Academic literature on the topic 'Carbon-containing materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbon-containing materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Carbon-containing materials"
Umishita, K., Y. Ochiai, K. Iwasaki, and S. Hino. "Photoelectron spectra of carbon materials containing multiwall carbon nanotubes." Synthetic Metals 121, no. 1-3 (March 2001): 1159–60. http://dx.doi.org/10.1016/s0379-6779(00)01146-2.
Full textNguyen, D. C., A. I. Vezentsev, P. V. Sokolovskiy, and A. A. Greish. "Adsorption of Glyphosate on Carbon-Containing Materials." Russian Journal of Physical Chemistry A 95, no. 6 (June 2021): 1212–15. http://dx.doi.org/10.1134/s0036024421060194.
Full textKapralov, B. K., M. M. Veis, Yu I. kadun, and A. F. Bul'Dyaev. "Brazing carbon‐carbon composite materials with metal‐containing brazing alloys." Welding International 6, no. 7 (January 1992): 562–64. http://dx.doi.org/10.1080/09507119209548240.
Full textBabaritskii, A. I., M. A. Deminskii, S. A. Demkin, I. A. Zaev, A. V. Kleimenov, S. V. Korobtsev, M. F. Krotov, B. V. Potapkin, R. V. Smirnov, and F. N. Cheban’kov. "Plasma–melt processing of carbon-containing raw materials." Solid Fuel Chemistry 50, no. 3 (May 2016): 197–206. http://dx.doi.org/10.3103/s0361521916030022.
Full textCasagrande, T., G. Lawson, H. Li, J. Wei, A. Adronov, and I. Zhitomirsky. "Electrodeposition of composite materials containing functionalized carbon nanotubes." Materials Chemistry and Physics 111, no. 1 (September 2008): 42–49. http://dx.doi.org/10.1016/j.matchemphys.2008.03.010.
Full textAlisin, V. V., and M. N. Roshchin. "Tribology of carbon-containing materials at high temperatures." Journal of Physics: Conference Series 1399 (December 2019): 044034. http://dx.doi.org/10.1088/1742-6596/1399/4/044034.
Full textDobrovol'skaya, I. P., T. Yu Vereshchaka, S. V. Bronnikov, K. E. Perepelkin, and B. M. Tarakanov. "Physicomechanical Properties of Carbon-Containing Film Composite Materials." Fibre Chemistry 37, no. 4 (July 2005): 300–303. http://dx.doi.org/10.1007/s10692-005-0100-y.
Full textVietzke, E., V. Philipps, K. Flaskamp, J. Winter, and S. Veprek. "Radiation enhanced sublimation of boron containing carbon materials." Journal of Nuclear Materials 176-177 (December 1990): 481–85. http://dx.doi.org/10.1016/0022-3115(90)90093-3.
Full textSchliebe, Christian, Julian Noll, Sebastian Scharf, Thomas Gemming, Andreas Seifert, Stefan Spange, Daniel Lehmann, et al. "Nitrogen-containing porous carbon materials by twin polymerization." Colloid and Polymer Science 296, no. 3 (January 14, 2018): 413–26. http://dx.doi.org/10.1007/s00396-017-4254-y.
Full textRoshchin, M. N., A. I. Lukyanov, and A. Yu Krivosheev. "Carbon-containing materials for high-temperature friction units." IOP Conference Series: Materials Science and Engineering 1181, no. 1 (September 1, 2021): 012007. http://dx.doi.org/10.1088/1757-899x/1181/1/012007.
Full textDissertations / Theses on the topic "Carbon-containing materials"
Hamilton, Clifford G. "Thermo-oxidation of carbon-containing materials in fusion reactors." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ62890.pdf.
Full textLi, Jing. "Electrical conducting polymer nanocomposites containing graphite nanoplatelets and carbon nanotubes /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20LI.
Full textFang, Xiaowen. "NMR studies of complex carbon-containing materials Maillard reaction products, soil, nanodiamond, and carbon modified TiO₂/." [Ames, Iowa : Iowa State University], 2008.
