type of carbon deposited were, the temperature of carbon deposition, with higher temperatures (800C) yielding encapsulation and lower temperatures (650C) yielding filamentous carbon, and the addition of hydrogen, with higher hydrogen concentrations favouring the formation of filamentous carbon over encapsulation. It was also found that the addition of hydrogen did not extend the lifetime of the catalysts. It was found that nickel catalysts could be used within larger carbon fibre preforms to catalytically deposit carbon at lower temperatures than those used in industry for the manufacture of carbon-carbon composites (> 1000C).
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Qiang. "Growth of carbon nanotubes on electrospun cellulose fibres for high performance supercapacitors and carbon fibre composites." Thesis, University of Exeter, 2018. http://hdl.handle.net/10871/34360.

Full text
Abstract:
The production of cellulose derived hybrid carbon nanofibre (CNF)/carbon nanotubes (CNTs) electrodes for the fabrication of supercapacitors and carbon fibre composites was investigated. The CNTs were grown via a floating catalyst chemical vapor deposition (CVD) method on the top surface of electrospun cellulose derived CNFs. These CNF and CNF/CNTs samples were then used as electrodes to produce liquid electrolyte-based supercapacitors. The growth of CNTs leads to an improvement of electrochemical performance compared to the plain CNFs. This improvement is due to the grown CNTs enlarging the reactive sites through enhanced surface area and porosity, and thereby increasing the conductivity of the system. CNTs have been also grown onto CNFs containing ferrocene and SiC particles. Composites were fabricated by combining the fibres and CNTs grown fibres with model polymers. The stress transfer properties of these materials have been estimated using an in situ Raman spectroscopic method by observing the shift of the Raman band during the tensile deformation of model polymer composites. Using this method, the elastic modulus of CNF/SiC/CNTs fibres has been estimated to be 208 ± 26 GPa. No shifts in the peak positions of bands relating to the carbon structure were obtained for in situ Raman spectroscopic studies of the CNF/CNTs fibres made from the ferrocene embedded fibres. This was thought to be due to the low yield of CNTs on the surface of the fibres. Furthermore, CNF/CNTs electrode-based structural supercapacitors, combining a solid electrolyte with the carbonized fibres, have been produced. These CNF/CNTs electrodes have a better capacitive performance than the plain CNF electrodes. There was a decrease in this performance with increased curing time of the resin, from 2 to 24 h, due to a lack of charge carrier mobility in the latter samples. A Raman spectroscopic study of the deformation of the carbon structures showed that the G-band shift towards a lower wavenumber position for the CNF and CNF/CNTs samples processed at a carbonization temperature of 2000 °C. Moduli of these fibres were estimated to be ~145 GPa and ~271 GPa, respectively, suggesting the growth of CNTs not only enhances the capacitive performance but also the mechanical properties of the structural supercapacitors. No Raman bend shift was found for the CNFs and CNF/CNTs samples processed below a carbonization temperature of 2000 °C, e.g. 900 °C and 1500 °C. This is because the graphitic structures are not well developed at carbonization temperatures below 1500 °C.
APA, Harvard, Vancouver, ISO, and other styles
7

Cantwell, W. J. "Impact damage in carbon fibre composites." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/7834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kortschot, Mark Timothy. "Damage mechanics of carbon fibre composites." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hawtin, Benjamin Charles. "Defect criticality of carbon fibre composites." Thesis, University of Bath, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Erland, Samuel. "Characterisation of uncured carbon fibre composites." Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715265.

