Academic literature on the topic 'Capture et la conversion du CO2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Capture et la conversion du CO2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Capture et la conversion du CO2"

1

Yin, Huayi, and Dihua Wang. "(Invited) Electrochemical Conversion of CO2 Into Oxygen/ and C/CO in Molten Carbonate." ECS Meeting Abstracts MA2023-01, no. 56 (August 28, 2023): 2737. http://dx.doi.org/10.1149/ma2023-01562737mtgabs.

Full text
Abstract:
The molten salt CO2 capture and electrochemical transformation (MSCC-ET) process has been demonstrated as an effective approach to capturing and converting CO2 into oxygen and C/CO [1-2]. The effective CO2 capture and electrochemical conversion rely on the high-temperature molten carbonate electrolytes and the cost-effective inert oxygen-evolution anode. In recent years, we have focused on the electrolyte engineering to modulate the reactions at both the cathode and anode as well as the CO2 capture efficiency [3-4]. Besides, we insist on developing iron- and nickel-base oxygen-evolution inert anodes in terms of revealing the fundamental principles and basic guidelines for choosing proper materials and fabrication processes [5]. By doing so, we can prepare functional carbon materials or CO at the cathode with a high current efficiency of over 90%, and produce oxygen at the inert anode. In addition, the kilo-ampere scale electrolyzer was built to produce oxygen, carbon or CO with an energy efficiency of over 50%. Therefore, the molten carbonate CO2 electrolyzer shows its potential to convert CO2 on the Mars to produce oxygen and fuels to support the future exploration of outer space. References [1] H. Y. Yin, D. H. Wang*, et al., Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis. Energy & Environmental Science, 2013, 6: 1538-1545. [2] R. Jiang, M. X. Gao, X. H. Mao, D. H. Wang*. Advancements and potentials of molten salt CO2 capture and electrochemical transformation (MSCC-ET) process, Current Opinion in Electrochemistry, 2019, 17: 38-46. [3] B. W. Deng, J. J. Tang, X. H. Mao, Y. Q. Song, H. Zhu, W. Xiao, D. H. Wang*. Kinetic and Thermodynamic Characterization of Enhanced Carbon Dioxide Absorption Process with Lithium Oxide-Containing Ternary Molten Carbonate, Environmental Science & Technology, 2016, 50(19): 10588-10595. [4] Z. S Yang, B. W. Deng, K. F. Du, H. Y. Yin*, D. H. Wang*, A general descriptor for guiding the electrolysis of CO2 in molten carbonate, 2022, in press. [5] P. L. Wang, K. F. Du, Y. P. Dou, H. Zhu, D. H. Wang*, Corrosion behaviour and mechanism of nickel anode in SO42- containing molten Li2CO3-Na2CO3-K2CO3. Corrosion Science 2022, 166. Figure 1
APA, Harvard, Vancouver, ISO, and other styles
2

Song, Jun Tae, Yuta Takaoka, Atsushi Takagaki, Motonori Watanabe, and Tatsumi Ishihara. "Synergistic Integration of Zr-MOF (UiO-66) and Bi Electrocatalysts for Enhanced CO2 Conversion to Formate." ECS Meeting Abstracts MA2023-02, no. 47 (December 22, 2023): 2382. http://dx.doi.org/10.1149/ma2023-02472382mtgabs.

Full text
Abstract:
The utilization of renewable energy-driven CO2 conversion technology has garnered considerable attention as a potential remedy for both the energy crisis and climate change. Among various methods, the electrocatalytic CO2 reduction reaction (CO2RR) has received particular focus due to its mild reaction conditions and its ability to produce various valuable products. Specifically, formic acid holds great promise for CO2 electrolysis due to its potential for energy storage and transportation, as well as its commercial viability as indicated by techno-economic assessments. Bi, In, and Sn are several metal catalysts that have been reported for formic acid production, with Bi catalysts demonstrating favorable properties in terms of both cost-effectiveness and selective production of formic acid. However, despite efforts to enhance the intrinsic catalytic activity of Bi through methods such as nanostructuring and alloying, it has yet to achieve the desired level of performance. In light of recent findings by Nam et al. on the ability of a metal-organic framework (MOF) to regulate reaction intermediates for Ag catalyst, resulting in higher CO production, we draw inspiration from MOF's versatility and demonstrate the successful coupling of Bi with UiO-66, a Zr-MOF, to achieve higher CO2 reduction rates and thus increase formic acid production [1]. We synthesized MOF materials, UiO-66 and NH2-functionalized UiO-66 (UiO-66-NH2), and deposited Bi catalysts on the MOF structures using the NaBH4 reduction method, resulting in Bi/UiO-66 and Bi/UiO-66-NH2 samples. To compare the catalytic activity, we also synthesized Bi particle samples using the same method (Bi). Prior to CO2 reduction examination, all electrocatalysts were pre-treated in a 1.0 M KOH solution for 5 minutes, and then CO2 electrolysis was performed in a flow-cell reactor. Among the synthesized samples, Bi/UiO-66 demonstrated excellent CO2 reduction properties, exhibiting about 5 times higher current density (-220 mA/cm2) at an applied potential of -0.7 V vs. the reversible hydrogen electrode (RHE) than Bi alone (-44 mA/cm2), despite the identical electrochemically active surface area (ECSA) for both samples. On the other hand, Bi/UiO-66-NH2 showed an almost identical ECSA-normalized current density compared to Bi/UiO-66, indicating the negligible effect of NH2 functionalization on UiO-66 for CO2RR. Nevertheless, it is evident that the utilization of Zr-MOF (UiO-66) is beneficial in increasing the CO2 conversion rate of metallic Bi catalyst. To comprehend the reason behind the superior catalytic activity exhibited by the Bi/UiO-66 sample, we conducted various characterizations, such as SEM, TEM, FTIR, Raman, and XPS. Our results revealed that the structural evolution of UiO-66 occurs by the formation of carbonate-coordinated Zr-hydroxide during CO2 electrolysis, contributing to the high CO2 reduction current density. Moreover, the disappearance of the carbonate-relevant peak in the C 1s from XPS analysis after the decline in catalytic activity suggests that the carbonate species formed at Zr-MOF site, which is the captured form of CO2 molecules, play a crucial role in efficient CO2 capture and conversion. These findings suggest that Zr-MOF can be used for CO2 capture and conversion with high efficiency. [1] Nam et al., J. Am. Chem. Soc. 2020, 142, 51, 21513–21521.
APA, Harvard, Vancouver, ISO, and other styles
3

Reisner, Erwin. "(Invited) Solar Panel Technologies for Light-to-Chemical Conversion." ECS Meeting Abstracts MA2023-02, no. 47 (December 22, 2023): 2370. http://dx.doi.org/10.1149/ma2023-02472370mtgabs.

Full text
Abstract:
Solar panels are well known to produce electricity, but they are also in early-stage development for the production of sustainable fuels and chemicals. These panels mimic plant leaves in shape and function as demonstrated for overall solar water splitting to produce green H2 by the laboratories of Nocera and Domen.1,2 This presentation will give an overview of our recent progress to construct prototype solar panel devices for the conversion of carbon dioxide and solid waste streams into fuels and higher-value chemicals through molecular surface-engineering of solar panels with suitable catalysts. Specifically, a standalone ‘photoelectrochemical leaf’ based on an integrated lead halide perovskite-BiVO4 tandem light absorber architecture has been built for the solar CO2 reduction to produce syngas.3 Syngas is an energy-rich gas mixture containing CO and H2 and currently produced from fossil fuels. The renewable production of syngas may allow for the synthesis of renewable liquid oxygenates and hydrocarbon fuels. Recent advances in the manufacturing have enabled the reduction of material requirements to fabricate such devices and make the leaves sufficiently light weight to even float on water, thereby enabling application on open water sources.4 The tandem design also allows for the integration of biocatalysts and the selective and bias-free conversion of CO2-to-formate has been demonstrated using enzymes.5 The versatility of the integrated leaf architecture has been demonstrated by replacing the perovskite light absorber by BiOI for solar water and CO2 splitting to demonstrate week-long stability.6 An alternative solar carbon capture and utilisation technology is based on co-deposited semiconductor powders on a conducting substrate.2 Modification of these immobilized powders with a molecular catalyst provides us with a photocatalyst sheet that can cleanly produce formic acid from aqueous CO2.7 CO2-fixing bacteria grown on such a ‘photocatalyst sheet’ enable the production of multicarbon products through clean CO2-to-acetate conversion.8 The deposition of a single semiconductor material on glass gives panels for the sunlight-powered conversion plastic and biomass waste into H2 and organic products, thereby allowing for simultaneous waste remediation and fuel production.9 The concept and prospect behind these integrated systems for solar energy conversion,10 related approaches,11 and their relevance to secure and harness sustainable energy supplies in a fossil-fuel free economy will be discussed. References (1) Reece et al., Science, 2011, 334, 645–648. (2) Wang et al., Nat. Mater., 2016, 15, 611–615. (3) Andrei et al., Nat. Mater., 2020, 19, 189–194. (4) Andrei et al., Nature, 2022, 608, 518–522. (5) Moore et al., Angew. Chem. Int. Ed., 2021, 60, 26303–26307. (6) Andrei et al., Nat. Mater., 2022, 21, 864–868. (7) Wang et al., Nat. Energy, 2020, 5, 703–710. (8) Wang et al., Nat. Catal., 2022, 5, 633–641. (9) Uekert et al., Nat. Sustain., 2021, 4, 383–391. (10) Andrei et al., Acc. Chem. Res., 2022, 55, 3376–3386. (11) Wang et al., Nat. Energy, 2022, 7, 13-24.
APA, Harvard, Vancouver, ISO, and other styles
4

Bohlen, Barbara, Nick Daems, and Tom Breugelmans. "Electrochemical Production of Formate Directly from Amine-Based CO2 Capture Media." ECS Meeting Abstracts MA2023-01, no. 26 (August 28, 2023): 1722. http://dx.doi.org/10.1149/ma2023-01261722mtgabs.

