Academic literature on the topic 'Carbon Doping in GaN'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbon Doping in GaN.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Carbon Doping in GaN"
Liu, Qiang, Marcin Zając, Małgorzata Iwińska, Shuai Wang, Wenrong Zhuang, Michał Boćkowski, and Xinqiang Wang. "Carbon doped semi-insulating freestanding GaN crystals by ethylene." Applied Physics Letters 121, no. 17 (October 24, 2022): 172103. http://dx.doi.org/10.1063/5.0118250.
Full textShen, Zhaohua, Xuelin Yang, Shan Wu, Huayang Huang, Xiaolan Yan, Ning Tang, Fujun Xu, et al. "Mechanism for self-compensation in heavily carbon doped GaN." AIP Advances 13, no. 3 (March 1, 2023): 035026. http://dx.doi.org/10.1063/5.0133421.
Full textRamos, L. E., J. Furthm�ller, J. R. Leite, L. M. R. Scolfaro, and F. Bechstedt. "Carbon-Based Defects in GaN: Doping Behaviour." physica status solidi (b) 234, no. 3 (December 2002): 864–67. http://dx.doi.org/10.1002/1521-3951(200212)234:3<864::aid-pssb864>3.0.co;2-x.
Full textЛундин, В. В., А. В. Сахаров, Е. Е. Заварин, Д. А. Закгейм, Е. Ю. Лундина, П. Н. Брунков, and А. Ф. Цацульников. "Изолирующие слои GaN, совместно легированные железом и углеродом." Письма в журнал технической физики 45, no. 14 (2019): 36. http://dx.doi.org/10.21883/pjtf.2019.14.48022.17738.
Full textAs, D. J., U. K�hler, M. L�bbers, J. Mimkes, and K. Lischka. "p-Type Doping of Cubic GaN by Carbon." physica status solidi (a) 188, no. 2 (December 2001): 699–703. http://dx.doi.org/10.1002/1521-396x(200112)188:2<699::aid-pssa699>3.0.co;2-8.
Full textRAJAN, SIDDHARTH, ARPAN CHAKRABORTY, UMESH K. MISHRA, CHRISTIANE POBLENZ, PATRICK WALTEREIT, and JAMES S. SPECK. "MBE-Grown AlGaN/GaN HEMTs on SiC." International Journal of High Speed Electronics and Systems 14, no. 03 (September 2004): 732–37. http://dx.doi.org/10.1142/s0129156404002752.
Full textAs, D. J., E. Tschumak, H. Pöttgen, O. Kasdorf, J. W. Gerlach, H. Karl, and K. Lischka. "Carbon doping of non-polar cubic GaN by CBr4." Journal of Crystal Growth 311, no. 7 (March 2009): 2039–41. http://dx.doi.org/10.1016/j.jcrysgro.2008.11.013.
Full textWu, Shan, Xuelin Yang, Zhenxing Wang, Zhongwen Ouyang, Huayang Huang, Qing Zhang, Qiuyu Shang, et al. "Influence of intrinsic or extrinsic doping on charge state of carbon and its interaction with hydrogen in GaN." Applied Physics Letters 120, no. 24 (June 13, 2022): 242101. http://dx.doi.org/10.1063/5.0093514.
Full textSchmult, S., H. Schürmann, G. Schmidt, P. Veit, F. Bertram, J. Christen, A. Großer, and T. Mikolajick. "Correlating yellow and blue luminescence with carbon doping in GaN." Journal of Crystal Growth 586 (May 2022): 126634. http://dx.doi.org/10.1016/j.jcrysgro.2022.126634.
Full textLi, Xun, Örjan Danielsson, Henrik Pedersen, Erik Janzén, and Urban Forsberg. "Precursors for carbon doping of GaN in chemical vapor deposition." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 33, no. 2 (March 2015): 021208. http://dx.doi.org/10.1116/1.4914316.
Full textDissertations / Theses on the topic "Carbon Doping in GaN"
Ciarkowski, Timothy A. "Low Impurity Content GaN Prepared via OMVPE for Use in Power Electronic Devices: Connection Between Growth Rate, Ammonia Flow, and Impurity Incorporation." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/94551.