Full text
Abstract:
The weight saving benefits of carbon fibre composites have been keenly adopted by civil aviation, with over 50% of the weight of modern designs coming from the carbon fibre components. The rapid rise in demand for this new material has led to the development of fully automated manufacturing techniques, improving rate of production and repeatability of manufacture. However, this rapid development, combined with a constant drive for increased rate of manufacture from industry can result in the formation of critical defects in the more complicated structural components. Manufacturing complex aeronautical structures from carbon fibre leads to a number of interesting mechanical problems. Forcing a multi-layered laminate to conform to a curved geometry requires individual layers to move relative to one another in order to relieve various forming-induced stresses. If the layers are constrained the dissipation of these stresses in the form of interply shear is prevented and a wide range of defects can occur, compromising the integrity of the final component. One of the most important of these is fibre wrinkling, which is effectively the buckling of one or more layers within an uncured laminate. This buckle results in a localised change in fibre orientation, which can result in a significant knockdown in part strength. A large amount of research has been conducted on carbon fibre in its cured state, when it exists as elastic fibres in an elastic matrix. Manufacturing occurs when the material is uncured however, with modern processes typically using fibres which are pre-impregnated with resin in order to reduce void content and aid fibre placement. A ply of uncured material therefore consists of stiff elastic fibres suspended in a very weak liquid viscoelastic material, whose properties are hugely influenced by temperature and rate of deformation. This thesis builds a better understanding of the mechanics involved in forming, using a series of characterisation techniques developed drawing from techniques in the literature. Part of the process involves the fitting of a one-dimensional viscoelasto-plastic model to experimental test data in order to represent the material response when shearing two plies about their interface. This model shows the material response to be dominated by the viscoelastic resin at low temperatures, before becoming frictional and fibre dominated at higher temperatures. In terms of optimum formability, a region exists in the transition from the viscous to frictional behaviour at which resistance to forming is minimised. With this data alone, optimum forming parameters such as rate of deformation, pressure and temperature can be suggested based on the material being used, along with design parameters such as stacking sequence. Another important characteristic which must be understood when considering ply wrinkling is the bending stiffness of uncured prepreg, both as a single ply and when combined to form a small laminate. A wrinkle is in effect the buckling of a single or small number of plies within a laminate, therefore by understanding the bending stiffness and process-induced loading we can begin to predict whether or not wrinkles are likely to occur for a particular manufacturing regime. In order to assess bending stiffness, a modified Dynamic Mechanical Analysis process is employed, replacing the standard Engineers Bending Theory calculations with a Timoshenko element to capture the large degree of intraply shear experienced in the bending of uncured prepreg. Finally, a small laminate scale demonstrator is considered in which a 24-ply laminate is consolidated into a female tool in such a way as to induced maximum shear strain between the plies, in order that the optimum forming parameters predicted by the characterisation tests might be validated. A simple energy minimisation model is used to predict the variation in consolidation strain around the part due to resistance to shear, using material parameters from the model describing the inter-ply shear test data. These parameters are also used to inform a novel modelling technique which has been developed parallel to this thesis, which is validated against the experimental results, and shows how the characterisation techniques can be used to advance simulation methods aimed at reducing the development time for new carbon fibre components. This work provides a set of tests and methodologies for the accurate characterisation of the behaviour of uncured carbon fibre during forming. The models developed alongside these tests allow for a detailed interrogation of the results, providing valuable insight into the mechanics behind the observed material behaviour and enabling informed decisions to be made regarding the forming process in order that the occurrence of defects might be minimised. The primary aim has been to provide a set of vital input parameters for novel, complex process modelling techniques under development, which has been achieved and validated experimentally.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Carbon fibre"

1

Bajpai, Pratima. Carbon Fibre from Lignin. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4229-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nor, S. Z. Mohd. Laser induced damage in carbon fibre composites. Manchester: UMIST, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kanellopoulos, Vasilios Nichalaou. Hygrothermal characteristics of carbon fibre reinforced plastics. Salford: University of Salford, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tan xian wei ji shi mo xian wei: Carbon fibre and graphite fibre. Beijing Shi: Hua xue gong ye chu ban she, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gu, Xiaohong. Micromechanics of model carbon-fibre/epoxy-resin composites. Manchester: UMIST, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Ping. Interfacial degradation of carbon fibre reinforced polyetheretherketone, PEEK. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

West, Robert William. The strengths of bolted joints in carbon fibre composites. Salford: University of Salford, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Xiao-Dong. The use of expanding monomers in carbon fibre composites. Ottawa: National Library of Canada, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Chengjie. The application of damage mechanics to carbon fibre composites. Ottawa: National Library of Canada, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khan, Zaffar M. A study of the drilling of advanced carbon fibre composites. Salford: University of Salford, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Carbon fibre"