Full text
Abstract:
Introduction There is an urgency for the development and establishment of technologies to deal with the effects of climate change and increasing temperature of the planet.1 The decrease in the CO2 emissions is a possible path, and the capture of CO2 from the atmosphere is another alternative to try and tackle the effects of climate change.2 The combination of capture and conversion of CO2 is a potential approach to achieve the net-zero emission goals and a circular economy for the future.3 Amine scrubbing is an industrially established capture technology that utilizes mainly monoethanolamine (MEA) as the capture solution to capture CO2 from post-combustion flue gases. The process has the disadvantage of a high energy demand, which prevents its wider application.2 This study proposes a novel capture and utilization (CCU) combination: the use of the MEA capture solution as electrolyte for the electrochemical CO2 reduction (eCO2R). In that way, the CO2 capture and conversion will be combined in the same medium, avoiding the energy-intensive regeneration step, thus saving energy, as well as generating products of industrial interest. Sn-based catalysts were primarily chosen due to their selectivity towards formate, one of the most straightforward reduction products from CO2. Results The eCO2R from the capture media (30 wt% MEA solutions, saturated with CO2) was promoted in a zero-gap type reactor, composed of an Sn-based cathode, a Ni foam anode and a bipolar membrane (BPM) separating the cathode and anode compartments. The BPM is responsible for providing protons to the cathode side of the electrolyzer, which promote the hydrolysis of the carbamate on the surface of the catalyst and thus enhances the CO2 availability and consequently the eCO2R. Figure 1 presents a scheme of the zero-gap electrolyzer, highlighting the hydrolysis of the carbamate in contact with the catalyst, and compares the faradaic efficiencies (FE) towards formate obtained by different setups of the zero-gap electrolyzer, at -50 mA cm-2. The Sn nanoparticle (SnNP)-based catalysts show a low efficiency for the eCO2R from the capture media (up to 5%). As published in the literature, surfactants are capable to inhibit the hydrogen evolution reaction (HER) in electrochemical systems and thus promote the eCO2R.4 The surfactant cetyltrimethylammonium bromide (CTAB) was therefore added to the system and the FE towards formate increased, although merely up to 6.43%. To further increase the surface area available for the eCO2R, a metal gauze was introduced as support for the working electrode (WE). Here, a Cu gauze with electrodeposited Sn (SnED) was used as WE and the obtained FE was 70% higher than for the carbon supported SnNP catalysts, up to 8.49%, without the addition of the surfactant. The hydrophilic nature of the metal surface (in comparison to the carbon paper substrate of the NPs) and a bigger surface area could be the reasons behind this enhancement in the FE using metal WE. Future studies will focus on the further enhancement of the FE towards formate. Conclusion This study shows the feasibility of a novel CCU technology: the electrochemical reduction of CO2 to formate from an amine-based capture medium. Sn-based catalysts lead to an FE of up to 8.49%. The use of a metallic electrode lead to a larger enhancement of the FE, in comparison to the addition of a surfactant to the electrolyte for the SnNP-based catalyst. There is yet room for further improvement of the faradaic efficiency by the combination of the metal electrode and the use of surfactants to inhibit the HER, as well as the use of catalysts with higher selectivity towards the product, such as Bi. The use of a zero-gap electrolyzer shows the feasibility of scaling up the system to industrially relevant dimensions and the easiness of incorporating the electrochemical system to the end of pre-existing capture plants. References Ghiat, I., & Al-Ansari, T. (2021). Journal of CO2 Utilization, 45. Gutiérrez-Sánchez, O., Bohlen, B., et al. (2022). ChemElectroChem, 9(5), e202101540. Li, M., Irtem, E., et al. (2022). Nature Communications 2022 13:1, 13(1), 1–11. Chen, L., Li, F., et al. (2017). ChemSusChem, 10(20), 4109–4118. Figure 1
APA, Harvard, Vancouver, ISO, and other styles
5

Owhoso, Fiki V., and David G. Kwabi. "Effect of Covalent Modification on Proton-Coupled Electron Transfer at Quinone-Functionalized Carbon Electrodes." ECS Meeting Abstracts MA2022-02, no. 57 (October 9, 2022): 2171. http://dx.doi.org/10.1149/ma2022-02572171mtgabs.

Full text
Abstract:
Electrodes functionalized with molecularly well-defined reactive/catalytic species have become attractive for promoting a wide variety of electrochemical energy conversion processes or systems, such as electrocatalytic CO2 and O2 reduction, as well as metal-sulfur and redox-flow batteries.1-3 Critical to the performance of these electrodes is the interaction between the electric field, and the molecular species at the electrical double layer. Nevertheless, elucidating the potential/electric field experienced at the functionalized interface is challenging. We show in this work that the acid-base thermochemical (i.e. Pourbaix) behavior of molecular quinones can vary depending on their mode of covalent attachment to a carbon electrode and ionic strength of the electrolyte, in a manner that sheds light on the experienced interfacial electric field. This work can inform strategies for effective pH modulation at electrified interfaces in ways that can enhance the electrocatalytic processes and systems mentioned above, and enable newer applications such as pH-swing-based electrochemical CO2 capture using appropriately chemically modified electrodes.4 References 1 Ren, G. et al. Porous Core–Shell Fe3C Embedded N-doped Carbon Nanofibers as an Effective Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 8, 4118-4125, doi:10.1021/acsami.5b11786 (2016). 2 Zhang, S., Fan, Q., Xia, R. & Meyer, T. J. CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis. Accounts of Chemical Research 53, 255-264, doi:10.1021/acs.accounts.9b00496 (2020). 3 Zhao, C.-X. et al. Semi-Immobilized Molecular Electrocatalysts for High-Performance Lithium–Sulfur Batteries. Journal of the American Chemical Society 143, 19865-19872, doi:10.1021/jacs.1c09107 (2021). 4 Jin, S., Wu, M., Gordon, R. G., Aziz, M. J. & Kwabi, D. G. pH swing cycle for CO2 capture electrochemically driven through proton-coupled electron transfer. Energy & Environmental Science, doi:10.1039/D0EE01834A (2020).
APA, Harvard, Vancouver, ISO, and other styles
6

Novoselova, Inessa, Sergiy Kuleshov, and Anatoliy Omel'chuk. "(Digital Presentation) Electrochemical Conversion of CO2 into Tungsten Carbides in Molten Salts." ECS Meeting Abstracts MA2023-01, no. 26 (August 28, 2023): 1744. http://dx.doi.org/10.1149/ma2023-01261744mtgabs.