Full textDoctor of Philosophy
GaN is a compound semiconductor which has the potential to revolutionize the high power electronics industry, enabling new applications and energy savings due to its inherent material properties. However, material quality and purity requires improvement. This improvement can be accomplished by reducing contamination and growing under extreme conditions. Newly available bulk substrates with low defects allow for better study of material properties. In addition, very thick films can be grown without cracking on these substrates due to exact lattice and thermal expansion coefficient match. Through chemical and electrical measurements, this work aims to find optimal growth conditions for high purity GaN without a severe impact on growth rate, which is an important factor from an industry standpoint. The proposed thicknesses of these devices are on the order of one hundred microns and requires tight control of impurities.
Ashourirad, Babak. "HETEROATOM-DOPED NANOPOROUS CARBONS: SYNTHESIS, CHARACTERIZATION AND APPLICATION TO GAS STORAGE AND SEPARATION." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/4062.
Full textKleinsorge, Britta Yvonne. "Doping of amorphous carbon." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621744.
Full textRIBEIRO, MARIO LUIS PIRES GONCALVES. "CARBON DOPING IN INAIAS EPITAXIAL LAYERS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=2651@1.
Full textERICSSON DO BRASIL
É reconhecido o potencial de usar carbono como um dopante tipo p em InAlAs devido a obtenção de elevados níveis de dopagem [1,2]. Entretanto, níveis elevados de dopagem só são alcançados em baixas temperaturas de crescimento (Tg inferiores a 600°C). Nessas temperaturas, as camadas crescidas apresentam qualidade ótica inferior quando comparadas com camadas crescidas em temperaturas mais altas, o que é prejudicial para dispositivos de optoeletrônica. Neste trabalho, é apresentada uma investigação sistemática das propriedades de transporte e óticas em camadas de InAlAs dopadas com carbono para diferentes temperaturas de crescimento. É observado que quanto mais baixa for a Tg maior será a incorporação de carbono e maior a atividade elétrica. Este resultado indica que o carbono é incorporado de diversas maneiras, bem como um aceitador raso. O carbono também pode ser incorporado como um doador raso, pois é um dopante anfotérico. Entretanto, este fato, não é suficiente para explicar os resultados de transporte. A diferença entre a concentração Hall e a concentração CV indica a incorporação de doadores profundos. Provavelmente, o carbono participa na formação desses doadores profundos, uma vez que a concentração de doador profundo varia linearmente com a densidade atômica de carbono, determinada pela técnica SIMS. Por outro lado, centros não radiativos são mais facilmente incorporados em baixas Tg e a eficiência da fotoluminescência é reduzida. Essa degradação da fotoluminescência é independente da concentração de carbono, consequentemente, pode-se concluir que essa redução na eficiência da fotoluminescência não está associada à presença de doadores profundos. Com a finalidade de obter um incremento na atividade elétrica do carbono e melhoria na qualidade ótica das camadas, as amostras foram submetidas a tratamentos térmicos. Os tratamentos térmicos aumentaram a concentração de buracos mas não influenciaram na densidade de doadores profundos ou na qualidade ótica das camadas. Para a utilização de InAlAs dopado com carbono em dispositivos, deve-se obter simultaneamente uma boa qualidade ótica e elevada atividade elétrica das camadas.Então, deve-se identificar o doador profundo, que está associado ao carbono, com o objetivo de reduzí-lo ou eliminá-lo e consequentemente, obter um incremento na atividade elétrica das camadas. Desta forma as camadas podem ser crescidas a temperaturas mais altas adequadas para uma emissão de fotoluminescência eficiente. Cálculos teóricos são apresentados de modo a ajudar essa identificação. Outra possibilidade é usar diferentes fontes de arsina em que as moléculas se dissociem em temperaturas mais baixas.
