Academic literature on the topic 'Caputo derivatives'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Caputo derivatives.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Caputo derivatives"
Li, Changpin, Deliang Qian, and YangQuan Chen. "On Riemann-Liouville and Caputo Derivatives." Discrete Dynamics in Nature and Society 2011 (2011): 1–15. http://dx.doi.org/10.1155/2011/562494.
Full textOliveira, Daniela S., and Edmundo Capelas de Oliveira. "On a Caputo-type fractional derivative." Advances in Pure and Applied Mathematics 10, no. 2 (April 1, 2019): 81–91. http://dx.doi.org/10.1515/apam-2017-0068.
Full textRosales García, J. Juan, J. David Filoteo, and Andrés González. "A comparative analysis of the RC circuit with local and non-local fractional derivatives." Revista Mexicana de Física 64, no. 6 (October 31, 2018): 647. http://dx.doi.org/10.31349/revmexfis.64.647.
Full textDiethelm, Kai, Roberto Garrappa, Andrea Giusti, and Martin Stynes. "Why fractional derivatives with nonsingular kernels should not be used." Fractional Calculus and Applied Analysis 23, no. 3 (June 25, 2020): 610–34. http://dx.doi.org/10.1515/fca-2020-0032.
Full textBaleanu, Dumitru, Bahram Agheli, and Maysaa Mohamed Al Qurashi. "Fractional advection differential equation within Caputo and Caputo–Fabrizio derivatives." Advances in Mechanical Engineering 8, no. 12 (December 2016): 168781401668330. http://dx.doi.org/10.1177/1687814016683305.
Full textFeng, Xue, Baolin Feng, Ghulam Farid, Sidra Bibi, Qi Xiaoyan, and Ze Wu. "Caputo Fractional Derivative Hadamard Inequalities for Stronglym-Convex Functions." Journal of Function Spaces 2021 (April 21, 2021): 1–11. http://dx.doi.org/10.1155/2021/6642655.
Full textDoungmo Goufo, Emile Franc, and Sunil Kumar. "Shallow Water Wave Models with and without Singular Kernel: Existence, Uniqueness, and Similarities." Mathematical Problems in Engineering 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/4609834.
Full textAbboubakar, Hamadjam, Pushpendra Kumar, Vedat Suat Erturk, and Anoop Kumar. "A mathematical study of a tuberculosis model with fractional derivatives." International Journal of Modeling, Simulation, and Scientific Computing 12, no. 04 (March 26, 2021): 2150037. http://dx.doi.org/10.1142/s1793962321500379.
Full textKhalighi, Moein, Leila Eftekhari, Soleiman Hosseinpour, and Leo Lahti. "Three-Species Lotka-Volterra Model with Respect to Caputo and Caputo-Fabrizio Fractional Operators." Symmetry 13, no. 3 (February 25, 2021): 368. http://dx.doi.org/10.3390/sym13030368.
Full textSene, Ndolane, and José Francisco Gómez Aguilar. "Fractional Mass-Spring-Damper System Described by Generalized Fractional Order Derivatives." Fractal and Fractional 3, no. 3 (July 7, 2019): 39. http://dx.doi.org/10.3390/fractalfract3030039.
Full textDissertations / Theses on the topic "Caputo derivatives"
Oti, Vincent Bediako. "Numerické metody pro řešení počátečních úloh zlomkových diferenciálních rovnic." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445462.
Full textTeodoro, Graziane Sales 1990. "Cálculo fracionário e as funções de Mittag-Leffler." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306995.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-24T12:52:57Z (GMT). No. of bitstreams: 1 Teodoro_GrazianeSales_M.pdf: 8150080 bytes, checksum: 07ef5ddebc25d941750b2dee59bd4022 (MD5) Previous issue date: 2014
Resumo: O cálculo fracionário, nomenclatura utilizada para cálculo de ordem não inteira, tem se mostrado importante e, em muitos casos, imprescindível na discussão de problemas advindos de diversas áreas da ciência, como na matemática, física, engenharia, economia e em muitos outros campos. Neste contexto, abordamos a integral fracionária e as derivadas fracionárias, segundo Caputo e segundo Riemann-Liouville. Dentre as funções relacionadas ao cálculo fracionário, uma das mais importantes é a função de Mittag-Leffler, surgindo naturalmente na solução de várias equações diferenciais fracionárias com coeficientes constantes. Tendo em vista a importância dessa função, a clássica função de Mittag-Leffler e algumas de suas várias generalizações são apresentadas neste trabalho. Na aplicação resolvemos a equação diferencial associada ao problema do oscilador harmônico fracionário, utilizando a transformada de Laplace e a derivada fracionária segundo Caputo
Abstract: The fractional calculus, which is the nomenclature used to the non-integer order calculus, has important applications due to its direct involvement in problem resolution and discussion in many fields, such as mathematics, physics, engineering, economy, applied sciences and many others. In this sense, we studied the fractional integral and fractional derivates: one proposed by Caputo and the other by Riemann-Liouville. Among the fractional calculus's functions, one of most important is the Mittag-Leffler function. This function naturally occurs as the solution for fractional order differential equations with constant coeficients. Due to the importance of the Mittag-Leffler functions, various properties and generalizations are presented in this dissertation. We also presented an application in fractional calculus, in which we solved the differential equation associated the with fractional harmonic oscillator. To solve this fractional oscillator equation, we used the Laplace transform and Caputo fractional derivate
Mestrado
Matematica Aplicada
Mestra em Matemática Aplicada