Full text
Abstract:
Huge amounts of anthropogenic emissions of the greenhouse gas carbon dioxide into the Earth's atmosphere are one of the key factors causing global warming. To mitigate the consequences of the severe climate changes caused by this phenomenon, over the last two decades great efforts of researchers have been directed towards the development of sustainable, environmentally friendly, carbon neutral and, if possible, not very expensive (in terms of used energy and inexpensive consumables) technologies for capture, conversion and storage (CCS) of CO2. Electrochemical conversion of CO2 using molten salts can rightfully be classified as CCS technology. In this case, carbon dioxide from various sources of its generation (fossil fuel power plants, industrial enterprises with a high carbon footprint) can be captured by molten salt (as a result of its physical dissolution, or chemical absorption by molten salt), and then electrochemically be converted into high value-added carbon-containing compounds: (a) carbon monoxide [1]; (b) carbon allotropes of various structures and modifications [2]; (c) refractory metal carbides [3], and various composites based on them. The reaction path and composition of the cathode products will depend on the electrolysis conditions. Elemental carbon synthesis precursor can be – carbon dioxide, directly dissolved in the molten salt mixture (direct reduction of CO2), as well as the carbonate anion, formed as a result of carbon dioxide interaction with oxide ions which are presented in the electrolyte bath (indirect reduction of CO2). This work presents the result of research concerning the electrochemical synthesis of the powders of tungsten carbides (WC and W2C) in chloride melt NaCl-KCl (1:1) under carbon dioxide pressure at the temperature range 700 – 800 оС. Refractory metal precursors are its oxy-anions (WО3; W2O7 2-; Меn x[WO4]nx-2; WO3F3 3- where Me – Na; K; Li; Mg; Ca; n – valance of metal Me). The formation of the new forms of tungsten electrochemical active particles in electrolyte is realized by the changing (control) of acidity of the melt. Carbon source is CO2, which was introduced into the electrolyzer under the excessive pressure of 0.1 – 1.7 MPa. The creation of excessive gas pressure is necessary condition for the increasing of the rate of electrolytic process (current densities) throw the rise of CO2 solubility in chloride melt. The general scheme of the high-temperature synthesis of tungsten carbides by the method of Molten Salt Carbon Electrochemical Transformation (MS-CCT) is presented in Fig. 1. The electrochemical investigations of partial and joint electroreduction of tungsten carbide precursors were carried out by the method of cyclic voltammetry. The areas of potentials and current densities, where the joint electrochemical discharge of tungsten carbide precursors (a narrow range of deposition potentials) occurs up to refractory metal and carbon takes place were found. Electrolytical synthesis of nano-sized (10 – 30 nm) powders of tungsten carbides (WC, W2C) and composites WC-C (up to 5 wt % of free carbon); W2C-WC; WC-C-Pt was carried out from the melts of different chemical composition; and the characterization of obtained products was fulfilled by the methods of chemical analysis, X-ray diffraction, DTG, BET adsorption, scanning and transmission electron microscopy. Synthesized composite materials based on tungsten carbides of various compositions were investigated as a cathode material in the reaction of electrolytic splitting of water for hydrogen production in a sulfuric acid solution [4]. The obtained results showed that the best activity has a composite of tungsten monocarbide WC with a content of free carbon up to 5 wt.%. The hydrogen onset potential for this electrode is -0.02 V, the overvoltage of hydrogen release at ik = 10 mA/cm2 is -110 mV, the exchange current is 7.0×10-4 A/cm2, the Tafel slope – -85 mV/dec. The presence of free carbon on the surface of tungsten carbides electrode improves its catalytic activity, increasing the area of the active surface. The catalytic activity of electrodes made of tungsten monocarbide increases with the introduction of platinum (up to 10 wt %) into the composite. References Kaplan V, Wachtel E, Gartsman K et al (2010) Conversion of CO2 to CO by electrolysis of molten lithium carbonate. J Electrochem Soc 157:B552–B556. Novoselova I.A., Kushkhov Kh.B., Malyshev V.V., Shapoval V.I. (2001) Theoretical foundations and implementation of high-temperature electrochemical synthesis of tungsten carbides in ionic melts. Theor. Found. Chem. Eng. 35:175–187. Novoselova I.A., Kuleshov S.V., Volkov S.V. et al (2016) Electrochemical synthesis, morphological and structural characteristics of carbon nanomaterials produced in molten salts. Electrochim Acta 211:343–355. Novoselova I, Kuleshov S, Fedoryshena E et al (2018) Electrochemical synthesis of tungsten carbide in molten salts, its properties and applications. ECS Trans 86:81–94. Figure 1
APA, Harvard, Vancouver, ISO, and other styles
7

Cobb, Samuel J., Azim M. Dharani, Ana Rita Oliveira, Inês A. C. Pereira, and Erwin Reisner. "Using Enzymes to Understand and Control the Local Environment of Catalysis." ECS Meeting Abstracts MA2023-02, no. 52 (December 22, 2023): 2530. http://dx.doi.org/10.1149/ma2023-02522530mtgabs.

Full text
Abstract:
Local environments within porous electrodes are an inherent, but often neglected component of catalysis as the local conversion of reactants to products means catalysis occurs in a very different environment to bulk solution. By understanding and modifying these local environments using a combination of experimental and computational techniques, we show how to improve the performance of electrocatalytic reactions to address the climate crisis by efficiently converting renewable energy to chemical fuels. The selectivity and activity of enzymes means they are ideal model catalysts that can guide the design of synthetic systems. However, they must be in an environment that is close to their optimal to operate efficiently, with small changes in properties such as pH drastically affecting their activity. By optimising their local environment, the rates of fuel formation can be drastically (>18×) increased.[1] We also demonstrate the crucial role of CO2 hydration kinetics on the local pH and CO2 concentration using the enzyme Carbonic Anhydrase co-immobilised with Formate Dehydrogenase.[2] Carbonic Anhydrase catalyses CO2 hydration, causing CO2 to act as a better buffer to mitigate changes in the local pH environment allowing the system to operate closer to its optimal and how this contrasts with heterogeneous CO2 reduction. (fig. 1a) We extend this approach to low CO2 concentrations, taking inspiration from the natural carboxysome to develop a system where Formate Dehydrogenase and Carbonic Anhydrase are co-immobilised in a nanoconfined structure to improve low CO2 concentration utilisation. (fig. 1b).[3] The electrolysis of dilute CO2 streams suffers from low concentrations of dissolved substrate and its rapid depletion at the electrolyte-electrocatalyst interface. These limitations require first energy-intensive CO2 capture and concentration, before electrolyzers can achieve acceptable performances. For direct electrocatalytic CO2 reduction from low-concentration sources, we introduce a strategy that mimics the carboxysome in cyanobacteria by utilizing microcompartments with nanoconfined enzymes in a porous electrode. Carbonic Anhydrase accelerates CO2 hydration kinetics and minimizes substrate depletion by making all dissolved carbon available for utilization, while a highly efficient formate dehydrogenase reduces CO2 cleanly to formate; down to even atmospheric concentrations of CO2. This bio-inspired concept demonstrates that the carboxysome provides a viable blueprint for the reduction of low-concentration CO2 streams to chemicals by using all forms of dissolved carbon. References [1] E. E. Moore, S. J. Cobb et al., Proc. Natl. Acad. Sci. USA 2022,119, e2114097119 [2] S. J. Cobb et al., Nat. Chem. 2022, 14, 417 – 424 [3] S. J. Cobb et al., Angew. Chem. Int. Ed.,2023 Just Accepted, DOI: 10.1002/anie.202218782 Figure 1
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, Shu. "(Invited) A Coating Strategy for Heterogeneous Photocatalysis Producing Renewable Fuels." ECS Meeting Abstracts MA2022-01, no. 36 (July 7, 2022): 1554. http://dx.doi.org/10.1149/ma2022-01361554mtgabs.

Full text
Abstract:
Photocatalysts coevolve reductive and oxidative reactions in close proximity. Due to simplified reactor implementation, photocatalysis promises solar fuels production at scale. Despite decades of study, their rates and selectivity were often improved by trial and error, and their solar-to-fuel conversion efficiencies remain much lower than the theoretical limit. I will discuss an emerging coating strategy to stabilize particulate photocatalysts in a photo-reactor that promises solar energy utilization at scale. Those photocatalysts coevolve reductive and oxidative reactions in close proximity, and they potentially overcome the scale-up challenge by photoelectrochemical panels. I will first introduce the Hu-lab invented oxide coatings to protect semiconductors, such as silicon and gallium indium phosphide, and achieve efficient and durable photocatalysis. We elucidate the coupled multi-phase processes, including charge separation, charge transfer, and chemical transport across multiple scales. We will show that the local electrochemical potentials of conduction-band electrons and the branching ratios of local charge transfer kinetics under multiple pathways are mutually dependent, and how charge transfer kinetics and surface energetics sensitively determine the charge separation behavior.[1] Based on the holistic understanding of the photophysical, electrocatalytic, and transport processes coupled at the nanoscale, we employ stabilization coatings to coevolve H2 at a record rate of 48.5 mmol∙h-1∙g-1 or 2.5 mL H2∙h-1∙cm-2 under 1-sun solar illumination in ambient air.[2] Additionally, the discovery of new coatings offers the opportunity to tune the local energetics, kinetics, and reaction environments of supported co-catalysts. Manipulation of the electronic defect energetics enables the semiconductor photoabsorbers of 1.1 – 2.3 eV with sufficient band energetics. Coated photocatalysts can perform H2 evolution, water oxidation, and can further achieve CO2 reduction reactions combining with CO2 capture.[3] Recently, Berlinguette and others showed a CO2 electrolyzer for directly converting dissolved bicarbonates into CO2-reduction products.[4] The analogy in photocatalysis is to locally drive pH swing to release CO2 at the oxidative sites, whereas the nearby reductive sites reduce in-situ generated CO2 into CO2R products. We show that in the presence of quinone redox couples in a bicarbonate solution, CO is produced with a 1-atm CO2-free headspace where the only source of CO2 is the (bi)carbonate anions.[6] We envision the direct solar fuels production from natural resources such as sunlight, bicarbonates from the ocean, or moisture in the air in a durable particle reactor.[5] References: [1] Zhenhua Pan, Yanagi Rito, Q. Wang, X. Shen, Q. Zhu, Y. Xue, J. A. Rohr, Takashi Hisatomi, Kazunari Domen, and Shu Hu, “Mutually-dependent kinetics and energetics of photocatalyst/ co-catalyst/two-redox liquid junctions”, Energy & Environmental Science , 13, 162–173 (2020). doi: 10.1039/C9EE02910A [2] T. Zhao, R. Yanagi, Y. Xu, Y. He, Y. Song, M. Yang, and S. Hu, “A Coating Strategy to Achieve Effective Local Charge Separation for Photocatalytic Coevolution”, Proceedings of National Academy of Sciences , 16, 119(7) e2023552118 (2021). doi: 10.1073/pnas.2023552118 [3] J. Tang, D. Solanki, T. Zhao, and S. Hu, “Selective Two-Electron Hydrogen Peroxide Conversion Tailored by Surface, Interface, and Device Engineering,”, Joule , 6, 1432 – 1461 (2021). doi: 10.1016/j.joule.2021.04.012. [4] Li, T.; Lees, E. W.; Zhang, Z.; Berlinguette, C. P. Conversion of bicarbonate to formate in an electrochemical flow reactor. ACS Energy Lett 2020, 5 (8), 2624-2630. doi: 10.1021/acsenergylett.0c01291 [5] X. Shen, S. Hu, et al., “Comprehensive Evaluation For Protective Coatings: Optical, Electrical, Photoelectrochemical, and Spectroscopic Characterization”, Frontier in Energy Research .
APA, Harvard, Vancouver, ISO, and other styles
9