Find full textYang, Lei. "New materials for intermediate-temperature solid oxide fuel cells to be powered by carbon- and sulfur-containing fuels." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39575.
Full textDu, Feng. "Hierarchically Structured Carbon Nanotubes for Energy Conversion and Storage." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1375459272.
Full textDementev, Nikolay. "Fluorescence Labeling of Surface Species as an Efficient Tool for Detection, Identification and Quantification of Oxygen Containing Functionalities on Carbon Materials." Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/113200.
Full textPh.D.
1. Fluorescence labeling and quantification of oxygen-containing functionalities on the surfaces of single walled and multi-walled carbon nanotubes. Nearly all applications of nanotubes (CNTs), from nanoelectronics to composites, require knowledge of the type and concentration of functionalities on the surface of the material. None of the methods conventionally used to characterize CNTs, such as Raman spectroscopy, IR spectroscopy, UV-VIS-NIR spectroscopy, and X-ray photoelectron spectroscopy, provide selectivity in identification together with sensitivity in quantification. Fluorescence labeling of surface species (FLOSS) to identify and quantify oxygen containing functionalities on single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) provides a solution that is reported in this dissertation. The high selectivity of covalent attachment combined with the sensitivity of the fluorescence measurements, allowed us reliably determine concentrations of aldehyde (together with ketone), alcohol, and carboxylic functional groups on as-produced and acid treated SWCNTs. The detection limit is as low as ~ 0.5 % at (1 in every 200 carbon atoms).(You never established the lower limit clearly) 2. Purification of carbon nanotubes by dynamic oxidation in air. The outstanding mechanical and electronic properties of carbon nanotubes make them promising materials for use in different areas of nanotechnology. However, the presence of impurities in as-produced nanotubes has been a major obstacle toward their industrial scale applications. Amorphous and graphitic carbon, and catalytic metal particles are the major impurities in raw carbon nanotubes. Isothermal oxidation of as-produced carbon nanotubes, followed by acid treatment, is the most commonly used purification strategy. The thermal oxidation step eliminates carbonaceous impurities and the acid treatment decreases the metal content. Unfortunately, most of the existing oxidation procedures either do not destroy all carbonaceous impurities or partially destroy carbon nanotubes as well. In the dissertation, a novel purification protocol via dynamic oxidation of as-produced single-walled carbon nanotubes (SWCNT) is reported. In the new procedure, carbon nanotubes are exposed to a wide range of temperatures during the heating ramp. The results of the purification of arc-produced and laser vaporization grown SWCNT using dynamic oxidation are presented. Purity analysis of dynamically oxidized samples by UV-VIS-NIR and Raman spectroscopy, as well as transmission electron microscopy, explicitly demonstrate that dynamic oxidation enables obtaining undamaged carbon nanotubes almost free of carbonaceous impurities. 3. Surfactant- free method of solubilization of non-functionalized single-walled carbon nanotubes in common solvents. One of the major factors that hamper the extensive use of carbon nanotubes (CNTs) in large-scale applications are related to the poor purity of CNTs, and the weak dispersibility of CNTs in the most common solvents. The presence of substantial impurities (sometimes up to 80% wt.) in as-produced CNTs almost obliterates the unique properties of the material. Furthermore, the difficulties with solubilization of CNTs slow down the processability of the material in potential applications. A new one-step method of making pure single-walled carbon nanotubes (SWCNTs) via the sequence of sonication cycles is described in the dissertation. Hours long stable solutions of SWCNTs in acetone, methanol and isopropanol of concentrations as high as ~ 15 mg/L were prepared using the procedure. The results of UV-VIS-NIR, Raman and Transmission Electron Microscopy suggest that SWCNTs were not destroyed or damaged by purification and solubilization processes. A possible physico-chemical explanation of the solublization mechanism is discussed.
Temple University--Theses
Johansson, Ingrid, and Walter Deltin. "Utilization of Pulp and Paper Waste Products in the Metal Industry : Initial testing of carbon-containing waste material briquettes." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231792.