Oliveira, Daniela dos Santos de 1990. "Derivada fracionária e as funções de Mittag-Leffler." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306994.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T00:53:38Z (GMT). No. of bitstreams: 1 Oliveira_DanieladosSantosde_M.pdf: 3702602 bytes, checksum: c0b05792ff3ac3c5bdd5fad1b7586dd5 (MD5) Previous issue date: 2014
Resumo: Neste trabalho apresentamos um estudo sobre as funções de Mittag-Leffler de um, dois e três parâmetros. Apresentamos a função de Mittag-Leffler como uma generalização da função exponencial bem como a relação que esta possui com outras funções especiais, tais como as funções beta, gama, gama incompleta e erro. Abordamos, também, a integração fracionária que se faz necessária para introduzir o conceito de derivação fracionária. Duas formulações para a derivada fracionária são estudadas, as formulações proposta por Riemann-Liouville e por Caputo. Investigamos quais regras clássicas de derivação são estendidas para estas formulações. Por fim, como uma aplicação, utilizamos a metodologia da transformada de Laplace para resolver a equação diferencial fracionária associada ao problema do oscilador harmônico fracionário
Abstract: This work presents a study about the one- two- and three-parameters Mittag-Leffler functions. We show that the Mittag-Leffler function is a generalization of the exponential function and present its relations to other special functions beta, gamma, incomplete gamma and error functions. We also approach fractional integration, which is necessary to introduce the concept of fractional derivatives. Two formulations for the fractional derivative are studied, the formulations proposed by Riemann-Liouville and by Caputo. We investigate which classical derivatives rules can be extended to these formulations. Finally, as an application, using the Laplace transform methodology, we discuss the fractional differential equation associated with the harmonic oscillator problem
Mestrado
Matematica Aplicada
Mestra em Matemática Aplicada
Kárský, Vilém. "Modelování LTI SISO systémů zlomkového řádu s využitím zobecněných Laguerrových funkcí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316278.
Full textKadlčík, Libor. "Efektivní použití obvodů zlomkového řádu v integrované technice." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-432494.
Full textHnaien, Dorsaf. "Equations aux dérivées fractionnaires : propriétés et applications." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS038.
Full textOur objective in this thesis is the study of nonlinear differential equations involving fractional derivatives in time and/or in space. First, we are interested in the study of two nonlinear time and/or space fractional systems. Our second interest is devoted to the analysis of a time fractional differential equation. More exactly for the first part, the question concerning the global existence and the asymptotic behavior of a nonlinear system of differential equations involving time and space fractional derivatives is addressed. The used techniques rest on estimates obtained for the fundamental solutions and the comparison of some fractional inequalities. In addition, we study a nonlinear system of reaction-diffusion equations with space fractional derivatives. The local existence and the uniqueness of the solutions are proved using the Banach fixed point theorem. We show that the solutions are bounded and analyze their large time behavior. The second part is dedicated to the study of a nonlinear time fractional differential equation. Under some conditions on the initial data, we show that the solution is global while under others, it blows-up in a finite time. In this case, we give its profile as well as bilateral estimates of the blow-up time. While for the global solution we study its asymptotic behavior
Ncube, Mahluli Naisbitt. "The natural transform decomposition method for solving fractional differential equations." Diss., 2018. http://hdl.handle.net/10500/25348.
Full textMathematical Sciences
M. Sc. (Applied Mathematics)
Toudjeu, Ignace Tchangou. "Mathematical analysis of generalized linear evolution equations with the non-singular kernel derivative." Diss., 2019. http://hdl.handle.net/10500/25774.
Full textMathematical Science
M Sc. (Applied Mathematics)
Monyayi, Victor Tebogo. "Well-posedness and mathematical analysis of linear evolution equations with a new parameter." Diss., 2020. http://hdl.handle.net/10500/26794.
Full textIn this dissertation we apply linear evolution equations to the Newtonian derivative, Caputo time fractional derivative and $-time fractional derivative. It is notable that the most utilized fractional order derivatives for modelling true life challenges are Riemann- Liouville and Caputo fractional derivatives, however these fractional derivatives have the same weakness of not satisfying the chain rule, which is one of the most important elements of the match asymptotic method [2, 3, 16]. Furthermore the classical bounded perturbation theorem associated with Riemann-Liouville and Caputo fractional derivatives has con rmed not to be in general truthful for these models, particularly for solution operators of evolution systems of a derivative with fractional parameter ' that is less than one (0 < ' < 1) [29]. To solve this problem, we introduce the derivative with new parameter, which is de ned as a local derivative but has a fractional order called $-derivative and apply this derivative to linear evolution equation and to support what we have done in the theory, we utilize application to population dynamics and we provide the numerical simulations for particular cases.
