Academic literature on the topic 'Carathéodory metric'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carathéodory metric.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Carathéodory metric"
Fornæss, John Erik, and Lina Lee. "Kobayashi, Carathéodory and Sibony metric." Complex Variables and Elliptic Equations 54, no. 3-4 (March 2009): 293–301. http://dx.doi.org/10.1080/17476930902760450.
Full textAbate, Marco, and Jean-Pierre Vigué. "Isometries for the Carathéodory metric." Proceedings of the American Mathematical Society 136, no. 11 (May 20, 2008): 3905–9. http://dx.doi.org/10.1090/s0002-9939-08-09391-x.
Full textGe, Zhong. "Collapsing Riemannian Metrics to Carnot-Caratheodory Metrics and Laplacians to Sub-Laplacians." Canadian Journal of Mathematics 45, no. 3 (June 1, 1993): 537–53. http://dx.doi.org/10.4153/cjm-1993-028-6.
Full textCONNELL, CHRIS, THANG NGUYEN, and RALF SPATZIER. "Carnot metrics, dynamics and local rigidity." Ergodic Theory and Dynamical Systems 42, no. 2 (December 9, 2021): 614–64. http://dx.doi.org/10.1017/etds.2021.116.
Full textFu, Siqi. "Asymptotic Expansions of Invariant Metrics of Strictly Pseudoconvex Domains." Canadian Mathematical Bulletin 38, no. 2 (June 1, 1995): 196–206. http://dx.doi.org/10.4153/cmb-1995-028-9.
Full textKrushkal, Samuel. "On the Carathéodory metric of universal Teichmüller space." Ukrainian Mathematical Bulletin 19, no. 1 (January 28, 2022): 75–87. http://dx.doi.org/10.37069/1810-3200-2029-19-1-5.
Full textKrushkal, Samuel L. "On the Carathéodory metric of universal Teichmüller space." Journal of Mathematical Sciences 262, no. 2 (April 2022): 184–93. http://dx.doi.org/10.1007/s10958-022-05809-9.
Full textSelivanova, Svetlana. "Metric Geometry of Nonregular Weighted Carnot–Carathéodory Spaces." Journal of Dynamical and Control Systems 20, no. 1 (December 17, 2013): 123–48. http://dx.doi.org/10.1007/s10883-013-9206-3.
Full textNikolov, N. "Continuity and boundary behavior of the Carathéodory metric." Mathematical Notes 67, no. 2 (February 2000): 183–91. http://dx.doi.org/10.1007/bf02686245.
Full textŚwiątkowski, Jacek. "Compact 3-manifolds with a flat Carnot-Carathéodory metric." Colloquium Mathematicum 63, no. 1 (1992): 89–105. http://dx.doi.org/10.4064/cm-63-1-89-105.
Full textDissertations / Theses on the topic "Carathéodory metric"
Don, Sebastiano. "Functions of bounded variation in Carnot-Carathéodory spaces." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3426813.
Full textAnalizziamo alcune proprietà di funzioni a variazione limitata in spazi di Carnot-Carathéodory. Nel Capitolo 2 dimostriamo che esse sono approssimativamente differenziabili quasi ovunque, esaminiamo il loro insieme di discontinuità approssimata e la decomposizione della loro derivata distribuzionale. Assumendo un'ipotesi addizionale sullo spazio, che chiamiamo proprietà R, mostriamo che quasi tutti i punti di discontinuità approssimata sono di salto e studiamo una formula per la parte di salto della derivata. Nel Capitolo 3 dimostriamo un teorema di rango uno à la G. Alberti per la derivata distribuzionale di funzioni vettoriali a variazione limitata in una classe di gruppi di Carnot che contiene tutti i gruppi di Heisenberg H^n con n ≥ 2. Uno strumento chiave nella dimostrazione è costituito da alcune proprietà che legano le derivate orizzontali di una funzione a variazione limitata con il suo sottografico. Nel Capitolo 4 dimostriamo un risultato di compattezza per succesioni (u_j) equi-limitate in spazi metrici (X, d_j) quando lo spazio X è fissato ma la metrica può variare con j. Mostriamo inoltre un'applicazione agli spazi di Carnot-Carathéodory. I risultati del Capitolo 4 sono fondamentali per la dimostrazione di alcuni fatti contenuti nel Capitolo 2.
Lieder, Marc [Verfasser]. "Das Randverhalten der Kobayashi- und Carathéodory-Metrik auf lineal konvexen Gebieten endlichen Typs / vorgelegt von Marc Lieder." 2005. http://d-nb.info/977948994/34.
Full textBooks on the topic "Carathéodory metric"
Street, Brian. The Calder´on-Zygmund Theory II: Maximal Hypoellipticity. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691162515.003.0002.
Full textBook chapters on the topic "Carathéodory metric"
"II The Carathéodory pseudodistance and the Carathéodory-Reiffen pseudometric." In Invariant Distances and Metrics in Complex Analysis. Berlin, New York: DE GRUYTER, 1993. http://dx.doi.org/10.1515/9783110870312.15.
Full text