Carpenter, Chris. "Well-Integrity Risk-Assessment Strategy Applied to CO2 Sequestration Project." Journal of Petroleum Technology 75, no. 01 (January 1, 2023): 78–80. http://dx.doi.org/10.2118/0123-0078-jpt.

Full text
Abstract:
_ This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper IPTC 22348, “Scrutinizing Well Integrity for Determining Long-Term Fate of a CO2 Sequestration Project: An Improved and Rigorous Risk-Assessment Strategy,” by Parimal A. Patil, SPE, Asyraf M. Hamimi, and M. Azuan B. Abu Bakar, Petronas, et al. The paper has not been peer reviewed. Copyright 2022 International Petroleum Technology Conference. Reproduced by permission. _ Depleted hydrocarbon reservoirs are considered inherently safe for carbon sequestration, but a high density of wells penetrating the carbon dioxide (CO2) storage reservoir could compromise containment performance in a carbon capture and sequestration (CCS) project. A risk-management methodology can be incorporated to evaluate primary and secondary barriers in existing plugged and abandoned (P&A) and development wells to ensure long-term viability of CO2 sequestration projects. The complete paper evaluates well-integrity and CO2 leakage risks along the wells in a depleted field that penetrates the CO2 storage reservoir. Background The identified CO2 storage site offshore Malaysia is a depleted hydrocarbon field discovered in the early 1980s. Subsequently, two appraisal wells were drilled to further assess the field’s development potential. The structure is a north/south anticline with an aerial extent of approximately 35 km2 and a vertical closure of 100 m on top of the reservoirs. Eighteen major and minor gas-bearing reservoirs exist in the field. The hydrocarbons from deeply buried reservoirs were produced over a period of approximately 15 to 25 years through deviated wellbores. In total, 24 wells are in the targeted field; of these, three are abandoned exploration and appraisal wells and 21 are development wells drilled from the platform. All exploration and appraisal wells are P&A, while 21 development wells are still accessible from the platform. High uncertainties are associated with the P&A wells because the well sites were restored per a regulatory requirement in which the casings were cut below mudline and a surface cement plug was placed with no intention of re-entering these wells. Development wells, on the other hand, were assessed and screened for reuse by conversion into CO2 injectors. Understanding Well Integrity for CO2 Storage Potential leakages that may occur through various mechanisms during geological storage of CO2 in the storage field include failed caprock and trap integrity and leakage along existing wellbores. Parameters that could cause leakage of CO2 because of failed caprock include existing faults or fractures, reactivation of faults, development of new fractures during injection, and caprock failure caused by pressures exceeding fracture pressure during or after injection. The geological analysis of the depleted field for potential development as a future CO2 storage site must understand and mitigate associated risks by integrating information from various databases. However, the integrity of wells in the storage project must be ensured over very long time scales, in the thousands of years.
APA, Harvard, Vancouver, ISO, and other styles
10

Bass, Adam Stuart, Anand Chandra Singh, Scott Paulson, and Viola Ingrid Birss. "Minimizing Coke Formation at La0.3Ca0.7Fe0.7Cr0.3O3-δ Perovskite Anodes in a Syngas Fed-SOFC." ECS Meeting Abstracts MA2023-02, no. 46 (December 22, 2023): 2238. http://dx.doi.org/10.1149/ma2023-02462238mtgabs.

Full text
Abstract:
As the world moves to decarbonize the fossil fuel sector, transition technologies are needed that bridge the gap between natural gas power plants and more sustainable low-carbon energy sources. These newer technologies often still rely on fossil fuels but have improved energy conversion efficiencies and lower net carbon dioxide (CO2) outputs over conventional fossil fuel based electric power generation systems. In this work, we are exploring one such technology, namely the use of a syngas-fed solid oxide fuel cell (SOFC) to generate heat, electricity, steam, and captured CO2. Core to this technology is the mixed ion electron conductor deployed at the anode and cathode that catalyzes all of the relevant reactions, namely electrochemical oxidation of hydrogen (H2) and carbon monoxide (CO) at the anode, producing steam and CO2, and reduction of oxygen at the cathode. Carbon formation (coking) is normally a significant problem affecting SOFCs operating on carbon-based fuels, as it leads to a rapid decline in electrochemical performance by blocking catalytically active sites and pores with various carbon species, e.g., amorphous, graphitic, or nanotubular carbon.1 The formation of carbon species from syngas is known to occur through various mechanisms, with the Boudouard reaction (∆H= -172 kJ/mol) and the reduction of CO (∆H= -131 kJ/mol) being the most prominent.2 As such, temperature is a key parameter to optimize as it determines the propensity for carbon formation at equilibrium. In addition, the kinetics of carbon formation can be significantly reduced by introducing oxygen to the fuel gas stream in the form of O2, CO2, or H2O.3 The catalyst materials investigated here are mixed conducting perovskite oxides (La0.3Ca0.7Fe0.7Cr0.3O3- δ, LCFCr) that have been optimized and modified recently by our group, both in the as-prepared undoped form and after B-site doping with variable quantities of transition metals (M), e.g., Ni,4 forming nanoparticle (NP)-decorated ABO3-Mx surfaces. Our catalyst is highly active for H2 and CO oxidation, CO2 reduction, and O2 reduction, where it was demonstrated that the un-doped parent material can deliver a stable power density of 0.2 W/cm2 for several hundred hours with negligible performance degradation in 3% humidified H2.5 In more recent work, excellent resilience to carbon deposition for exsolved Fe-Ni@LCFCr up to 70:30 CO:CO2 was demonstrated.4 Herein, we show that minimal coke forms during exposure of these materials to dry syngas at 600oC, even under open circuit conditions. The catalysts were prepared using combustion synthesis and were characterized by XRD, SEM EDX, and TPO-MS in order to confirm morphology, crystal structure, and composition as a function of temperature and gas environment.4 Symmetrical electrolyte-supported SOFCs were constructed using our catalyst as both the anode and cathode. Catalyst layers of 1 cm2 were screen printed to a thickness of 25 µm on both sides of commercially available 130 µm thick samaria-doped ceria (SDC)-buffered scandia-stabilized zirconia (ScSZ) electrolyte, followed by sintering at 1100°C for 2 h,4 with porous metal current collectors used. The cells were mounted and tested in a Fiaxel SOFC test station with gas flow controlled by mass flow controllers. Preliminary electrochemistry experiments were conducted in 5:95 H2:N2, or 1:1 H2:CO (syngas) balanced by CO2 in a 1:2 ratio of fuel to oxidant into the anode chamber, and air into the cathode chamber at 600 oC, with performance evaluation carried out using CV, EIS and chronopotentiometry. The power density was found to be ca. 2x higher in dry H2 vs. in syngas, as expected, considering that H2 is a more active fuel vs. CO. Additionally, EIS exhibited ca. 2x higher resistance in the low frequency arc in syngas, which can be attributed to sluggish CO oxidation kinetics.4 Chronopotentiometry was performed for 20 h at 10 mA cm-2, showing a degradation rate of only 0.08 mV h-1, suspected to be primarily due to current collector delamination. Coking studies were also conducted on button cells at 600 oC in 1:1 H2:CO for 25 h at open circuit, comparing to a NiO standard that was painted on the electrolyte just next to the LCFCr-Ni working electrode. Imaging by SEM showed negligible carbon formation on the perovskite surface, supported by EDX analysis, compared to the extensive degree of coking observed at the standard. Further quantification was conducted by TPO-MS, also confirming minimal carbon formation. References Bengaard et al., Journal of Catalysis, 2002, 209, 365–384. Farshchi Tabrizi et al., Energy Conversion and Management, 2015, 103, 1065–1077. Sasaki et al., Journal of The Electrochemical Society, 2003, 150. Ansari et al., Journal of Materials Chemistry A, 2022, 10, 2280–2294. Addo et al., ECS Transactions, 2015, 66, 219–228.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Capture et la conversion du CO2"

1

Danaci, Simge. "Optimisation et intégration de catalyseurs structurés en réacteurs structurés pour la conversion de CO₂ en méthane." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI041/document.

Full text
Abstract:
Dans cette étude de doctorat, la technique de dépôt tridimensionnel de fibres (3DFD) a été appliquée pour développer et fabriquer des structures de support catalytique multi-canaux avancées. En utilisant cette technique, le matériau, la porosité, la forme et la taille des canaux et l'épaisseur des fibres peuvent être contrôlées. L'objectif de cette recherche est d'étudier les performances des supports structurés 3D conçus pour la méthanation du CO2 en termes d'activité, de sélectivité de stabilité et d’étudier l'impact des propriétés spécifiques introduites dans la conception structurale des supports
In this doctoral study, the three dimensional fibre deposition (3DFD) technique has been applied to develop and manufacture advanced multi-channelled catalytic support structures. By using this technique, the material, the porosity, the shape and size of the channels and the thickness of the fibres can be controlled. The aim of this research is to investigate the possible benefits of 3D-designed structured supports for CO2 methanation in terms of activity, selectivity and stability and the impact of specific properties introduced in the structural design of the supports
APA, Harvard, Vancouver, ISO, and other styles
2

Brandvoll, Øyvind. "Chemical looping combustion : fuel conversion with inherent CO2 capture." Doctoral thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1203.

Full text
Abstract:

Chemical looping combustion (CLC) is a new concept for fuel energy conversion with CO2 capture. In CLC, fuel combustion is split into seperate reduction and oxidation processes, in which a solid carrier is reduced and oxidized, respectively. The carrier is continuously recirculated between the two vessels, and hence direct contact between air and suel is avoided. As a result, a stoichiometric amount of oxygen is transferred to the fuel by a regenerable solid intermediate, and CLC is thus a varient of oxy-fuel combustion. In principle, pure CO2 can be obtained from the reduction exhaust by condensation of the produced water vapor. The termodynamic potential and feasibility of CLC has been studied by means of process simulatons and experimental studies of oxygen carriers. Process simulations have focused on parameter sensitivity studies of CLC implemented in 3 power cycles; CLC-Combined Cycle, CLC-Humid Air Turbine and CLC-Integrated Steam Generation. Simulations indicate that overall fuel conversion ratio, oxidation temperature and operating pressure are among the most imortant process parameters in CLC. A promising thermodynamic potentail of CLC has been found, with efficiencies comparable to, - or better than existing technologies for CO2 capture. The proposed oxygen carrier nickel oxide on nickel spinel (NiONiA1) has been studied in reduction with hydrogen, methane and methane/steam as well as oxidation with dry air. It has been found that at atmosphereic pressure and temperatures above 600° C, solid reduction with dry methane occurs with overall fuel conversion of 92%. Steam methane reforming is observed along with methane cracking as side reactions, yealding an overall selectivity of 90% with regard to solid reduction. If steam is added to the reactant fuel, coking can be avoided. A methodology for long term investigation of solid chemical activity in a batch reactor is proposed. The method is based on time variables for oxidaton. The results for NiONiA1 do not rule out CLC as a viable alternative for CO2 capture, but long term durability studies along with realistic testing of the carrier in a continuous rig is needed to firmly conclude. For comparative purposes a perovskite was synthesized and tested in CLC, under similar conditions as NiONiA1. The results indicate that in a moving bed CLC application, perovskites have inherent disadvantages as compared to simpler compounds, by virtue of low relative oxygen content.

APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Hyung Rae. "Chemical Looping Process for Direct Conversion of Solid Fuels In-Situ CO2 Capture." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250605561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

MARCHESE, MARCO. "Conversion of industrial CO2 to value-added fuels and chemicals via Fischer-Tropsch upgrade." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2914540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boulmene, Rida. "Etude théorique de l'aspect microscopique de la capture et du stockage de CO2 par les zéolites : étude des clusters de Zn-Imidazole et triazole avec CO2." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1093/document.

Full text
Abstract:
Plusieurs études expérimentales et théoriques ont montré la capacité des structures de type zéolites (zeolitic "imidazolate, triazole" frameworks ou ZIFs) à capturer le CO2. Dans cette étude, nous nous intéresserons à l’interaction de CO2 avec une sous entité des ZIFs i.g. les complexes entre l’imidazole et le zinc (Im-Zn+q; q = 0,1,2) ou le triazole sans Zinc. Divers sites d'adsorption ont été examinés..Les calculs électroniques ont été effectués par les programmes GAUSSIAN et MOLPRO. Les optimisations de géométrie sur les petites structures (avec ou sans CO2) ont été réalisées avec les méthodes ab initio MP2, CCSD(T)-F12 et les bases atomiques aug-cc-pVDZ, aug-cc-pVTZ. Pour comparer les résultats, et assurer la continuité de notre travail, ces structures ont été aussi étudiées à l’aide de la DFT, en utilisant les fonctionnelles PBE, PBE0, M11 et M05-2X avec la base 6-311++G(d,p). La correction de dispersion empirique de Grimme (DFT-D3) est également incluse.Nos résultats montrent que leurs structures stables sont formées à la fois par des liaisons covalentes fortes (liaisons chimiques des ligands organiques) et des liaisons de nature plus faibles (liaisons van der waals, liaison hydrogène). Les deux types sont en compétition. Ceci nous a permis de mieux comprendre les observations expérimentales
Several experimental and theoretical studies have shown the ability of zeolitic-imidazole frameworks (ZIFs) materials to capture the CO2 gas. In this study, we have focused on the interaction of CO2 with one of the sub-unit of ZIFs ie the complex between the imidazole and zinc (Im-Zn+q, q = 0 ,1, 2) or triazole without zinc. Various adsorption sites are examined for these complexes.The calculations were performed using ab initio methods MP2; CCSD(T)-F12 and density functional theory with PBE PBE0, M1 and M05-2X functionals with different basis set (aug-cc-pVDZ, aug-cc-pVTZ and 6-311++G(d, p), tightly integrated in GAUSSIAN and MOLPRO packages. The Grimme corrections for dispersion forces description (DFT-D3) are also included.Our results shows that the stability of our complex structures is achieved by the presence of strong covalent bonds (chemical bonds of organic ligands) and also by Van der Waals and hydrogen weak bonds. Both types of bonding are in competition. This allowed us to better understand the experimental observations
APA, Harvard, Vancouver, ISO, and other styles
6

Younes, Mourad. "Capture du CO2 par anti-sublimation : conception, simulation et réalisation d'un prototype." Paris, ENMP, 2003. http://www.theses.fr/2003ENMP1192.