The potential of using carbon as a p-type dopant for InAlAs has already been recognized due to the achievable high hole concentration [1,2]. However, high doping levels are reached only for low growth teperatures (Tg below 600°C). These temperatures produce layers with poor optical quality as compared to those grown at higher temperatures, which can be detrimental for optoeletronic device. In this work we present crystal, transport and optical properties of such layers grown at different temperatures. We find that the lower Tg, the more efficient the carbon incorporation and its electrical activity are. This result indicates that carbon is incorporated in forms different from a shallow acceptor, as well. Carbon can also be incorporated as a shallow donor since it is an amphoteric dopant. However, this alone does not explain the transport results. The difference between the net free charge density determined from capacitance measurements indicates that a deep donor is also incorporated. Carbon most likely participates in the deep donor formation since the inferred deep donor concentration varies linearly with the carbon atomic density measured by SIMS. On the other hand, non- radiative deep levels are more efficiently incorporated as Tg is reduced degrading the photoluminescence characteristics. Such degration is independent of the carbon doping. Therefore, one concludes that the decrease in the photoluminescence efficiency cannot be related to the presence of the deep donor mentioned in the previous paragraph. To further probe the carbon electrical activity and its effect on the optical properties of the layers, the samples have been subjected to a heat-treatment. Annealing the samples increases the hole concentration, but neither affects the deep donor density nor improves the layers optical quality. In order to use carbon doped InAlAs in devices which simultaneously require good optical quality and high electrical activity of the layers, one should identify the deep donor involving carbon in order to try to reduce its concentration or even eliminate it, consequently improving the electrical activity of the layers. In such a way the layers can be grown at higher temperatures, adequate for an efficient photoluminescence emission. Theoretical calculations are being carried out to help with such identification. Another possibility is to use other arsine sources which crack at lower temperatures.
Khromov, Sergey. "Doping effects on the structural and optical properties of GaN." Doctoral thesis, Linköpings universitet, Tunnfilmsfysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-100760.
Full text彭澤厚 and Chak-hau Pang. "A study of Mg doping in GaN during molecular beam epitaxy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31226619.
Full textPang, Chak-hau. "A study of Mg doping in GaN during molecular beam epitaxy /." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25059075.
Full textAlluqmani, Saleh Marzoq B. "Growth and doping of carbon nanotubes and graphene." Thesis, Durham University, 2015. http://etheses.dur.ac.uk/10949/.
Full textFrancis, Smita. "Optimisation of doping profiles for mm-wave GaAs and GaN gunn diodes." Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2568.
Full textGunn diodes play a prominent role in the development of low-cost and reliable solid-state oscillators for diverse applications, such as in the military, security, automotive and consumer electronics industries. The primary focus of the research presented here is the optimisation of GaAs and GaN Gunn diodes for mm-wave operations, through rigorous Monte Carlo particle simulations. A novel, empirical technique to determine the upper operational frequency limit of devices based on the transferred electron mechanism is presented. This method exploits the hysteresis of the dynamic velocity-field curves of semiconductors to establish the upper frequency limit of the transferred electron mechanism in bulk material that supports this mechanism. The method can be applied to any bulk material exhibiting negative differential resistance. The simulations show that the upper frequency limits of the fundamental mode of operation for GaAs Gunn diodes are between 80 GHz and 100 GHz, and for GaN Gunn diodes between 250 GHz and 300 GHz, depending on the operating conditions. These results, based on the simulated bulk material characteristics, are confirmed by the simulated mm-wave performance of the GaAs and GaN Gunn devices. GaAs diodes are shown to exhibit a fundamental frequency limit of 90 GHz, but with harmonic power available up to 186_GHz. Simulated GaN diodes are capable of generating appreciable output power at operational frequencies up to 250 GHz in the fundamental mode, with harmonic output power available up to 525 GHz. The research furthermore establishes optimised doping profiles for two-domain GaAs Gunn diodes and single- and two-domain GaN Gunn diodes. The relevant design parameters that have been optimised, are the dimensions and doping profile of the transit regions, the width of the doping notches and buffer region (for two-domain devices), and the bias voltage. In the case of GaAs diodes, hot electron injection has also been implemented to improve the efficiency and output power of the devices. Multi-domain operation has been explored for both GaAs and GaN devices and found to be an effective way of increasing the output power. However, it is the opinion of the author that a maximum number of two domains is feasible for both GaAs and GaN diodes due to the significant increase in thermal heating associated with an increase in the number of transit regions. It has also been found that increasing the doping concentration of the transit region exponentially over the last 25% towards the anode by a factor of 1.5 above the nominal doping level enhances the output power of the diodes.
