Dissertations / Theses on the topic 'Carbon biological pump'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 dissertations / theses for your research on the topic 'Carbon biological pump.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Smith, Helen E. K. "The contribution of mineralising phytoplankton to the biological carbon pump in high latitudes." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/376448/.
Full textGiering, Sarah L. C. "The role of mesozooplankton in the biological carbon pump of the North Atlantic." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/359058/.
Full textCooper, Rachel. "OCEAN ACIDIFICATION: UNDERSTANDING THE COASTAL CARBON PUMP IN A HIGH CO2 WORLD." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/420.
Full textWalker, Stevie. "Climate change impacts on the ocean’s biological carbon pump in a CMIP6 Earth System Model:." Thesis, Boston College, 2021. http://hdl.handle.net/2345/bc-ir:109224.
Full textThe ocean plays a key role in global carbon cycling, taking up CO2 from the atmosphere. A fraction of this CO2 is converted into organic carbon through primary production in the surface ocean and sequestered in the deep ocean through a process known as the biological pump. The ability of the biological pump to sequester carbon away from the atmosphere is influenced by the interaction between the annual cycle of ocean mixed layer depth (MLD), primary production, and ecosystem processes that influence export efficiency. Gravitational sinking of particulate organic carbon (POC) is the largest component of the biological pump and the aspect that is best represented in Earth System Models (ESMs). I use ESM data from CESM2, an ESM participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6), to investigate how a high-emissions climate change scenario will impact POC flux globally and regionally over the 21st century. The model simulates a 4.4% decrease in global POC flux at the 100 m depth horizon, from 7.12 Pg C/yr in the short-term (2014-2034) to 6.81 Pg C/yr in the long-term (2079-2099), indicating that the biological pump will become less efficient overall at sequestering carbon. However, the extent of change varies across the globe, including the largest POC flux declines in the North Atlantic, where the maximum annual MLD is projected to shoal immensely. In the future, a multi-model comparison across ESMs will allow for further analysis on the variability of these changes to the biological pump
Thesis (BS) — Boston College, 2021
Submitted to: Boston College. College of Arts and Sciences
Discipline: Departmental Honors
Discipline: Earth and Environmental Science
Duret, Manon. "Microbial communities in sinking and suspended particles and their influence on the oceanic biological carbon pump." Thesis, University of Southampton, 2018. https://eprints.soton.ac.uk/427041/.
Full textStange, Paul [Verfasser]. "The influence of plankton food-web structure on the efficiency of the biological carbon pump / Paul Stange." Kiel : Universitätsbibliothek Kiel, 2017. http://d-nb.info/1142154777/34.
Full textDumont, Isabelle. "Interactions between the microbial network and the organic matter in the Southern Ocean: impacts on the biological carbon pump." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210300.
Full textThe Southern Ocean (ca. 20% of the world ocean surface) is a key place for the regulation of Earth climate thanks to its capacity to absorb atmospheric carbon dioxide (CO2) by physico-chemical and biological mechanisms. The biological carbon pump is a major pathway of absorption of CO2 through which the CO2 incorporated into autotrophic microorganisms in surface waters is transferred to deep waters. This process is influenced by the extent of the primary production and by the intensity of the remineralization of organic matter along the water column. So, the annual cycle of sea ice, through its in situ production and remineralization processes but also, through the release of microorganisms, organic and inorganic nutrients (in particular iron)into the ocean has an impact on the carbon cycle of the Southern Ocean, notably by promoting the initiation of phytoplanktonic blooms at time of ice melting.
The present work focussed on the distribution of organic matter (OM) and its interactions with the microbial network (algae, bacteria and protozoa) in sea ice and ocean, with a special attention to the factors which regulate the biological carbon pump of the Southern Ocean. This thesis gathers data collected from a) late winter to summer in the Western Pacific sector, Western Weddell Sea and Bellingshausen Sea during three sea ice cruises ARISE, ISPOL-drifting station and SIMBA-drifting station and b) summer in the Sub-Antarctic and Polar Front Zone during the oceanographic cruise SAZ-Sense.