Full text
Abstract:
Les émissions du CO2 sont en hausse, provoquant vraisemblablement une augmentation de la température du Globe; ceci a conduit au Protocole de Kyoto qui vise à élaborer des politiques de limitation des émissions de gaz à effet de serre dont le CO2. De nombreuses options existent pour limiter les émissions de CO2 liées à la production d'énergie dont l'une fait l'objet de cette thèse, la capture du CO2 sur les fumées. Les techniques usuelles de capture du CO2 sont analysées assez rapidement. La plus grande partie du travail vise à élaborer cette nouvelle méthode de capture basée sur le givrage du CO2 à basse température. Le givrage du CO2 est accompli par un système frigorifique, dit en cascade intégrée, offrant des températures d'évaporation inférieures à la température de givrage du CO2. Plusieurs architectures sont étudiées afin de choisir celle qui apparaît la plus efficace énergétiquement. Une maquette prototype a été conçue et réalisée pour valider l'ensemble des concepts sur le givrage et le dégivrage du CO2. Le dimensionnement des composants a été réalisé à l'aide de modèles informatiques développés pour modéliser des cascades intégrées multi-étagées. Le système possède 2 évaporateurs basse température fonctionnant alternativement en givrage et dégivrage afin de permettre un fonctionnement continu du système. L'énergie "froide" du dégivrage est récupérée par le mélange de fluides frigorigènes, ce qui permet d'améliorer l'efficacité énergétique du système
Missions of CO2 are increasing, leading to temperature increase of Earth. This led to the Kyoto Protocol which aims at the elaboration of policies of limitation of the emissions of greenhouse gases among which CO2. A large number of options exist to limit CO2 emissions associated with energy production, one of them is developed in this dissertation, the CO2 capture from flue gases. Usual techniques of CO2 capture are briefly analyzed. The major part of this work concerns the development of a new CO2 capture based on the CO2 frosting at low temperature. The CO2 frosting is performed by a refrigerating system composed of an integrated cascade, which offers evaporating temperatures lower than the CO2 frosting temperature. Several architectures are analyzed in order to choose the most energy efficient one. A prototype mock-up has been designed and realized for the validation of the global concepts of the CO2 frosting and defrosting. The components have been sized using computerized tools developed for the modeling of multi-stage integrated cascades. The system includes two low-temperature evaporators operating alternatively in frosting and defrosting modes to permit continuous system operation. The "cold" energy from defrosting is recovered by the refrigerant blend, which permits to improve the energy efficiency of the system
APA, Harvard, Vancouver, ISO, and other styles
7

Ricci, Olivia. "Capture et stockage géologique du CO2 à partir de biomasse : quelles perspectives économiques ?" Thesis, Orléans, 2011. http://www.theses.fr/2011ORLE0506/document.

Full text
Abstract:
Dans un contexte de croissance effrénée de la demande mondiale d'énergie et de pression environnementale pour lutter contre le réchauffement climatique, cette thèse étudie une des technologies envisagées pour réduire les émissions de dioxyde de carbone (CO2) : la capture et le stockage géologique du carbone (CSC). Nous étudions principalement l’application de cette technologie à la production des bioénergies (BCSC) car ce procédé permet d’épurer l’atmosphère tout en fournissant un substitut énergétique non polluant aux énergies fossiles. La première partie de ce travail analyse le potentiel économique et environnemental de la technologie de BCSC. Tout d'abord, une évaluation économique et environnementale de la BCSC dans le secteur de la production de bioéthanol en France est conduite.Ensuite, grâce à un modèle bottom-up d’optimisation TIAM-FR, nous étudions le potentiel global et régional de cette technologie dans le secteur de l'électricité. Enfin, les incitations économiques à mettre en place pour assurer son développement sont mises en évidences. Dans la deuxième partie, un modèle d'équilibre général calculable est utilisé pour évaluer les politiques environnementales. Nous construisons le modèle théorique en introduisant les technologies de CSC et de BCSC ainsi qu’une large variété d’instruments économiques. Le modèle est ensuite calibré pour comparer l’efficacité économique des instruments de politique environnementale à un niveau mondial et à un niveau français
In a context of unbridled growth of global energy demand and environmental pressure in the fight againstglobal warming, this thesis studies one of the proposed technologies to reduce carbon dioxide (CO2)emissions: carbon capture and geological storage (CCS). We therefore consider the application of thistechnology to the production of bioenergies (BCCS) because this technology allows purifying theatmosphere while providing a clean energy alternative to fossil fuels. The first part of this work analyzesthe economic and environmental potential of BCCS. First, an economic and environmental assessment ofBCCS in the bioethanol production in France is conducted. Then, using the bottom-up optimization modelTIAM-FR, we study the global and regional potential of this technology in the electricity sector. Finally,the economic incentives that need to be provided to ensure BCCS deployment are highlighted. In thesecond part, a general equilibrium model is used to evaluate environmental policies. We construct thetheoretical model by introducing the CCS and BCCS as well as a wide range of economic instruments.The model is then calibrated to compare the effectiveness of environmental policy instruments at a globallevel and at a French level
APA, Harvard, Vancouver, ISO, and other styles
8

Coupan, Romuald. "Clathrates d’Hydroquinone : aspects fondamentaux et appliqués pour la séparation du CO2 d’un mélange CO2/CH4." Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3033/document.

Full text
Abstract:
Les clathrates organiques, particulièrement ceux formés entre l’hydroquinone (HQ) et les gaz, sont des entités supramoléculaires montrant un potentiel intéressant comme matériau alternatif pour les applications de stockage et de séparation de gaz. Cette étude traite de l’évaluation du clathrate d’HQ pour la séparation du CO2 contenu dans les mélanges CO2/CH4 par réaction gaz-solide. D’un point de vue fondamental, différentes propriétés des clathrates d’HQ-CO2, -CO2/CH4 et -CH4 ont été analysées: signatures spectroscopiques, structures cristallines, morphologies, capacités de stockage de gaz, températures de relargage de gaz et températures de transition structurales. Ce travail offre aussi de nouveaux éléments de compréhension des mécanismes de formation et de dissociation des clathrates d’HQ. Il est montré que, pour capturer efficacement et sélectivement le CO2, la réaction d’enclathration doit être faite en utilisant l’intermédiaire « clathrate vide » formé à partir du clathrate d’HQ-CO2. D’un point de vue pratique, les courbes d’équilibre, les enthalpies de dissociation, et les occupations dans les conditions d’équilibre ont été déterminées pour les clathrates d’HQ-CO2 et -CH4 dans une gamme étendue de température allant de 288 à 354 K. De plus, la cinétique de la réaction d’enclathration a été étudiée expérimentalement et modélisée. Dans cette optique, un matériau composite à base d’hydroquinone a été développé, et permet de capter et stocker le gaz de manière réversible, et d’améliorer significativement la cinétique d’enclathration. Le procédé de séparation de gaz basé sur la formation du clathrate d’hydroquinone a aussi été étudié. L’influence des paramètres opératoires (i.e. temps de réaction, pression, température et composition du gaz d’alimentation) sur la cinétique de capture, la sélectivité et la capacité de stockage de gaz ont été évaluées à travers des expériences menées à l’échelle pilote
Organic clathrate compounds, particularly those formed between hydroquinone (HQ) and gases, are supramolecular entities recently highlighted as promising alternatives for applications such as gas storage and separation processes. This study deals with an evaluation of the HQ clathrates to separate CO2 from CO2/CH4 gas mixtures through direct gas-solid reaction. On the fundamental point of view, new insights into several properties of the CO2-, CO2/CH4-, and CH4-HQ clathrates were studied: spectroscopic signatures, crystal structures, morphologies, gas storage capacities, guest release temperatures and structural transition temperatures. This work also offers new elements of understanding HQ clathrate formation and dissociation mechanisms. It is shown that, for capturing CO2 the most selectively and efficiently, the enclathration reaction has to be done with the “guest-free intermediate” derived from the CO2−HQ clathrates. On a practical point of view, the equilibrium curves, the dissociation enthalpies, and the occupancies at the equilibrium clathrate forming conditions, were determined for the CO2- and CH4-HQ clathrates in an extended range of temperature from about 288 to 354 K. Moreover, the kinetics of the gas-solid enclathration reaction were studied experimentally and modelled. In this way, HQ-based composite materials were developed and allows to reversibly capture and store gases, and to significantly improve the enclathration kinetics. The hydroquinone clathrate based gas separation (HCBGS) process was also investigated. The influence of the process operating parameters (i.e. reaction time, pressure, temperature and feed gas composition) on the CO2 capture kinetics, the selectivity toward CO2, and the storage capacity were assessed through experiments performed at pilot scale
APA, Harvard, Vancouver, ISO, and other styles
9

Debost, Maxime. "Synthèse et étude structurale de nanozeolites à petits micropores pour la capture du CO2." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC232.