1

Bajpai, Pratima. "Carbon Fibre." In SpringerBriefs in Materials, 17–23. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4229-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lovell, Donald R. "Carbon Fibre Fabric." In Carbon and High Performance Fibres Directory and Databook, 139–89. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0695-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bajpai, Pratima. "Carbon Fibre Market." In SpringerBriefs in Materials, 25–28. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4229-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davies, J. B. C. "Carbon Fibre Sensors." In Sensor Devices and Systems for Robotics, 59–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74567-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kaverov, A. T., M. E. Kazakov, and V. Ya Varshavsky. "Carbon fibres." In Fibre Science and Technology, 231–357. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0565-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Young, Robert J. "Deformation Mechanisms of Carbon Fibres and Carbon Fibre Composites." In The Structural Integrity of Carbon Fiber Composites, 341–57. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46120-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thumfart, Stefan, Werner Palfinger, Matthias Stöger, and Christian Eitzinger. "Accurate Fibre Orientation Measurement for Carbon Fibre Surfaces." In Computer Analysis of Images and Patterns, 75–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40246-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mohamed, H., D. W. Bao, and R. Snooks. "Super Composite: Carbon Fibre Infused 3D Printed Tectonics." In Proceedings of the 2020 DigitalFUTURES, 297–308. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4400-6_28.

Full text
Abstract:
AbstractThis research posits an innovative process of embedding carbon fibre as the primary structure within large-scale polymer 3D printed intricate architectural forms. The design and technical implications of this research are explored and demonstrated through two proto-architectural projects, Cloud Affects and Unclear Cloud, developed by the RMIT Architecture Snooks Research Lab. These projects are designed through a tectonic approach that we describe as a super composite – an approach that creates a compression of tectonics through algorithmic self-organisation and advanced manufacturing. Framed within a critical view of the lineage of polymer 3D printing and high tech fibres in the field of architectural design, the research outlines the limitations of existing robotic processes employed in contemporary carbon fibre fabrication. In response, the paper proposes an approach we describe as Infused Fibre Reinforced Plastic (IFRP) as a novel fabrication method for intricate geometries. This method involves 3D printing of sacrificial formwork conduits within the skin of complex architectural forms that are infused with continuous carbon fibre structural elements. Through detailed observation and critical review of Cloud Affects and Unclear Cloud (Fig. 2), the paper assesses innovations and challenges of this research in areas including printing, detailing, structural analysis and FEA modelling. The paper notes how these techniques have been refined through the iterative design of the two projects, including the development of fibre distribution mapping to optimise the structural performance.
APA, Harvard, Vancouver, ISO, and other styles
9

Gbenebor, Oluwashina Phillips, and Samson Oluropo Adeosun. "Lignin Conversion to Carbon Fibre." In Sustainable Lignin for Carbon Fibers: Principles, Techniques, and Applications, 51–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18792-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rand, B., and R. J. Zeng. "Fibre Reinforced Ceramic-Matrix Composites." In Carbon Fibers Filaments and Composites, 367–98. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-015-6847-0_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Carbon fibre"

1

Niffikeer, S. L., F. N. Beg, A. E. Dangor, M. G. Haines, G. H. McCall, Malcolm Haines, and Andrew Knight. "Carbon Fibre Z-Pinch." In DENSE Z-PINCHES: Third International Conference. AIP, 1994. http://dx.doi.org/10.1063/1.2949196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jin, Si-Yu, Shi Wen, Wei-Wei Du, and Lyes Douadji. "Carbon Fibre Microstructure Characterization." In The 2nd Annual International Workshop on Materials Science and Engineering (IWMSE 2016). WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226517_0140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

TANAKA, KAZUTO, KEN UZUMASA, and TSUTAO KATAYAMA. "EFFECT OF CARBON NANOTUBE GRAFTING ONTO CARBON FIBRE ON THE CONDUCTIVITY OF CARBON FIBRE-REINFORCED THERMOPLASTIC LAMINATES." In CMEM 2019. Southampton UK: WIT Press, 2019. http://dx.doi.org/10.2495/cmem190151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alexandrescu, Laurentia, Mihai Georgescu, Maria Sönmez, Anton Ficai, Roxana Trusca, and Ioana Lavinia Ardelean. "Polyamide/Polyethylene/Carbon Fibre Polymer Nanocomposites." In The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.i.2.