Mathematical Sciences
M.Sc. (Applied Mathematics)
Book chapters on the topic "Caputo derivatives"
Anastassiou, George A., and Ioannis K. Argyros. "Iterative Algorithms and Left-Right Caputo Fractional Derivatives." In Intelligent Numerical Methods: Applications to Fractional Calculus, 231–43. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26721-0_14.
Full textAlmeida, Ricardo, Agnieszka B. Malinowska, and Delfim F. M. Torres. "Fractional Euler–Lagrange Differential Equations via Caputo Derivatives." In Fractional Dynamics and Control, 109–18. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0457-6_9.
Full textAgarwal, Ravi, Snezhana Hristova, and Donal O’Regan. "Non-instantaneous Impulses in Differential Equations with Caputo Fractional Derivatives." In Non-Instantaneous Impulses in Differential Equations, 73–192. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66384-5_2.
Full textChikrii, Arkadii, and Ivan Matychyn. "Riemann–Liouville, Caputo, and Sequential Fractional Derivatives in Differential Games." In Annals of the International Society of Dynamic Games, 61–81. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-8089-3_4.
Full textAkdemir, Ahmet Ocak, Hemen Dutta, Ebru Yüksel, and Erhan Deniz. "Inequalities for m-Convex Functions via Ψ-Caputo Fractional Derivatives." In Mathematical Methods and Modelling in Applied Sciences, 215–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43002-3_17.
Full textAhmad, Bashir, Ahmed Alsaedi, Sotiris K. Ntouyas, and Jessada Tariboon. "Nonlinear Langevin Equation and Inclusions Involving Hadamard-Caputo Type Fractional Derivatives." In Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, 209–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52141-1_7.
Full textD’Abbicco, Marcello. "Critical Exponents for Differential Inequalities with Riemann-Liouville and Caputo Fractional Derivatives." In Trends in Mathematics, 49–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10937-0_2.
Full textLavín-Delgado, J. E., J. E. Solís-Pérez, J. F. Gómez-Aguilar, and R. F. Escobar-Jiménez. "Image Edge Detection Using Fractional Conformable Derivatives in Liouville-Caputo Sense for Medical Image Processing." In Fractional Calculus in Medical and Health Science, 1–54. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2021] |: CRC Press, 2020. http://dx.doi.org/10.1201/9780429340567-1.
Full textKashuri, Artion, and Rozana Liko. "Some New Hermite–Hadamard Type Integral Inequalities via Caputo k–Fractional Derivatives and Their Applications." In Differential and Integral Inequalities, 435–58. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27407-8_14.
Full textAtangana, Abdon. "A New Numerical Approximation of Fractional Differentiation: Upwind Discretization for Riemann-Liouville and Caputo Derivatives." In Nonlinear Systems and Complexity, 193–212. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90972-1_13.
Full textConference papers on the topic "Caputo derivatives"
Baleanu, Dumitru. "On Constrained Systems Within Caputo Derivatives." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35009.
Full textBaleanu, Dumitru, Sami I. Muslih, and Eqab M. Rabei. "On Fractional Hamilton Formulation Within Caputo Derivatives." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34812.
Full textTrigeassou, Jean-Claude, Nezha Maamri, and Alain Oustaloup. "Initialization of Riemann-Liouville and Caputo Fractional Derivatives." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47633.
Full textNarahari Achar, B. N., Carl F. Lorenzo, and Tom T. Hartley. "Initialization Issues of the Caputo Fractional Derivative." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84348.
Full textBaleanu, Dumitru, Om P. Agrawal, and Sami I. Muslih. "Lagrangians With Linear Velocities Within Hilfer Fractional Derivative." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47953.
Full textOrtigueira, Manuel D. "On the “walking dead” derivatives: Riemann-Liouville and Caputo." In 2014 International Conference on Fractional Differentiation and its Applications (ICFDA). IEEE, 2014. http://dx.doi.org/10.1109/icfda.2014.6967433.
Full textWang, Jie, Jinping Liu, Junbin He, Jianyong Zhu, Tianyu Ma, and Zhaohui Tang. "Edge-relevant Structure Feature Detection Using Caputo-Fabrizio Fractional-order Gaussian Derivatives." In 2019 Chinese Control And Decision Conference (CCDC). IEEE, 2019. http://dx.doi.org/10.1109/ccdc.2019.8832964.
Full textLi, Xuhao, and Patricia J. Y. Wong. "High order approximation to new generalized Caputo fractional derivatives and its applications." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5043779.
Full textAbdelAty, Amr M., Ahmed G. Radwan, Waleed A. Ahmed, and Mariam Faied. "Charging and discharging RCα circuit under Riemann-Liouville and Caputo fractional derivatives." In 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE, 2016. http://dx.doi.org/10.1109/ecticon.2016.7561294.
Full textBalint, Agneta M., and Stefan Balint. "Objectivity lost when Riemann-Liouville or caputo fractional order derivatives are used." In TIM 18 PHYSICS CONFERENCE. Author(s), 2019. http://dx.doi.org/10.1063/1.5090070.
Full text