The sea ice covers were typical of first-year pack ice with thickness ranging between 0.3 and 1.2 m, and composed of granular and columnar ice. Sea ice temperature ranging between -8.9°C and -0.4°C, brines volume ranging between 2.9 to 28.2% and brines salinity from 10 to >100 were observed. These extreme physicochemical factors experienced by the microorganisms trapped into the semi-solid sea ice matrix therefore constitute an extreme change as compared to the open ocean. Sea ice algae were mainly composed of diatoms but autotrophic flagellates (such as dinoflagellates or Phaeocystis sp.) were also typically found in surface ice layers. Maximal algal biomass was usually observed in the bottom ice layers except during SIMBA where the maxima was localised in the top ice layers likely because of the snow and ice thickness which limit the light available in the ice cover. During early spring, the algal growth was controlled by the space availability (i.e. brine volume) while in spring/summer (ISPOL, SIMBA) the major nutrients availability inside sea ice may have controlled algal growth. At all seasons, high concentrations of dissolved and particulate organic matter were measured in sea ice as compared to the water column. Dissolved monomers (saccharides and amino acids) were accumulated in sea ice, in particular in winter. During spring and summer, polysaccharides constitute the main fraction of the dissolved saccharides pool. High concentrations of transparent exopolymeric particles (TEP), mainly constituted with saccharides, were present and their gel properties greatly influence the internal habitat of sea ice, by retaining the nutrients and by preventing the protozoa grazing pressure, inducing therefore an algal accumulation. The composition as well as the vertical distribution of OM in sea ice was linked to sea ice algae.
Besides, the distribution of microorganisms and organic compounds in the sea ice was also greatly influenced by the thermodynamics of the sea ice cover, as evidenced during a melting period for ISPOL and during a floodfreeze cycle for SIMBA. The bacteria distribution in the sea ice was not correlated with those of algae and organic matter. Indeed, the utilization of the accumulated organic matter by bacteria seemed to be limited by an external factor such as temperature, salinity or toxins rather than by the nature of the organic substrates, which are partly composed of labile monomeric saccharides. Thus the disconnection of the microbial loop leading to the OM accumulation was highlighted in sea ice.
In addition the biofilm formed by TEP was also involved in the retention of cells and other compounds(DOM, POM, and inorganic nutrients such as phosphate and iron) to the brine channels walls and thus in the timing of release of ice constituents when ice melts. The sequence of release in marginal ice zone, as studied in a microcosm experiments realized in controlled and trace-metal clean conditions, was likely favourable to the development of blooms in the marginal ice zone. Moreover microorganisms derived from sea ice (mainly <10 µm) seems able to thrive and grow in the water column as also the supply of organic nutrients and Fe seems to benefit to the pelagic microbial community.
Finally, the influence of the remineralization of organic matter by heterotrophic bacterioplankton on carbon export and biological carbon pump efficiency was investigated in the epipelagic (0-100 m) and mesopelagic(100-700 m) zones during the summer in the sub-Antarctic and Polar Front zones (SAZ and PFZ) of the Australian sector (Southern Ocean). Opposite to sea ice, bacterial biomass and activities followed Chl a and organic matter distributions. Bacterial abundance, biomass and activities drastically decreased below depths of 100-200 m. Nevertheless, depth-integrated rates through the thickness of the different water masses showed that the mesopelagic contribution of bacteria represents a non-negligible fraction, in particular in a diatom-dominated system./
L’océan Antarctique (± 20% de la surface totale des océans) est un endroit essentiel pour la régulation du climat de notre planète grâce à sa capacité d’absorber le dioxyde de carbone (CO2) atmosphérique par des mécanismes physico-chimique et biologique. La pompe biologique à carbone est un processus majeur de fixation de CO2 par les organismes autotrophes à la surface de l’océan et de transfert de carbone organique vers le fond de l’océan. Ce processus est influencé par l’importance de la production primaire ainsi que par l’intensité de la reminéralisation de la matière organique dans la colonne d’eau. Ainsi, le cycle annuel de la glace via sa production/reminéralisation in situ mais aussi via l’ensemencement de l’océan avec des microorganismes et des nutriments organiques et inorganiques (en particulier le fer) a un impact sur le cycle du carbone dans l’Océan Antarctique, notamment en favorisant l’initiation d’efflorescences phytoplanctoniques dans la zone marginale de glace.
Plus précisément, nous avons étudié les interactions entre le réseau microbien (algues, bactéries et protozoaires) et la matière organique dans le but d’évaluer leurs impacts potentiels sur la pompe biologique de carbone dans l’Océan Austral. Deux écosystèmes différents ont été étudiés :la glace de mer et le milieu océanique grâce à des échantillons prélevés lors des campagnes de glace ARISE, ISPOL et SIMBA et lors de la campagne océanographique SAZ-Sense, couvrant une période allant de la fin de l’hiver à l’été.