Full text
Abstract:
Polyamide and polyethylene are well known as engineering thermoplastic materials that are widely used in industrial applications for their good mechanical and thermal properties. The paper presents the study of the new nanostructured polymer composites based on polyamide/ compatibilizers/polyethylene/carbon fibres nanoparticles-PA/PE-g-MA/PE/CF in order to obtain, by injection, centre pivot liner, centre plates, and other components for the railway industry, with impact resistance higher than 5-8 kJ/m², abrasion resistance below 100 mm3, resistance to temperatures of -40 - 240°C, resistance to impact and to outdoor applications, with temperatures ranging from -40 to +60°C, in rain, snow or sunshine. The influence of carbon fibres nanoparticles (CF) on the rheological and physico-mechanical properties of the polyamide was studied. The nanocomposites based on polyamide/ compatibilizers/ polyethylene/carbon fibres nanoparticles were characterized by scanning electron microscopy (SEM) and Fourier transformation infrared spectrum (FT-IR) and in terms of physico-mechanical properties. The studied nanocomposites have higher values compared to the blank samples, and the requirements of the railway of impact strength of 5 KJ/m2. Carbon fiber concentrations greater than 1.5% result in decreases in impact strength values, similar to traction resistance values, but not lower than standard values. This leads to the conclusion that the percentages of carbon fibers in the range of 0.1-1.5% achieve maximum values of physical-mechanical parameters.
APA, Harvard, Vancouver, ISO, and other styles
5

Yee, J. C. H., O. Soykasap, and S. Pellegrino. "Carbon Fibre Reinforced Plastic Tape Springs." In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ciambella, Jacopo, and David C. Stanier. "Orientation Effects in Short Fibre-Reinforced Elastomers." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40430.

Full text
Abstract:
The large strain behaviour of a short fibre-reinforced composite is studied through numerical simulations. The reinforcing fibres yield the macroscopic response transversely isotropic which is indeed the case of many reinforcements currently used in composites: short carbon fibres, cellulose whiskers, carbon nanotubes. As a result of the analysis, it is shown that the reorientation of the fibres that takes place at large strain has a significant effect on the overall material response by changing the axis of isotropy. This behaviour can be adequately described by using a transversely isotropic model whose strain energy function depends on three invariants: two isotropic and one representing the stretch along the direction of the fibres. To assess its capabilities, the model is compared to the results of experiments carried out by the authors on nickel-coated chopped carbon fibres in a vulcanised natural rubber matrix for which the fibre orientation is achieved by controlling an external magnetic field prior to curing. Possible applications include micro-sized propulsion devices and actuators.
APA, Harvard, Vancouver, ISO, and other styles
7

Thursby, Graham, and Brian Culshaw. "Ultrasonic modal detection in carbon fibre plates using fibre optic sensors." In (EWOFS'10) Fourth European Workshop on Optical Fibre Sensors, edited by José Luís Santos, Brian Culshaw, José Miguel López-Higuera, and William N. MacPherson. SPIE, 2010. http://dx.doi.org/10.1117/12.866437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

LIN, D., R. NI, and R. ADAMS. "The vibration analysis of carbon fibre - Glass fibre sandwich hybridcomposite plates." In 26th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

null. "Control strategies for curing carbon fibre composites." In IEE Colloquium on Modelling and Simulation for Thermal Management. IEE, 1997. http://dx.doi.org/10.1049/ic:19970274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wielage, B., K. Fleisher, and G. Zimmerman. "Investigations on Thermal Sprayed Carbon-Short-Fiber-Reinforced Aluminum Composites." In ITSC 1996, edited by C. C. Berndt. ASM International, 1996. http://dx.doi.org/10.31399/asm.cp.itsc1996p0349.