Khromov, Sergey. "The Effect of Mg Doping on Optical and Structural Properties of GaN." Licentiate thesis, Linköpings universitet, Tunnfilmsfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-75428.
Full textBooks on the topic "Carbon Doping in GaN"
Bulyarskiy, Sergey, and Alexandr Saurov, eds. Doping of Carbon Nanotubes. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7.
Full textDi qiu shi fang CO2 ji qi yao gan yan jiu jin zhan. Beijing Shi: Dian zi gong ye chu ban she, 2011.
Find full textBulyarskiy, Sergey, and Alexandr Saurov. Doping of Carbon Nanotubes. Springer, 2018.
Find full textBulyarskiy, Sergey, and Alexandr Saurov. Doping of Carbon Nanotubes. Springer International Publishing AG, 2017.
Find full textSaito, R., A. Jorio, J. Jiang, K. Sasaki, G. Dresselhaus, and M. S. Dresselhaus. Optical properties of carbon nanotubes and nanographene. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.1.
Full textHayazawa, Norihiko, and Prabhat Verma. Nanoanalysis of materials using near-field Raman spectroscopy. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.10.
Full textBook chapters on the topic "Carbon Doping in GaN"
Mitura, Stanisław, Jan Szmidt, and Aleksandra Sokołowska. "Doping of Diamond-Like Carbon Films." In Wide Band Gap Electronic Materials, 235–42. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0173-8_23.
Full textZolper, J. C. "Ion Implantation Doping and Isolation of III-Nitride Materials." In GaN and Related Materials, 371–98. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211082-12.
Full textSaurov, Alexandr. "Adsorption and Doping as Methods for the Electronic Regulation Properties of Carbon Nanotubes." In Doping of Carbon Nanotubes, 1–6. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_1.
Full textBulyarskiy, Sergey, and Alexandr S. Basaev. "Thermodynamics and Kinetics of Adsorption and Doping of a Graphene Plane of Carbon nanotubes and Graphene." In Doping of Carbon Nanotubes, 7–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_2.
Full textBulyarskiy, Sergey, Alexandr S. Basaev, and Darya A. Bogdanova. "Interaction of Hydrogen with a Graphene Plane of Carbon Nanotubes and Graphene." In Doping of Carbon Nanotubes, 57–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_3.
Full textBulyarskiy, Sergey, Alexandr S. Basaev, Darya A. Bogdanova, and Alexandr Pavlov. "Oxygen Interaction with Electronic Nanotubes." In Doping of Carbon Nanotubes, 103–13. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_4.
Full textSaurov, Alexandr, Sergey Bulyarskiy, Darya A. Bogdanova, and Alexandr Pavlov. "Nitrogen Interaction with Carbon Nanotubes: Adsorption and Doping." In Doping of Carbon Nanotubes, 115–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_5.
Full textSaurov, Alexandr, Sergey Bulyarskiy, and Alexandr Pavlov. "Carbon Nanotube Doping by Acceptors. The p–п Junction Formation." In Doping of Carbon Nanotubes, 171–82. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_6.
Full textSusi, Toma, and Paola Ayala. "Doping Carbon Nanomaterials with Heteroatoms." In Carbon Nanomaterials for Advanced Energy Systems, 133–61. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118980989.ch4.
Full textHu, Yating. "Nitrogen Doping of Mesoporous Carbon Materials." In Springer Theses, 35–47. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8342-6_3.
Full textConference papers on the topic "Carbon Doping in GaN"
Shanbhag, Ajay, Sruthi M P, Farid Medjdoub, Anjan Chakravorty, Nandita DasGupta, and Amitava DasGupta. "Optimized Buffer Stack with Carbon-Doping for Performance Improvement of GaN HEMTs." In 2021 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS). IEEE, 2021. http://dx.doi.org/10.1109/bcicts50416.2021.9682203.
Full textMeneghini, M., D. Bisi, I. Rossetto, C. De Santi, A. Stocco, O. Hilt, E. Bahat-Treidel, et al. "Trapping processes related to iron and carbon doping in AlGaN/GaN power HEMTs." In SPIE OPTO, edited by Jen-Inn Chyi, Hiroshi Fujioka, and Hadis Morkoç. SPIE, 2015. http://dx.doi.org/10.1117/12.2079586.
Full textCioni, M., G. Giorgino, A. Chini, C. Miccoli, M. E. Castagna, M. Moschetti, C. Tringali, and F. Iucolano. "Evidence of Carbon Doping Effect on VTH Drift and Dynamic-RON of 100V p-GaN Gate AlGaN/GaN HEMTs." In 2023 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2023. http://dx.doi.org/10.1109/irps48203.2023.10117585.
Full textNesov, S. N., Yu A. Stenkin, S. N. Povoroznuyk, and A. M. Badamshin. "Nitrogen doping of carbon nanotubes for tuning electronic and electrochemistry characteristics." In OIL AND GAS ENGINEERING (OGE-2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0140264.
Full textMoens, P., P. Vanmeerbeek, A. Banerjee, J. Guo, C. Liu, P. Coppens, A. Salih, et al. "On the impact of carbon-doping on the dynamic Ron and off-state leakage current of 650V GaN power devices." In 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD). IEEE, 2015. http://dx.doi.org/10.1109/ispsd.2015.7123383.
Full textKappes, Branden B., Abbas Ebnonnasir, Suneel Kodambaka, and Cristian V. Ciobanu. "Orientation Dependent Binding Energy of Graphene on Pd(111)." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65217.
Full textZolper, J. C. "Implantation doping of GaN." In The fourteenth international conference on the application of accelerators in research and industry. AIP, 1997. http://dx.doi.org/10.1063/1.52624.
Full textZhang, Xinxin, Gaosheng Wei, and Fan Yu. "Influence of Some Parameters on Effective Thermal Conductivity of Nano-Porous Aerogel Super Insulator." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72192.
Full textCzerw, R. "Substitutional Doping of Carbon Nanotubes." In STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XVI International Winterschool on Electronic Properties of Novel Materials. AIP, 2002. http://dx.doi.org/10.1063/1.1514080.
Full textBiao Li, Benkang Chang, Xiaoqian Fu, Yujie Du, Xiaohui Wang, and Xiaoqing Du. "Comparative Study of uniform-doping and gradient-doping NEA GaN photocathodes." In 8th International Vacuum Electron Sources Conference and Nanocarbon (2010 IVESC). IEEE, 2010. http://dx.doi.org/10.1109/ivesc.2010.5644326.
Full textReports on the topic "Carbon Doping in GaN"
Speck, James S. Systematic Studies of Carbon Doping in High Quality GaN Grown by Molecular Beam Epitaxy. Fort Belvoir, VA: Defense Technical Information Center, December 2004. http://dx.doi.org/10.21236/ada430009.
Full textWong, Raechelle Kimberly. P-type doping of GaN. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/764386.
Full textLambrecht, Walter R. Rare-Earth Doping and Co-Doping of GaN for Magnetic and Luminescent Applications. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada533567.
Full textWicks, Gary W. Alternative Approaches to p-type Doping of GaN. Fort Belvoir, VA: Defense Technical Information Center, March 2000. http://dx.doi.org/10.21236/ada382954.
Full textSuvkhanov, A., W. Wu, K. Price, N. Parikh, E. Irene, J. Hunn, D. Thomson, R. F. Davis, and L. Krasnobaev. Doping of GaN by ion implantation: Does It Work? Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/654192.
Full textVladimir Dmitriev. Ultra High p-doping Material Research for GaN Based Light Emitters. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/966358.
Full textZolper, J. C., R. G. Wilson, S. J. Pearton, and R. A. Stall. P- and N-type implantation doping of GaN with Ca and O. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/238549.
Full textMoll, Amy Jo. Carbon doping of III-V compound semiconductors. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10196996.
Full textArmstrong, Andrew, and Daniel Feezell. High Voltage Regrown GaN P-N Diodes Enabled by Defect and Doping Control. Office of Scientific and Technical Information (OSTI), April 2022. http://dx.doi.org/10.2172/1862286.
Full textLiu, Jie. Optimizing the Binding Energy of Hydrogen on Nanostructured Carbon Materials through Structure Control and Chemical Doping. Office of Scientific and Technical Information (OSTI), February 2011. http://dx.doi.org/10.2172/1004174.
Full text