La glace de mer est un environnement très particulier dans lequel les microorganismes planctoniques se trouvent piégés lors de la formation de la banquise et dans lesquels ils subissent des conditions extrêmes de température et de salinité, notamment. Les banquises en océan ouvert étudiées (0,3 à 1,2 m d’épaisseur, températures de -8.9°C à -0.4°C, volumes relatifs de saumure de 2.9 à 28.2% et salinités de saumures entre 10 et jusque >100) étaient composées de glace columnaire et granulaire. Les algues de glace étaient principalement des diatomées mais des flagellés autotrophes (tels que des dinoflagellés ou Phaeocystis sp.) ont été typiquement observés dans les couches de glace de surface. Les biomasses algales maximales se trouvaient généralement dans la couche de glace de fond sauf à SIMBA où les maxima se trouvaient en surface, probablement en raison de l’épaisseur des couches de neige et de glace, limitant la lumière disponible dans la colonne de glace. Au début du printemps, la croissance algale était contrôlée par l’espace disponible (càd le volume des saumures) tandis qu’au printemps/été, la disponibilité en nutriments majeurs a pu la contrôler. A toutes les saisons, des concentrations élevées en matière organique (MO) dissoute et particulaire on été mesurées dans la glace de mer par rapport à l’océan. Des monomères dissous (sucres et acides aminés) étaient accumulés dans la glace, surtout en hiver. Au printemps et été, les polysaccharides dissous dominaient le réservoir de sucres. La MO était présente sous forme de TEP qui par leurs propriétés de gel modifie l’habitat interne de la glace. Ce biofilm retient les nutriments et gêne le mouvement des microorganismes. La composition et la distribution de la MO dans la glace étaient en partie reliées aux algues de glace. De plus, la thermodynamique de la couverture de glace peut contrôler la distribution des microorganismes et de la MO, comme observé lors de la fonte de la glace à ISPOL et lors du refroidissement de la banquise à SIMBA. La distribution des bactéries n’est pas corrélée avec celle des algues et de la MO dans la glace. En effet, la consommation de la MO par les bactéries semble être limitée non pas par la nature chimique des substrats mais par un facteur extérieur affectant le métabolisme bactérien tel que la température, la salinité ou une toxine. Le dysfonctionnement de la boucle microbienne menant à l’accumulation de la MO dans la glace a donc été mis en évidence dans nos échantillons.
De plus, le biofilm formé par les TEP est aussi impliquée dans l’attachement des cellules et autres composés aux parois des canaux de saumure et donc dans la séquence de largage lors de la fonte. Cette séquence semble propice au développement d’efflorescences phytoplanctoniques dans la zone marginale de glace. Les microorganismes originaires de la glace (surtout ceux de taille < 10 μm) semblent capables de croître dans la colonne d’eau et l’apport en nutriments organiques et inorganiques apparaît favorable à la croissance des microorganismes pélagiques.
Enfin, l’influence des activités hétérotrophes sur l’export de carbone et l’efficacité de la pompe biologique à carbone a été évaluée dans la couche de surface (0-100 m) et mésopélagique (100-700 m) de l’océan. Au contraire de la glace, les biomasses et activités bactériennes suivaient les distributions de la chlorophyll a et de la MO. Elles diminuent fortement en dessous de 100-200 m, néanmoins les valeurs intégrées sur la hauteur de la colonne d’eau indiquent que la reminéralisation de la MO par les bactéries dans la zone mésopélagique est loin d’être négligeable, spécialement dans une région dominée par les diatomées.
Doctorat en Sciences agronomiques et ingénierie biologique
info:eu-repo/semantics/nonPublished
Thiele, Stefan [Verfasser], Bernhard M. [Akademischer Betreuer] Fuchs, Rudolf [Akademischer Betreuer] Amann, and Victor S. [Akademischer Betreuer] Smetacek. "The role of specific microbial communities in the biological carbon pump / Stefan Thiele. Gutachter: Rudolf Amann ; Victor S. Smetacek. Betreuer: Bernhard M. Fuchs." Bremen : Staats- und Universitätsbibliothek Bremen, 2013. http://d-nb.info/1072156121/34.
Full textForrer, Heather. "Toward an improved understanding of the Southern Ocean's biological pump: phytoplankton group-specific contributions to nitrogen and carbon cycling across the Subantarctic Indian Ocean." Master's thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/33675.