Full text
Abstract:
Abstract Composite coatings are increasingly applied for the protection against wear in mechanical constructions. Especially, in the case of abrasion these coatings offer the possibility to protect the base material. The matrix is ductile and the reinforcements cause the higher strength and hardness. A research project presented in this paper dealt with the manufacture of carbon-short-fibre-reinforced aluminum composite coatings by vacuum plasma spraying. The basis of the processing is the agglomeration of aluminum powder and carbon fibres. During the spraying process the aluminum melts, covers the fibres, and so, contributes to the creation of the composite coating and/or the composites. The processing times are so short that the damaging formation of carbides can be suppressed mostly. For the creation of free standing bodies it is necessary to find a qualified core material which allows the removing of the sprayed composites. The investigations on the composites are focused on the metallographical judgement regarding the fibre and void content, the fibre distribution, the characterization of the interface as well as the determination of mechanical properties and the wear resistance.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Carbon fibre"

1

Jones, Carol, and Ernest Sammann. The Effect of Low Power Plasmas on Carbon Fibre Surfaces. Fort Belvoir, VA: Defense Technical Information Center, October 1989. http://dx.doi.org/10.21236/ada234184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Milbrandt, Anelia, and Samuel Booth. Carbon Fiber from Biomass. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1326730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Burchell, T. D., J. W. Klett, and C. E. Weaver. A novel carbon fiber based porous carbon monolith. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/115403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rellick, G. S., R. J. Zaldivar, and P. M. Adams. Fiber-Matrix Interphase Development in Carbon/Carbon Composites. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada341620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Burchell, T. D., M. R. Rogers, and A. M. Williams. Carbon fiber composite molecular sieves. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/450756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wilkerson, Justin, Daniel Ayewah, and Daniel Davis. Fatigue Characterization of Functionalized Carbon Nanotube Reinforced Carbon Fiber Composites. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada515475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shewey, Megan, Patti Tibbenham, and Dan Houston. Carbon Fiber Reinforced Polyolefin Body Panels. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1600931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Douglas, Thomas A., Christopher A. Hiemstra, Miriam C. Jones, and Jeffrey R. Arnold. Sources and Sinks of Carbon in Boreal Ecosystems of Interior Alaska : A Review. U.S. Army Engineer Research and Development Center, July 2021. http://dx.doi.org/10.21079/11681/41163.

Full text
Abstract:
Boreal ecosystems store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region in Alaska and Canada, largely underlain by discontinuous permafrost, presents a challenging landscape for itemizing carbon sources and sinks in soil and vegetation. The roles of fire, forest succession, and the presence/absence of permafrost on carbon cycle, vegetation, and hydrologic processes have been the focus of multidisciplinary research in boreal ecosystems for the past 20 years. However, projections of a warming future climate, an increase in fire severity and extent, and the potential degradation of permafrost could lead to major landscape and carbon cycle changes over the next 20 to 50 years. To assist land managers in interior Alaska in adapting and managing for potential changes in the carbon cycle, this paper was developed incorporating an overview of the climate, ecosystem processes, vegetation, and soil regimes. The objective is to provide a synthesis of the most current carbon storage estimates and measurements to guide policy and land management decisions on how to best manage carbon sources and sinks. We provide recommendations to address the challenges facing land managers in efforts to manage carbon cycle processes. The results of this study can be used for carbon cycle management in other locations within the boreal biome which encompasses a broad distribution from 45° to 83° north.
APA, Harvard, Vancouver, ISO, and other styles
9

Norris, Jr, Robert E., Jeff A. McCay, and Connie D. Jackson. Comparison of ORNL Low Cost Carbon Fiber with Commercially Available Industrial Grade Carbon Fiber in Pultrusion Samples. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1246777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Norris, Jr., Robert E., and Hendrik Mainka. Carbon Fiber Composite Materials for Automotive Applications. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1394272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography