Academic literature on the topic 'Carbon encapsulated'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbon encapsulated.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Carbon encapsulated"
Katar, Sri Lakshmi, Azlin Biaggi Labiosa, Amairy E. Plaud, Edgar Mosquera-Vargas, Luis Fonseca, Brad R. Weiner, and Gerardo Morell. "Silicon Encapsulated Carbon Nanotubes." Nanoscale Research Letters 5, no. 1 (October 9, 2009): 74–80. http://dx.doi.org/10.1007/s11671-009-9446-z.
Full textChan, H. B. S., B. L. Ellis, H. L. Sharma, W. Frost, V. Caps, R. A. Shields, and S. C. Tsang. "Carbon-Encapsulated Radioactive99mTc Nanoparticles." Advanced Materials 16, no. 2 (January 16, 2004): 144–49. http://dx.doi.org/10.1002/adma.200305407.
Full textLiu, Fu Qiang, Sheng Liang Hu, and Pei Kang Bai. "Size Prediction of Carbon-Encapsulated Nickel Nanoparticles." Advanced Materials Research 531 (June 2012): 207–10. http://dx.doi.org/10.4028/www.scientific.net/amr.531.207.
Full textSedelnikova, Olga, Olga Gurova, Anna Makarova, Anastasiya Fedorenko, Anton Nikolenko, Pavel Plyusnin, Raul Arenal, Lyubov Bulusheva, and Alexander Okotrub. "Light-Induced Sulfur Transport inside Single-Walled Carbon Nanotubes." Nanomaterials 10, no. 5 (April 25, 2020): 818. http://dx.doi.org/10.3390/nano10050818.
Full textSu, Yi-Chun, and Wen-Kuang Hsu. "Fe-encapsulated carbon nanotubes: Nanoelectromagnets." Applied Physics Letters 87, no. 23 (December 5, 2005): 233112. http://dx.doi.org/10.1063/1.2138674.
Full textBAUM, RUDY. "Metal encapsulated in carbon particles." Chemical & Engineering News 71, no. 3 (January 18, 1993): 34–35. http://dx.doi.org/10.1021/cen-v071n003.p034.
Full textSmith, Brian W., Marc Monthioux, and David E. Luzzi. "Encapsulated C60 in carbon nanotubes." Nature 396, no. 6709 (November 1998): 323–24. http://dx.doi.org/10.1038/24521.
Full textHuo, Junping, Huaihe Song, Xiaohong Chen, and Bin Cheng. "From Carbon-Encapsulated Iron Nanorods to Carbon Nanotubes." Journal of Physical Chemistry C 112, no. 15 (April 2008): 5835–39. http://dx.doi.org/10.1021/jp711792x.
Full textChoi, Won Young, Jeong Won Kang, and Ho Jung Hwang. "Cu Nanowire Structures Inside Carbon Nanotubes." Materials Science Forum 449-452 (March 2004): 1229–32. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.1229.
Full textYu, Jun, and Bing She Xu. "Synthesis and Characterization of Carbon-Encapsulated Nickel Nanoparticles from De-Oiled Asphalt." Advanced Materials Research 652-654 (January 2013): 202–5. http://dx.doi.org/10.4028/www.scientific.net/amr.652-654.202.
Full textDissertations / Theses on the topic "Carbon encapsulated"
Brown, Samuel F. "Modelling nanowires : crystals encapsulated in carbon nanotubes." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/90152/.
Full textAng, K. H. "Growth and characterization of carbon encapsulated ferromagnetic nanoparticles and nanowires." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596121.
Full textTaylor, Arthur. "Engineering Carbon Encapsulated Nanomagnets towards Their Use for Magnetic Fluid Hyperthermia." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63695.
Full textMalard, L. M., D. Nishide, L. G. Dias, Rodrigo B. Capaz, A. P. Gomes, A. Jorio, C. A. Achete, et al. "Resonance Raman study of polyynes encapsulated in single-wall carbon nanotubes." American Physical Society, 2007. http://hdl.handle.net/2237/11303.
Full textAguiló, Aguayo Noemí. "Production and characterisation of carbon-encapsulated iron nanoparticles by arc-discharge plasma." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/96477.
Full textLes nanopartícules magnètiques de ferro recobertes de carboni s’estan investigant en gran mesura, ja que presenten avantatjoses propietats sobre d’altres recobriments protectors del nucli magnètic com els polímers o la sílice. El recobriment de carboni protegeix el nucli de ferro de l’oxidació, la degració química i tèrmica, d’aquesta manera els nuclis presenten propietats magnètiques estables quan les nanopartícules s’exhibeixen en aire o en un altre medi. S’han realitzat diversos estudis sobre aquest tipus de nanopartícules, però aquest tipus de nanopartícules s’obtenen amb gran dispersió de grandàries i poca uniformitat en les seves característiques. És encara un repte en aquest camp la producció de nanopartícules de ferro recobertes de carbon amb propietats morfològiques i estructurals, així com l’estudi sistemàtic de les seves propietats magnètiques. Per aquest motiu, l’objectiu d’aquesta tesi es centra en la producció i caracterització de nanopartícules superparamagnètiques de ferro recobertes de carboni amb estreta distribució de mides i amb propietats magnètiques ben caracteritzades per diverses aplicacions, en particular, les relacionades amb el camp de la biomedicina. No obstant això, l’estudi sistemàtic d’aquestes aplicacions es troba fora del marc d’aquesta tesi. El contingut s’estructura en quatre parts: • La primera part d’introducció conté els aspectos bàsics sobre aquest tipus de nanopartícules, així com les propietats derivades de la seva mida nanomètrica, les tecnologies que s’utilitzen per generar aquest tipus de nanopartícules, una explicació sobre els possibles mecanismes responsables de la seva formació i les principals aplicacions d’aquestes nanopartícules. • La segona part descriu les tècniques utilitzades per la seva caracterització que engloben tècniques de microscopia, de difracció de raigs-X, d’espectroscòpia Raman, per la caracterització col•loidal de les nanopartícules fins la seva caracterització magnètica. També inclou la descripció detallada dels equips basats en la descàrrega d’arc utilitzats per la seva producció. El primer equip es va dissenyar seguint les característiques d’un reactor convencional (conventional ADP reactor). El segon equip basat en la mateixa tecnologia de descàrrega d’arc, però modificat (mADP reactor) i dissenyat especialment amb l’objectiu de millorar les característiques del producte final. • La tercera part exposa els resultats obtinguts durant aquesta tesi. L’estudi previ del reactor convencional basat en un disseny d’experiments de Plackett-Burman per avaluar l’efecte dels diferents paràmetres del reactor en la grandària dels nuclis de ferro. A partir d’aquest estudi, es va realitzar un estudi més específic en el nou reactor modificat on es van estudiar l’efecte del corrent d’arc utilizat, la velocitat del flux d’heli i el contigut de ferrocè com a matèria prima del ferro. Després es va realitzar l’estudi sistemàtic de les seves propietats magnètiques observant la dependència d’aquestes propietats amb la grandària dels nuclis de ferro. A continuació, es va presentar la comparació d’aquestes nanopartícules amb d’altres obtingudes mitjantçant el mètode de dipòsit químic en fase vapor (CVD). A partir d’aquesta comparació es va estudiar l’evolució estructural d’aquestes nanopartícules sotmetes a un tractament tèrmic en observació in-situ d’un microscopi de transmissió electrònica. Finalment, es va presentar un primer estudi de les propietats col•loidals en suspensió d’aquestes nanopartícules recobertes amb un polímer d’alcohol de polivinil (PVA). Es presenta un primer estudi de l’internalització d’aquestes nanopartícules en cèl•lules tumorals HeLa. • Per acabar es presenten les conclusions i l’apèndix que conté informació sobre les mostres produïdes i un llistat de publicacions, congressos, patents resultants d’aquest treball.
Ibrar, Muhammad. "Microstructure of Fe-based and NiFe nanowires encapsulated by multiwalled carbon nanotube radial structures." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/36222.
Full textKolahi, Zeynab. "C60 Encapsulation inside Nitrogen-Doped and Pristine Multi-walled Carbon Nanotubes (MWCNTs) : Investigation of the Dynamics of Encapsulated C60s inside Thin-Walled MWCNTs." Thesis, Umeå universitet, Institutionen för fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-73131.
Full textGroßmann, Dennis [Verfasser], Wolfgang [Gutachter] Grünert, and Martin [Gutachter] Muhler. "Methanol synthesis over Cu/ZnO aggregates encapsulated in carbon nanotubes and mesoporous silica / Dennis Großmann ; Gutachter: Wolfgang Grünert, Martin Muhler ; Fakultät für Chemie und Biochemie." Bochum : Ruhr-Universität Bochum, 2013. http://d-nb.info/1214440746/34.
Full textKnapp, Amanda R. "Antimicrobial and Antitumor Properties of Free and Poly(Ethylene Glycol)-Poly(Lactic Acid) Encapsulated Silver N-Heterocyclic Carbene Complexes." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1309211795.
Full textSu, Yi-Chun, and 蘇亦雋. "Inductance of Encapsulated-Fe Carbon Nanotubes:Nano-electromagnetic Inductors." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/73862347826360383374.
Full text國立清華大學
材料科學工程學系
93
Carbon nanotubes(CNTs)are graphene sheets rolled up into cylindrical structure and electron transport via tube surface lattice is essentially isotropic. This description is based on a 2D lattice model. In a 3D approach, electron wave function near to the Fermi level is extended by 1 Å along the 2Pz orbit and electron transport thus becomes sensitive to electron field. Reports indicate two possible paths of charge carrier in a small CNT, i.e. along tube axis and circumference. When electric field is applied in parallel with tube axis the electron flux along circumference is diverted into a helix current, similar to nano-coils. This spiral current becomes apparent when angular frequency is smaller than stark frequency in an AC field. To date, explore of magnetic field within a CNT remains as challenge and a straightforward verification is to encapsulate magnetic materials in CNTs so interior magnetic field is enhanced and becomes measurable. In this work, individual Fe-encapsulated CNTs bridging tungsten electrodes are verified and measured by AC impedance technique. Inductance at different frequency is detected and is on the order of mH.
Books on the topic "Carbon encapsulated"
Shi, Z. J., and Z. N. Gu. New phenomena in the nanospace of single-wall carbon nanotubes. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.12.
Full textBurke, A., D. Carroll, Frank Torti, and S. V. Torti. Bifunctional nanomaterials for the imaging and treatment of cancer. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.13.
Full textBook chapters on the topic "Carbon encapsulated"
Ishikawa, Masashi, Yoshifumi Egami, and Tomohiro Shimizu. "S-Encapsulated Micropore Carbon Cathode." In Next Generation Batteries, 357–73. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_32.
Full textZolotarenko, Al D., An D. Zolotarenko, V. A. Lavrenko, S. Yu Zaginaichenko, N. A. Shvachko, O. V. Milto, V. B. Molodkin, A. E. Perekos, V. M. Nadutov, and Yu A. Tarasenko. "Encapsulated Ferromagnetic Nanoparticles in Carbon Shells." In Carbon Nanomaterials in Clean Energy Hydrogen Systems - II, 127–35. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0899-0_10.
Full textMarquina, Clara, and M. Ricardo Ibarra. "Carbon Encapsulated Functional Magnetic Nanoparticles for Life Sciences." In Pure and Functionalized Carbon Based Nanomaterials, 228–55. Boca Raton : CRC Press, Taylor and Francis Group, [2020] | “CRC Press is an imprint of the Taylor & Francis Group, an informa business.”: CRC Press, 2020. http://dx.doi.org/10.1201/9781351032308-10.
Full textLee, Mi Young, Ho Jung Hwang, Jun Ha Lee, Hoong Joo Lee, and Jeong Won Kang. "Structural Properties of Potassium Encapsulated in Carbon Nanotubes." In Key Engineering Materials, 919–28. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-958-x.919.
Full textMiyazaki, Takafumi, and Shojun Hino. "Electronic and Geometric Structures of Cluster Encapsulated Fullerenes." In Physics and Chemistry of Carbon-Based Materials, 121–47. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3417-7_5.
Full textKim, Il-seok, Prashant N. Kumta, and G. E. Blomgren. "Chemically Derived Nano-Encapsulated Tin-Carbon Composite Anodes for Li-Ion Batteries." In Ceramic Transactions Series, 131–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118407189.ch14.
Full textPascard, H. "Synthesis of Nanowires Encapsulated in Carbon Nanotubes by the Arc Discharge Method." In Atomic and Molecular Wires, 99–108. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5882-4_9.
Full textSaito, Yahachi, Jun Ma, Jun Nakashima, and Morio Masuda. "Synthesis, crystal structures and magnetic properties of Co particles encapsulated in carbon nanocapsules." In Small Particles and Inorganic Clusters, 170–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60854-4_43.
Full textJena, Naresh K., Manoj K. Tripathy, Alok K. Samanta, K. R. S. Chandrakumar, and Swapan K. Ghosh. "Water molecule encapsulated in carbon nanotube model systems: effect of confinement and curvature." In Highlights in Theoretical Chemistry, 135–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31750-7_13.
Full textIkeda, Shigeru, and Takashi Harada. "Structural and Catalytic Features of Metal Nanoparticles Encapsulated in a Hollow Carbon Sphere." In Core-Shell and Yolk-Shell Nanocatalysts, 367–78. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0463-8_22.
Full textConference papers on the topic "Carbon encapsulated"
Lange, H., O. Łabędź, M. Bystrzejewski, Vladimir Yu Nosenko, Padma K. Shukla, Markus H. Thoma, and Hubertus M. Thomas. "Synthesis of Carbon Encapsulated Iron Nanoparticles by Carbon Arc Discharge." In DUSTY∕COMPLEX PLASMAS: BASIC AND INTERDISCIPLINARY RESEARCH: Sixth International Conference on the Physics of Dusty Plasmas. AIP, 2011. http://dx.doi.org/10.1063/1.3659804.
Full textXue, Jun, Houkui Xiang, Shuli Pang, Hongqiao Ding, Xuehua Wang, and Hong Cao. "Preparation and mechanism of carbon encapsulated Cu nanoparticles." In 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies, edited by Ya-Dong Jiang, Bernard Kippelen, and Junsheng Yu. SPIE, 2010. http://dx.doi.org/10.1117/12.867770.
Full textBoddapati, Loukya. "Single-Walled CrI3 Nanotubes Encapsulated within Carbon Nanotubes." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1330.
Full textZYSLER, R. D., M. VASQUEZ MANSILLA, and E. PASQUALINI. "SYNTHESIS AND MAGNETIC CHARACTERIZATION OF CARBON-ENCAPSULATED IRON NANOPARTICLES." In Proceedings of the Fifth International Workshop on Non-Crystalline Solids. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814447225_0073.
Full textProkopyev, D. A., A. Yu Germov, K. N. Mikhalev, B. Yu Goloborodskii, M. A. Uimin, A. E. Yermakov, A. S. Konev, and S. I. Novikov. "NMR study of phase composition of carbon encapsulated Fe@C nanoparticles." In THE 2ND INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0032918.
Full textBonard, Jean-Marc. "Giant magnetoresistance from a Co wire incorporating carbon-encapsulated magnetic nanoparticles." In The 14th international winterschool on electronic properties of novel materials - molecular nanostructures. AIP, 2000. http://dx.doi.org/10.1063/1.1342564.
Full textProkopyev, D. A., A. Yu Germov, K. N. Mikhalev, M. A. Uimin, A. E. Yermakov, and A. S. Konev. "NMR study of phase composition of carbon encapsulated Ni@C nanoparticles." In PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019): Proceedings of the VI International Young Researchers’ Conference. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5134306.
Full textSUGIYAMA, Naota, Tomoaki WATANABE, Yasuaki YAMAKAWA, and Masahiro YOSHIMURA. "Carbon-Encapsulated Magnetic Metal Nanoparticles by Arc-Discharge in Organic Solvent." In Proceedings of the Symposium R. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701718_0053.
Full textLi, Y. F., T. Kaneko, and R. Hatakeyama. "Resonance tunneling transistors based on C60 encapsulated double-walled carbon nanotubes." In 2007 7th IEEE Conference on Nanotechnology (IEEE-NANO). IEEE, 2007. http://dx.doi.org/10.1109/nano.2007.4601165.
Full textMatsuura, D., K. Miyazawa, and T. Kizuka. "Synthesis of Co-Doped Fullerene Nanowhiskers and Cobalt-Encapsulated Carbon Nanocapsules." In 2010 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2010. http://dx.doi.org/10.7567/ssdm.2010.p-13-17.
Full textReports on the topic "Carbon encapsulated"
Brennecke, Joan F., Mark J. McCready, Mark Stadtherr, Thomas F. Degnan, Jr., Congwang Ye, and Joshua K. Stolaroff. Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO2) Capture. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1530159.
Full textYau, Waifan. Spatially resolved localized vibrational mode spectroscopy of carbon in liquid encapsulated Czochralski grown gallium arsenide wafers. Office of Scientific and Technical Information (OSTI), April 1988. http://dx.doi.org/10.2172/5398032.
Full textShpigel, Muki, Allen Place, William Koven, Oded (Odi) Zmora, Sheenan Harpaz, and Mordechai Harel. Development of Sodium Alginate Encapsulation of Diatom Concentrates as a Nutrient Delivery System to Enhance Growth and Survival of Post-Larvae Abalone. United States Department of Agriculture, September 2001. http://dx.doi.org/10.32747/2001.7586480.bard.
Full text