Full textRamondenc, Simon. "Analyse des variations spatio-temporelles du zooplancton gélatineux et son effet sur les flux de matières à l'aide d'une approche combinant expérimentation et écologie numérique." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066528/document.
Full textThe term “plankton” refers to all the organisms drifting in the water following the currents. Commonly, the vegetable autotrophic and mainly photosynthetic, “phytoplankton” is distinguished from the heterotrophic and animal “zooplankton”. In the last decades, many studies reported an increase in the abundances and spatial distributions of gelatinous zooplankton in many oceans. Even if the concept of “jellyfication of the oceans” needs to be used with caution, jellyfish populations show an increase in Mediterranean Sea over the last 40 years. The species Pelagia noctiluca (Forsskål, 1775) is considered as the most abundant jellyfish in the Mediterranean basin since the 70s. Due to its massive presence in this area, it is essential to evaluate precisely the impact of P. noctiluca on both biogeochemical cycles and pelagic ecosystem structure. Thus, the contribution of P. noctiluca to the two main factors regulating the biological carbon transfer in the oceans: carbon sequestration via the biological carbon pump and carbon transfer through trophic networks. This manuscript is divided in 3 main sections : (i) providing an initial budget of the particulate (POCtotal) and dissolved organic carbon (DOC) in the Mediterranean sea, (ii) building an ecophysiological model of P. noctiluca to estimate its contribution to the biological carbon pump, and (iii) assessing the trophic level of P. noctiluca and its potential impact on lower trophic levels
Meilland, Julie. "Rôle des foraminifères planctoniques dans le cycle du carbone marin des hautes latitudes (Océan Indien Austral)." Thesis, Angers, 2015. http://www.theses.fr/2015ANGE0059/document.
Full textPlanktonic foraminifera contribute to the marine biological carbon pump by generating organic (cytoplasm) and inorganic (shell) carbon fluxes. In this study, we characterized LPF total abundances, assemblages and test morphometry (minimum diameter) along 19 stations sampled by stratified plankton net (Multinet), during three consecutive austral summers (2012-2014) in the Southern Indian Ocean (30°S-60°S, 50°E-80°E). By demonstrating the efficiency of CPR for LPF sampling, we analysed population dynamic between 19 multinet sampling stations, showing the effect of frontal position on LPF production. To better constrain the impact of those organisms in the biological carbon pump at high latitudes, we have quantified the individual protein-biomass and test calcite mass of more than 2000 LPF. Differences in size-normalized protein-biomass and in size-normalized weight between years, species, and water bodies suggest that environmental parameters affect the production of planktonic foraminifera organic and inorganic carbon to varying degrees. Consequently, planktonic foraminifera are assumed to affect the biological carbon pump, depending on ecological conditions and biological prerequisites. The applicability of planktonic foraminifera tests as proxy of the past biological carbon pump in high latitudes would hence critically depend on the effect exerted by changing in ecological conditions, and the presence of different species. This study proposes a first estimation of planktonic foraminifera Corg and Cinorg standing stock and fluxes in the Southern Indian Ocean
Lacroix, Fabrice. "Riverine and coastal ocean contributions to the global and regional oceanic cycling of carbon and nutrients." Doctoral thesis, Universite Libre de Bruxelles, 2019. https://dipot.ulb.ac.be/dspace/bitstream/2013/289460/3/main.pdf.