Full text
Abstract:
L’objectif de ce travail consiste à préparer des zéolithes à petits micropores en utilisant une voie de synthèse « verte ». Pour cela, il a été choisi de synthétiser directement des nanocristaux de zéolithe CHA et RHO sans agent organique structurant, avec un rapport Si/Al le plus adéquat pour la séparation du CO2 du CH4. La réduction de la taille des cristaux leur confère une meilleure stabilité et augmente la surface d’échange entre le matériau et les gaz. La première partie concerne l’élaboration d’une nouvelle voie de synthèse. Des nanocristaux compris entre 30 et 200 nm avec un rapport Si/Al variant de 1,4 à 2,6 ont été obtenus. Dans la seconde partie, l’analyse cristallographique des zéolithes RHO et CHA sous les formes hydratées et déshydratées est présentée. Des méthodes d’analyses utilisant la diffraction par précession des électrons en mode tomographie (PEDT) et in-situ DRX sur poudre ont été utilisées pour caractériser les zéolithes CHA et RHO après l’adsorption du CO2. Les nanozéolithes de CHA et RHO ont ensuite démontrées leur efficacité pour l’adsorption sélective de CO2 du CH4
The goal of this work is to prepare template-free small pore nanosized zeolites. The direct synthesis of nanosized CHA and RHO type zeolites without organic structure directing agents provided materials with a Si/Al ratio suitable for the separation of CO2 from CH4. The first part of this study concerns the development of a new synthetic route towards preparation of small pore nanozeolites from water clear precursor suspensions. The nanocrystals have a diameter of 30 - 200 nm and a Si/Al ratio of 1.4 to 2.6. The second part is dedicated on the crystallographic analysis of the RHO and CHA nanosized zeolites in hydrated and dehydrated forms. Precession electron diffraction tomography (PEDT) and in-situ powder XRD methods were used to characterize the structure of the newly synthesized materials with nanosized dimensions. The third part of the thesis includes the adsorption studies of CO2 and CH4 in the CHA and RHO nanosized zeolites. The high selectivity of the zeolite nanocrystals synthesized with different cations (Cs, Na, K) towards CO2 in the presence of CH4 is demonstrated
APA, Harvard, Vancouver, ISO, and other styles
10

Bougie, Francis, and Francis Bougie. "Sterically hindered amine based absorbents and application for CO2 capture in membrane contactors." Doctoral thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/25107.