Full textIdag läggs en stor del av restprodukter från pappers och massaindustrin på deponi, vilket innebär såväl ekonomiska som miljömässiga nackdelar. Den här rapporten undersöker möjligheterna att använda dessa restprodukter som slaggskummare och bränsle i de olika ugnarna inom metallindustrin. Restprodukterna innehåller värdefulla ämnen, framförallt kol. Därför finns det ett ökat intresse för att hitta möjliga användningsområden för restprodukterna inom metallindustrin. Denna återanvändning skulle bidra till energibevarande eftersom fossila bränslen kan ersättas. I den här rapporten undersöks två restmaterial, blandat biologiskt slam och fiberavfall. Experimenten utfördes med dessa restprodukter pressade samman med ett basmaterial och cement till en brikett. Kraven som undersöks är styrka för både transport och användning i ugnarna samt förmågan att skumma en slagg. Resultaten för briketternas styrka var tvetydiga, inga av briketterna innehållande restprodukter satisfierade det uppsatta kriteriet. Styrkan är troligtvis för låg för att transport ska vara möjlig. Ingen skumning skedde under experimentet, men endast ett experiment genomfördes. Därför behöver ytterligare experiment genomföras innan några slutsatser kan dras. Men briketterna tros kunna ersätta koks och kol där styrkan inte är viktig. Men det är osäkert om briketterna påverkar stålkvaliteten.
wickramaratne, nilantha P. "Phenolic Resin-Based Porous Carbons for Adsorption and Energy Storage Applications." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1416224723.
Full textKitschke, Philipp. "Experimental and theoretical studies on germanium-containing precursors for twin polymerization." Doctoral thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-205443.
Full textМиронов, Антон Миколайович. "Теоретичні та експериментальні дослідження теплообмінних процесів термічного розкладу вуглецевмісної сировини в удосконаленому піролітичному апараті." Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/32644.
Full textThesis for granting the Degree of Candidate of Technical sciences in specialty 05.17.08 – processes and equipment of chemical technology. – National Technical University "Kharkiv Polytechnic Institute" of Ministry of Education and Science of Ukraine, Kharkiv, 2017. The thesis is dedicated to the study of thermal processes taking place in pyrolysis apparatus of carbon-containing materials, to improve the design of the main and auxiliary equipment for charcoal burning installations. The existing demand for charcoal as one of the alternative energy resources of the present days is considered. The urgency of the subject for the developed countries of the world and Ukraine, in particular, has been explored. A microscopic study of the structure for five woods breeds is conducted. The kinetics of the raw materials drying process with a different level of initial moisture is studied. The energy curves of the drying process are constructed and the possible saving of primary fuel for this stage of production cycle is analytically estimated. An experimental installation for determining the thermal conductivity coefficient of wood, which takes into account not only the nonlinearity of the wood thermal conductivity change with temperature increasing up to 600°C, but also the anisotropy of material thermal conductive properties is developed. The method of wood thermal conductivity coefficient identifying, based on the developed experimental installation, is proposed. For the identification of the wood thermal conductivity coefficient, the inverse heat conduction problem is solved by the results of the thermophysical experiment. The inefficiency of the existing pyrolysis unit thermal insulation is identified. New measures of isolation that helps to reduce heat losses into the environment are proposed. A new methodology for wooden logs loading, taking into account the geometry of raw materials and trolleys, is proposed. The construction of the trolley is modernized in a way to maximize the effect of all heat flows that circulate in the apparatus.
Books on the topic "Carbon-containing materials"
Hamilton, Clifford G. Thermo-oxidation of carbon-containing materials in fusion reactors. Toronto: University of Toronto Institute for Aerospace Studies, 2001.
Find full textB, Lease Kevin, and United States. National Aeronautics and Space Administration., eds. Studies of the role of surface treatment and sizing of carbon fiber surfaces on the mechanical properties of composites containing carbon fibers: Final report, Kansas NASA-EPSCoR Program ... [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textA working party report on guidelines on materials requirements for carbon and low alloy steels for H2S-containing environments in oil and gas production. London: Published for the European Federation of Corrosion by the Institute of Materials, 1995.
Find full textInstitute of Materials, Minerals, and Mining., ed. A working party report on guidelines on materials requirements for carbon and low alloy steels for H₂S-containing environments in oil and gas production. 3rd ed. Leeds, UK: Published for the European Federation of Corrosion by Maney Publishing on behalf of the Institute of Materials, Minerals & Mining, 2009.
Find full textA Working Party Report on Guidelines on Materials Requirements for Carbon and Low Alloy Steels for H2S-Containing Environments in Oil & Gas production (European Federation of Corrosion Publications). 2nd ed. Maney Publishing, 2002.
Find full textJ, Belliardo J., and Commission of the European Communities. Community Bureau of Reference., eds. Certification of the elemental composition of BCR reference material No.183: Containing carbon, hydrogen, fluorine, sulphur, phosphorus and copper. Luxembourg: Commission of the European Communities, 1985.
Find full textKirchman, David L. Introduction to geomicrobiology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0013.
Full textBook chapters on the topic "Carbon-containing materials"
Jelinek, Raz. "Carbon-Dot-Containing Composite Materials." In Carbon Nanostructures, 115–28. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43911-2_8.
Full textShofner, Meisha L. "Hierarchical Composites Containing Carbon Nanotubes." In Hybrid and Hierarchical Composite Materials, 319–56. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12868-9_9.
Full textSasaki, Katsuhiko, Terumitsu Imanishi, Kazuaki Katagiri, Atushi Kakitsuji, Toyohiro Satoh, Akiyuki Shimizu, and Nobuhito Nakama. "Stiffness and Thermal Conductivity of Carbon Nanotube Containing Aluminum." In Key Engineering Materials, 587–90. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.587.
Full textSasikumar, K., N. R. Manoj, T. Mukundan, Mostafizur Rahaman, and Dipak Khastgir. "Mechanical Properties of Carbon-Containing Polymer Composites." In Springer Series on Polymer and Composite Materials, 125–57. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2688-2_4.
Full textShpilevsky, E. M., S. A. Zhdanok, and D. V. Schur. "Materials Containing Carbon Nanoparticles for Hydrogen Power Engineering." In Carbon Nanomaterials in Clean Energy Hydrogen Systems - II, 23–39. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0899-0_2.
Full textYuryevich, Bazhin Vladimir, and Kuskov Vadim Borisovich. "Production of fuel briquettes from carbon containing materials." In XVIII International Coal Preparation Congress, 701–5. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40943-6_108.
Full textPereloma, Elena V., Azdiar A. Gazder, John J. Jonas, and Chris H. J. Davies. "Texture Evolution during Annealing of Warm Rolled Cr-Containing Low Carbon Steels." In Materials Science Forum, 295–300. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-443-x.295.
Full textFelhös, D., and J. Karger-Kocsis. "Friction and Wear of Rubber Nanocomposites Containing Layered Silicates and Carbon Nanotubes." In Advanced Structured Materials, 343–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15787-5_13.
Full textZhang, Xue Xi, Yong Bing Shen, Chun Feng Deng, De Zun Wang, and Lin Geng. "Preparation of Novel Aluminum Hybrid Composite Containing Aluminum Borate Whiskers and Carbon Nanotubes." In Key Engineering Materials, 1414–17. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.1414.
Full textRadić-Perić, J. "Formation of Gas Phase Boron and Carbon-Containing Molecular Species at High Temperatures." In Materials Science Forum, 171–76. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-441-3.171.
Full textConference papers on the topic "Carbon-containing materials"
Ionescu, E., H. J. Kleebe, K. Krause, N. Nicoloso, R. Riedel, and L. Toma. "B4.1 - Carbon-containing High Temperature Piezoresistive Materials." In AMA Conferences 2013. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2013. http://dx.doi.org/10.5162/sensor2013/b4.1.
Full textSlepyan, G. Ya, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia. "Electromagnetic properties of composite materials containing carbon nanotubes." In 2010 URSI International Symposium on Electromagnetic Theory (EMTS 2010). IEEE, 2010. http://dx.doi.org/10.1109/ursi-emts.2010.5637292.
Full textVeena, M. G., N. M. Renukappa, M. Siddaramaiah, and R. D. Sudhakersamuel. "Electrical conducting behavior of hybrid nanocomposites containing polyaniline, carbon nanotube, and carbon black." In Smart Materials, Nano-and Micro-Smart Systems, edited by Nicolas H. Voelcker and Helmut W. Thissen. SPIE, 2008. http://dx.doi.org/10.1117/12.816671.
Full textNakajo, Shouta, Takuya Murakami, Haruka Shimada, Kozo Osawa, Masahiko Murata, Tomoyuki Itaya, Kyoichi Oshida, Kenji Takeuchi, and Morinobu Endo. "Characterization of carbon/carbon composites containing cellulose by electrospinning." In 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528696.
Full textMa, Peng Cheng, Hao Zhang, Sheng Qi Wang, Yiu Kei Wong, Ben Zhong Tang, Soon Hyung Hong, Kyung-Wook Paik, and Jang-Kyo Kim. "Electrical conducting behavior of hybrid nanocomposites containing carbon nanotubes and carbon black." In 2007 International Conference on Electronic Materials and Packaging (EMAP 2007). IEEE, 2007. http://dx.doi.org/10.1109/emap.2007.4510279.
Full textNagasawa, N. "Polarization characteristics of zeolite single crystals containing carbon nanotubes." In NANONETWORK MATERIALS: Fullerenes, Nanotubes, and Related Systems. AIP, 2001. http://dx.doi.org/10.1063/1.1420092.
Full textYin, Wong Wai, Wan Ramli Wan Daud, Abu Bakar Mohamad, Abdul Amir Hassan Kadhum, Edy Herianto Majlan, and Loh Kee Shyuan. "Direct synthesis of nitrogen-containing carbon nanotubes on carbon paper for fuel cell electrode." In 2ND ASEAN - APCTP WORKSHOP ON ADVANCED MATERIALS SCIENCE AND NANOTECHNOLOGY: (AMSN 2010). AIP, 2012. http://dx.doi.org/10.1063/1.4732489.
Full textBorkowski, P., E. Walczuk, D. Wojcik-Grzybek, K. Frydman, and D. Zasada. "Electrical Properties of Ag-C Contact Materials Containing Different Allotropes of Carbon." In 2010 IEEE Holm Conference on Electrical Contacts (Holm 2010). IEEE, 2010. http://dx.doi.org/10.1109/holm.2010.5619544.
Full textDunaevskn, G. E., V. I. Suslyaev, V. A. Zhuravlev, A. V. Badin, K. V. Dorozhkin, M. A. Kanygin, O. V. Sedelmkova, L. G. Bulusheva, and A. V. Okotrub. "Electromagnetic response of anisotropic polystyrene composite materials containing oriented multiwall carbon nanotubes." In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956106.
Full textAikin, N., V. Naumik, V. Shalomeev, and S. Sheyko. "Production of High-Quality Aircraft Magnesium Alloys Castings Using Carbon-Containing Materials." In MS&T19. TMS, 2019. http://dx.doi.org/10.7449/2019mst/2019/mst_2019_1077_1084.
Full textReports on the topic "Carbon-containing materials"
Liu, Shih-Yuan, Zachary X. Giustra, Tom Autrey, David A. Dixon, and Paul Osenar. Novel Carbon (C)-Boron (B)-Nitrogen (N)-Containing H2 Storage Materials. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1393260.
Full textKennedy, Alan, Mark Ballentine, Andrew McQueen, Christopher Griggs, Arit Das, and Michael Bortner. Environmental applications of 3D printing polymer composites for dredging operations. Engineer Research and Development Center (U.S.), January 2021. http://dx.doi.org/10.21079/11681/39341.
Full text