Full textRiver deliver vast amounts of terrestrially derived compounds to the ocean. These fluxes are of particular importance for the coastal ocean, which is recognized as a region of disproportionate contribution to global oceanic biological fluxes. Until now, the riverine carbon, nutrient and alkalinity inputs have been poorly represented or omitted in global ocean biogeochemistry models. In particular, there has yet to be a model that considers the pre-industrial riverine loads of biogeochemical compounds to the ocean, and terrestrial inputs of organic matter are greatly simplified in their composition and reactivities in the ocean. Furthermore, the coastal ocean and its contribution to the globalcarbon cycle have remained enigmatic, with little attention being paid to this area of high biological productivity in global model analysis of carbon fluxes. Lastly, 20 th century perturbations in riverine fluxes as well as of the physical and biogeochemical states of the coastal ocean have remained unexplored in a 3-dimensional model. Thus, the main goals of this thesis are to integrate an improved representation of riverine supplies in a global ocean model, as well as to improve the representation of the coastal ocean in the model, in order to solve open questions with respect its global contributions to carbon cycling.In this thesis, I first aimed to close gaps of knowledge in the long-term implications of pre-industrial riverine loads for the oceanic cycling of carbon in a novel framework. I estimated pre-industrial biogeochemical riverine loads and their spatial distributions derived from Earth System Model variables while using a hierarchy of state-of-the-art weathering and organic matter land-ocean export models. I incorporated these loads into the global ocean biogeochemical model HAMOCC and investigated the induced changes in oceanic biological production and in the air-sea carbon flux, both at the global scale and in a regional shelf analysis. Finally, I summarized the results by assessing the net land sink of atmospheric carbon prescribed by the terrestrial models, and comparing it to the long-term carbon outgassing determined in the ocean model. The study reveals a pre-industrial oceanic outgassing flux of 231 Tg C yr -1 ,which is found to a large degree in proximity to the river mouths. The model also indicates an interhemispheric transfer of carbon from dominant northern hemisphere riverine inputs to outgassing in the southern hemisphere. Furthermore, I observe substantial riverine-induced increases in biological productivity in the tropical West Atlantic (+166 %), the Bay of Bengal (+377 %) and in the East China Sea (+71 %), in comparison to a model simulation which does not consider the riverine inputs.In addition to considering supplies provided by riverine fluxes, the biogeochemical representation of the coastal ocean is improved in HAMOCC, by firstly increasing organic matter remineralization rates in the coastal sediment and by secondly explicitly representing the breakdown process of terrestrial dissolved organic matter (tDOM) in the ocean. In an analysis of the coastal fluxes, the model shows a much shorter residence time of coastal waters (14-16 months) than previously assumed, which leads to an efficient cross-shelf transport of organic matter and a net autotrophic state for both the pre-industrial timeframe and the present day. The coastal ocean is also revealed as a CO2 sink for the pre-industrial time period (0.06-0.08 Pg C yr -1 ) in contrary to to the suggested source in published literature. The sink is however not only caused by the autotrophic state of the coastal ocean, but it is likely also strongly influenced by the effects of biological alkalinity production, as well as both physical and biogeochemical characteristics of open ocean inflows.In the final chapter, 20 th century oceanic perturbations due to changes in atmospheric CO 2 concentrations and in the physical climate, and to increases in riverine nutrient supplies were investigated by using sequential model simulations. The model results show that the decrease in the net primary production (NPP) in the tropical and subtropical oceans due to temperature-induced stratification may be completely compensated by increases in the Southern Ocean and in Eastern Boundary Upwelling Systems (EBUS). The model also reveals that including increases in riverine supplies causes a global ocean NPP increase of +4 %, with the coastal ocean being a particularlystrongly affected region (+15 %).This thesis shows a strong necessity to represent spatio-temporal changes in riverine supplies and of the coastal ocean state in spatially explicit global models in order to assess changes of the global cycling of carbon in the ocean in the past and potentially in the future.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Le, Gland Guillaume. "Contraindre les échanges côte-large et la pompe biologique de carbone par modélisation inverse de deux radio-isotopes (radium228 et thorium234)." Thesis, Brest, 2018. http://www.theses.fr/2018BRES0032/document.
Full textThe oceanic cycles of carbon and the main nutrients are poorly known since they are affected by many physical, chemical or biological sources and sinks that are difficult to estimate by direct measurements.One way to better constrain these important processes is to use the information contained in more simple tracers called "proxies". As radium 228 (228Ra) flows from the continental shelves, it is used as a proxy of water and mineral elements fluxes from the coast to the open ocean. In particular, it is often used to estimate the SGD (Submarine Groundwater Discharge). For its part, thorium 234 (234Th), an insoluble radio-isotope, is used to constrain the dynamics of the solid particles onto which it is adsorbed. The carbon flux from the surface to the deep ocean, called "biological carbon pump" (BCP), is often estimated by a 234Th-based method.During this PhD, a numerical model with a resolution of 2°, based on the circulation of the NEMO-OPA model and the particle fields of the PISCES model, was built for each of the two radioisotopes.Several unknown model parameters were constrained by observations using an inverse technique.The inverse modeling of 228Ra was used to constrain 228Ra fluxes from 38 coastal regions.However, the SGD fluxes are poorly constrained by this method, because SGD can be confused with another source of 228Ra: diffusion from sediments.The inverse modeling of 234Th produced estimates of partition coefficients, representing the affinity of different particle types for this isotope. It was also used to estimate the errors associated with some common simplifications made in 234Th-based BCP studies
Lemaitre, Nolwenn. "Approche multi-proxy (Thorium-234, Baryum en excès) des flux d'export et de reminéralisation du carbone et des éléments nutritifs associés à la pompe biologique océanique." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0009/document.
Full textThe main objective of this thesis is to improve our understanding of the different controls that affect the oceanic biological carbon pump. Particulate export and remineralization fluxes were investigated using the thorium-234 (234Th) and biogenic barium (Baxs) proxies.In the North Atlantic, the highest particulate organic carbon (POC) export fluxes were associated to biogenic (biogenic silica or calcium carbonate) and lithogenic minerals, ballasting the particles.Export efficiency was generally low (< 10%) and inversely related to primary production, highlighting a phase lag between production and export. The highest transfer efficiencies, i.e. the fraction of POC that reached 400m, were driven by sinking particles ballasted by calcite or lithogenic minerals.The regional variation of mesopelagic remineralization was attributed to changes in bloom intensity, phytoplankton cell size, community structure and physical forcing (downwelling). Carbon remineralization balanced, or even exceeded, POC export, highlighting the impact of mesopelagic remineralization on the biological pump with a near-zero, deep carbon sequestration for spring 2014.Export of trace metals appeared strongly influenced by lithogenic material advected from the margins. However, at open ocean stations not influenced by lithogenic matter, trace metal export rather depended on phytoplankton activity and biomass.A last part of this work focused on export of biogenic silica, particulate nitrogen and iron near the Kerguelen Island. This area is characterized by a natural iron-fertilization that increases export fluxes. Inside the fertilized area, flux variability is related to phytoplankton community composition
Toullec, Jordan. "Etude des interactions diatomées-copépodes sur l'export de carbone, dans un contexte de changement climatique : apports expérimentaux et étude in situ Copepod grazing influences diatom aggregation and particle dynamics, in Frontiers in Marine Science 6, March 2019." Thesis, Brest, 2020. http://www.theses.fr/2020BRES0017.
Full textThe biological carbon pump transfers CO2 from the atmosphere to the deep ocean as particulate organic matter. By forming aggregates, diatoms contribute strongly to the particle flux.Copepods, in terms of abundance and diversity, dominate zooplankton assemblages, are the main consumers of diatoms and play and key role in the carbon export via faecal pellets egestion. Nutrient limitations mainly occur at the end of phytoplankton blooms, but are also an expected consequence of global warming. The aim of the thesis is to evaluate the role of copepod/diatom interactions on carbon export in a context of climate change.The results obtained show that nutrient limitations affecting diatoms biochemical composition, that influences copepods feeding activity and the export efficiency of faecal pellets. I have also shown that the functional traits of copepods can influence both the aggregates formation and their dynamics. Finally, using data from an oceanographic campaign carried out during the Arctic phytoplankton spring bloom, I observed that silicon limitation after sea ice retreat contributes to the aggregates formation. Copepods, at the end of the bloom migrate under the mixing layer where the aggregates are most abundant, which may suggest that the aggregates could be used as a food
Demasy, Clément. "Solubility and bioavailability of Patagonian dust in the future Southern Ocean." Electronic Thesis or Diss., Université Paris Cité, 2023. http://www.theses.fr/2023UNIP7095.
Full textThroughout geological time, the Southern Ocean has played a major role in regulating the Earth's surface climate and in particular in the reduction of atmospheric CO2. This oceanic region is the most important biological pump of carbon and through the photosynthesis of phytoplankton allows the sequestration of carbon in the deep ocean. This decrease would have been caused by dust deposits which, by bringing elements such as iron in areas limited in micronutrients, fertilize the ocean surface and allow the activation of the biological carbon pump. Nowadays, the entering into the Anthropocene era has been marked by the impact that human activity has exerted on its environment. Anthropogenic activity that generates the release of carbon dioxide into the atmosphere causes a greenhouse effect on the surface of the Earth and upsets the environmental balance. This study investigates the Southern Ocean which is biogeochemical paradox zone with high concentration of macronutrients but low biological productivity. In 1990 John Martin elaborated the "Iron hypothesis" hence iron (micronutrients) restricts phytoplankton growth. Dust is major source of metals in the surface ocean. In the Southern Ocean, dust have mainly a South America (Patagonian dust) origin. Input from South America contributed to 58% of the total dust into the Southern Ocean and will increase by two fold higher with the future environmental changes. During the last glacial maximal in the Southern Ocean, dust input would have decreased the CO2 concentration in the atmosphere. Moreover, in the small timescale there are tests of artificial iron fertilization performed in Southern Ocean have demonstrated high biological productivity. The overall aim of this work is to better characterize and quantify the fraction of metals that solubilizes from Patagonian dust in seawater under actual and future conditions (2100) and to improve predictions of the phytoplankton evolution in response to intensification of Patagonian dust input and other multi-stressor changes in the Southern Ocean in order to evaluate the impacts on carbon production
Guyennon, Arnaud. "Etude de l'exportation de carbone organique à l'échelle de la mer Méditerranée à l'aide de la modélisation couplée physique/biogéochimie." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4113/document.
Full textThis work is part of the SIMED project which is dedicated to basin-scale modeling of the Mediterranean Sea. It also belongs to the MERMEX program which aims at studying biogeochemical cycles in the Mediterranean Sea and their evolution. The first step of this work was to couple the hydrodynamic modeling platform (NEMO) to the mechanistic biogeochemical modeling platform (Eco3M). We ran a simulation (2000-2012) using the hydrodynamic outputs from NEMO-MED12 configuration to force the biogeochamical model Eco3M-MED. The model evaluation was conducted using numerous field measurements (chlorophyll, nutrients, primary production, etc.). The simulation strengthens and extends to the whole basin the prominent role of dissolved organic carbon in the biological carbon pump in the whole Mediterranean Sea. A comprehensive analysis of organic carbon (particulate and dissolved) production processes production was performed. Results reveal that particulate organic carbon production is restricted to the highly dynamic areas, whereas dissolved organic carbon accumulation in the surface layers is a common process in much areas of the basin. This latter process appeared to dependant on the cellular contents of phytoplancton and heterotrophic bacteria, themselved being controled by low phosphate availability. Finally, the dissolved organic carbon contribution to carbon export is around 64 % in the Western basin, and up to 90 % in the Eastern basin. When taking into account the dissolved fraction, total organic carbon export in the Eastern basin -despite its higher oligotrophy- exceeds the one in the Western basin (60% against 40 %)
Norlén, Mikael. "Ett matsystem med biologiska jordbruksmetoder och växthusodling : Kost, jordbruk och energibalans i växthus." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-308757.
Full textCaffin, Mathieu. "Devenir de la fixation d'azote et export de carbone dans l'océan Pacifique tropical sud-ouest." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0475/document.
Full textThis PhD thesis focuses on the quantification of diazotrophy and its influence on biogeochemical cycles in the western tropical South Pacific Ocean, a critically under-sampled region so far. The aim of this work is to (1) quantify N2 fixation and identify the main contributors of diazotrophy in this region, (2) assess the influence of N2 fixation on primary production and carbon export, (3) identify transfer pathways of the fixed nitrogen in the planktonic food web.We have found that the western tropical South Pacific Ocean was a hotspot of N2 fixation. In the western part, the oligotrophic waters of the Melanesian archipelago presented high N2 fixation rates and diazotrophes were dominated by Trichodesmium. In the eastern part, the ultra-oligotrophic waters of the South Pacific gyre presented lower N2 fixation rates, and diazotrophs were dominated by UCYN-B.The nitrogen budgets show that N2 fixation contributed to more than 90 % of the of new nitrogen input in the photic layer. The study of the transfer pathways of the fixed nitrogen has shown that 7 to 15 % of total N2 fixation was transferred to non-diazotrophs.This PhD thesis indicates that diazotrophy sustains the biological pump in the western tropical South Pacific Ocean, and can have a critical influence in the planktonic community structure and in biogeochemical cycles of carbon and nitrogen in oligotrophic regions
Halfter, S. "The role of zooplankton in the biological carbon pump of the subantarctic Southern Ocean." Thesis, 2022. https://eprints.utas.edu.au/47565/.
Full textLaurenceau, EC. "Ecosystem controls on carbon export efficiency from the naturally iron-fertilised phytoplankton bloom over the Kerguelen Plateau." Thesis, 2015. https://eprints.utas.edu.au/23226/1/Laurenceau_whole_thesis.pdf.
Full textHealey, Katherine Margaret. "Perturbation dynamics of a planktonic ecosystem." Thesis, 2008. http://hdl.handle.net/1828/1028.
Full text