Full text
Abstract:
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2014-2015
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2014-2015
La séparation des gaz dans des contacteurs à membrane (MC) est une technologie de pointe qui offre plusieurs avantages par rapport aux contacteurs traditionnels (colonnes garnies), mais très peu d'efforts ont été consacrés pour développer de nouvelles solutions absorbantes spécialement optimisées pour les applications dans les MC. Actuellement, aucun absorbant disponible ne répond complètement aux exigences pour la mise en œuvre de la séparation industrielle des gaz acides, le CO2 en particulier, dans les contacteurs à membranes. L'objectif principal de ce travail a été de développer un absorbant à base d’alcanolamine à encombrement stérique (SHA), présentant les caractéristiques spécifiques exigées pour application dans les MC (bonnes capacité et cinétique d’absorption, régénération facile et plus économique, résistance à la dégradation, compatibilité avec les membranes et haute tension superficielle) et d’étudier son efficacité pour la capture du CO2 dans différentes configurations de contacteurs à membrane et conditions opératoires. Bien que les alcanolamine fortement encombrées stériquement sont caractérisées par une faible cinétique d’absorption du CO2, le fait qu’elles possèdent un grand potentiel pour réduire la consommation d'énergie lors de la régénération des solutions riches en CO2 a été l’un des paramètres clés dans le choix de l’AHPD (2-amino-2-hydroxyméthyle-1,3-propanediol). Pour améliorer le taux d'absorption, la pipérazine (Pz) s'est avérée un activateur très efficace; l'addition de petites quantités de Pz aux solutions aqueuses d’AHPD améliore significativement la cinétique d'absorption du CO2. Il a été aussi trouvé que le mélange AHPD-Pz a également une très bonne capacité d’absorption. L'étude de la régénération des solutions d’amines usées (contenant du CO2) a révélé que des solutions à base d’alcanolamines fortement encombrées stériquement (AHPD en particulier), sont beaucoup plus facilement régénérables par rapport à la MEA, l'amine de référence utilisée industriellement dans la séparation des gaz acides. De plus, l'ajout d'une petite quantité de Pz dans une solution aqueuse d’AHPD permet d’obtenir presque la même capacité cyclique et efficacité de régénération que les solutions non-activées par la Pz, mais pour la moitié de la durée du processus d'absorption. Outre les propriétés absorbantes des liquides, les performances des MC pour la séparation du CO2 dépendent fortement de la compatibilité entre la membrane et l’absorbant. Sur la base des propriétés liées au mouillage des membranes, comme la tension superficielle du liquide, l’angle de contact, la pression de percée et la stabilité chimique, une nouvelle méthode graphique d’estimation de la tension superficielle des solutions aqueuses d'amines, d'alcools ou d’alcanolamines a été développée pour permettre la sélection des meilleures conditions pour éviter le mouillage des membranes. Il a été trouvé que les solutions à base d’AHPD (comme AHPD + Pz) ont un fort potentiel d'utilisation dans les MC en raison de leur tension superficielle élevée. La méthode développée a aussi permis d'identifier de nouvelles amines potentielles pouvant être utilisées dans les MC. Une bonne stabilité et résistance à la dégradation est une autre caractéristique importante des solutions absorbantes. L'étude de la stabilité de différentes solutions aqueuses d’amines à la dégradation thermique et oxydative, en absence et en présence de CO2, a révélé que les SHA sont plus résistantes à la dégradation thermique que les amines conventionnelles, mais que la présence d'oxygène les dégrade plus significativement en absence de CO2. Toutefois, la présence de CO2 dans les solutions à base de SHA est bénéfique, car la formation préférentielle du bicarbonate conduit à une réduction significative du taux de dégradation oxydative. Le faible degré de dégradation de la solution aqueuse AHPD + Pz confirme son potentiel comme absorbant pour le CO2. Finalement, la performance des solutions aqueuses AHPD + Pz pour la capture du CO2 dans des MC a été étudiée dans différentes conditions opératoires et configurations des modules (fibres creuses et membranes plates, membranes en PTFE, PP et laminées PTFE/PP, différents débits du liquide, compositions de gaz et orientations des flux gazeux et liquide (co- et contre-courant)). Les solutions AHPD + Pz ont montré une excellente performance. Sur la base des données expérimentales, une étude de modélisation de la capture du CO2 dans des MC à fibres creuses PTFE a démontré l'effet positif des solutions présentant une tension superficielle élevée sur la réduction du mouillage de la membrane. En conclusion, les résultats de cette thèse ont montré que les solutions aqueuses AHPD + Pz possèdent une bonne capacité et cinétique d’absorption, régénération plus facile et moins énergivore, résistance à la dégradation, haute tension superficielle et démontre d'excellentes performances pour la capture du CO2 dans les MC, en représentant une alternative intéressante à la MEA.
La séparation des gaz dans des contacteurs à membrane (MC) est une technologie de pointe qui offre plusieurs avantages par rapport aux contacteurs traditionnels (colonnes garnies), mais très peu d'efforts ont été consacrés pour développer de nouvelles solutions absorbantes spécialement optimisées pour les applications dans les MC. Actuellement, aucun absorbant disponible ne répond complètement aux exigences pour la mise en œuvre de la séparation industrielle des gaz acides, le CO2 en particulier, dans les contacteurs à membranes. L'objectif principal de ce travail a été de développer un absorbant à base d’alcanolamine à encombrement stérique (SHA), présentant les caractéristiques spécifiques exigées pour application dans les MC (bonnes capacité et cinétique d’absorption, régénération facile et plus économique, résistance à la dégradation, compatibilité avec les membranes et haute tension superficielle) et d’étudier son efficacité pour la capture du CO2 dans différentes configurations de contacteurs à membrane et conditions opératoires. Bien que les alcanolamine fortement encombrées stériquement sont caractérisées par une faible cinétique d’absorption du CO2, le fait qu’elles possèdent un grand potentiel pour réduire la consommation d'énergie lors de la régénération des solutions riches en CO2 a été l’un des paramètres clés dans le choix de l’AHPD (2-amino-2-hydroxyméthyle-1,3-propanediol). Pour améliorer le taux d'absorption, la pipérazine (Pz) s'est avérée un activateur très efficace; l'addition de petites quantités de Pz aux solutions aqueuses d’AHPD améliore significativement la cinétique d'absorption du CO2. Il a été aussi trouvé que le mélange AHPD-Pz a également une très bonne capacité d’absorption. L'étude de la régénération des solutions d’amines usées (contenant du CO2) a révélé que des solutions à base d’alcanolamines fortement encombrées stériquement (AHPD en particulier), sont beaucoup plus facilement régénérables par rapport à la MEA, l'amine de référence utilisée industriellement dans la séparation des gaz acides. De plus, l'ajout d'une petite quantité de Pz dans une solution aqueuse d’AHPD permet d’obtenir presque la même capacité cyclique et efficacité de régénération que les solutions non-activées par la Pz, mais pour la moitié de la durée du processus d'absorption. Outre les propriétés absorbantes des liquides, les performances des MC pour la séparation du CO2 dépendent fortement de la compatibilité entre la membrane et l’absorbant. Sur la base des propriétés liées au mouillage des membranes, comme la tension superficielle du liquide, l’angle de contact, la pression de percée et la stabilité chimique, une nouvelle méthode graphique d’estimation de la tension superficielle des solutions aqueuses d'amines, d'alcools ou d’alcanolamines a été développée pour permettre la sélection des meilleures conditions pour éviter le mouillage des membranes. Il a été trouvé que les solutions à base d’AHPD (comme AHPD + Pz) ont un fort potentiel d'utilisation dans les MC en raison de leur tension superficielle élevée. La méthode développée a aussi permis d'identifier de nouvelles amines potentielles pouvant être utilisées dans les MC. Une bonne stabilité et résistance à la dégradation est une autre caractéristique importante des solutions absorbantes. L'étude de la stabilité de différentes solutions aqueuses d’amines à la dégradation thermique et oxydative, en absence et en présence de CO2, a révélé que les SHA sont plus résistantes à la dégradation thermique que les amines conventionnelles, mais que la présence d'oxygène les dégrade plus significativement en absence de CO2. Toutefois, la présence de CO2 dans les solutions à base de SHA est bénéfique, car la formation préférentielle du bicarbonate conduit à une réduction significative du taux de dégradation oxydative. Le faible degré de dégradation de la solution aqueuse AHPD + Pz confirme son potentiel comme absorbant pour le CO2. Finalement, la performance des solutions aqueuses AHPD + Pz pour la capture du CO2 dans des MC a été étudiée dans différentes conditions opératoires et configurations des modules (fibres creuses et membranes plates, membranes en PTFE, PP et laminées PTFE/PP, différents débits du liquide, compositions de gaz et orientations des flux gazeux et liquide (co- et contre-courant)). Les solutions AHPD + Pz ont montré une excellente performance. Sur la base des données expérimentales, une étude de modélisation de la capture du CO2 dans des MC à fibres creuses PTFE a démontré l'effet positif des solutions présentant une tension superficielle élevée sur la réduction du mouillage de la membrane. En conclusion, les résultats de cette thèse ont montré que les solutions aqueuses AHPD + Pz possèdent une bonne capacité et cinétique d’absorption, régénération plus facile et moins énergivore, résistance à la dégradation, haute tension superficielle et démontre d'excellentes performances pour la capture du CO2 dans les MC, en représentant une alternative intéressante à la MEA.
Gas separation in membrane contactors (MC) is a forefront technology offering several advantages over traditional packed columns, but very few efforts have been made to develop new absorbent solutions optimized specifically for application in MC. Currently, no available absorbent meets all required characteristics for the implementation of membrane contactors for acid gas separation (CO2 in particular) in industrial units. The main objective of this work was to develop a dedicated sterically hindered alkanolamine (SHA) based absorbent with improved characteristics for application in MC (good absorption capacity and reaction kinetics, regeneration facility, resistance to degradation, compatibility with membranes and high surface tension) and to investigate its efficiency for CO2 capture in different membrane contactor configurations and operation conditions. Although low kinetics characterizes highly sterically hindered alkanolamines, their potential to reduce the energy consumption during the regeneration step brings us to focus on AHPD (2-amino-2-hydroxymethyl-1,3-propanediol). To improve the absorption rate, piperazine (Pz) was found to be a very effective activator; the addition of small amounts of Pz to aqueous AHPD solutions has significant effect on the enhancement of the CO2 absorption rate. The blend AHPD-Pz was also found to present very good absorption capacity. The investigation of the regeneration of loaded (CO2 containing) amine solutions revealed that highly hindered SHA based solutions (AHPD in particular) are much easier to regenerate compared to MEA, the benchmark amine industrially used in acid gas separations. Moreover, the addition of small amount of Pz into AHPD aqueous solution allowed to obtain almost the same cyclic capacity and regeneration efficiency as non-activated solutions, but for half of the absorption time. Besides the liquid absorbent properties, the performances of MC for CO2 separation strongly depend on the compatibility between absorbent and membrane. Based on wetting-related properties like liquid surface tension, contact angle, membrane breakthrough pressure and chemical stability, a new graphical surface tension estimation method for aqueous amine, alcohol or alkanolamine solutions was developed to select the best conditions to elude the unwanted membrane wetting phenomenon. AHPD-based solutions (like the AHPD + Pz solution) were found to have a strong potential for use in MC because of their very high surface tension. In addition, the developed method allowed to identify new potential amines for use in MC. A good stability and resistance to degradation is another important feature of CO2 absorbents. The investigation of the stability of different aqueous amine solutions to thermal and oxidative degradation, in the absence and the presence of CO2, revealed that SHA are more resistant to thermal degradation than conventional amines, but the presence of oxygen degraded them more significantly in the absence of CO2. However, the presence of CO2 is beneficial to SHA as the preferential bicarbonate formation in solutions reduces by a large extent the oxidative degradation rate. The low degradation degree of the AHPD + Pz aqueous solution reaffirms its potential as CO2 absorbent. Finally, the performance of the AHPD + Pz aqueous solution for CO2 capture in MC was investigated in different operational conditions and module configurations (hollow fibers and flat sheets membranes, PTFE, PP and laminated PTFE/PP membranes, various liquid flow rates, gas compositions and flow orientation (co- and counter-current)). Excellent performance was found for AHPD + Pz solutions. Based on experimental data, a modeling study of CO2 capture in PTFE hollow fiber MC revealed the positive effect of solutions presenting high surface tension on the reduction of membrane wetting. In summary, the results of this thesis showed that AHPD + Pz aqueous solution possess good absorption capacity, reaction kinetics, regenerative potential, and degradation resistance, as well as high surface tension and showed excellent performance for CO2 capture in MC, representing an interesting alternative to MEA.
Gas separation in membrane contactors (MC) is a forefront technology offering several advantages over traditional packed columns, but very few efforts have been made to develop new absorbent solutions optimized specifically for application in MC. Currently, no available absorbent meets all required characteristics for the implementation of membrane contactors for acid gas separation (CO2 in particular) in industrial units. The main objective of this work was to develop a dedicated sterically hindered alkanolamine (SHA) based absorbent with improved characteristics for application in MC (good absorption capacity and reaction kinetics, regeneration facility, resistance to degradation, compatibility with membranes and high surface tension) and to investigate its efficiency for CO2 capture in different membrane contactor configurations and operation conditions. Although low kinetics characterizes highly sterically hindered alkanolamines, their potential to reduce the energy consumption during the regeneration step brings us to focus on AHPD (2-amino-2-hydroxymethyl-1,3-propanediol). To improve the absorption rate, piperazine (Pz) was found to be a very effective activator; the addition of small amounts of Pz to aqueous AHPD solutions has significant effect on the enhancement of the CO2 absorption rate. The blend AHPD-Pz was also found to present very good absorption capacity. The investigation of the regeneration of loaded (CO2 containing) amine solutions revealed that highly hindered SHA based solutions (AHPD in particular) are much easier to regenerate compared to MEA, the benchmark amine industrially used in acid gas separations. Moreover, the addition of small amount of Pz into AHPD aqueous solution allowed to obtain almost the same cyclic capacity and regeneration efficiency as non-activated solutions, but for half of the absorption time. Besides the liquid absorbent properties, the performances of MC for CO2 separation strongly depend on the compatibility between absorbent and membrane. Based on wetting-related properties like liquid surface tension, contact angle, membrane breakthrough pressure and chemical stability, a new graphical surface tension estimation method for aqueous amine, alcohol or alkanolamine solutions was developed to select the best conditions to elude the unwanted membrane wetting phenomenon. AHPD-based solutions (like the AHPD + Pz solution) were found to have a strong potential for use in MC because of their very high surface tension. In addition, the developed method allowed to identify new potential amines for use in MC. A good stability and resistance to degradation is another important feature of CO2 absorbents. The investigation of the stability of different aqueous amine solutions to thermal and oxidative degradation, in the absence and the presence of CO2, revealed that SHA are more resistant to thermal degradation than conventional amines, but the presence of oxygen degraded them more significantly in the absence of CO2. However, the presence of CO2 is beneficial to SHA as the preferential bicarbonate formation in solutions reduces by a large extent the oxidative degradation rate. The low degradation degree of the AHPD + Pz aqueous solution reaffirms its potential as CO2 absorbent. Finally, the performance of the AHPD + Pz aqueous solution for CO2 capture in MC was investigated in different operational conditions and module configurations (hollow fibers and flat sheets membranes, PTFE, PP and laminated PTFE/PP membranes, various liquid flow rates, gas compositions and flow orientation (co- and counter-current)). Excellent performance was found for AHPD + Pz solutions. Based on experimental data, a modeling study of CO2 capture in PTFE hollow fiber MC revealed the positive effect of solutions presenting high surface tension on the reduction of membrane wetting. In summary, the results of this thesis showed that AHPD + Pz aqueous solution possess good absorption capacity, reaction kinetics, regenerative potential, and degradation resistance, as well as high surface tension and showed excellent performance for CO2 capture in MC, representing an interesting alternative to MEA.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Capture et la conversion du CO2"

1

Li, Lan, Winnie Wong-Ng, Kevin Huang, and Lawrence P. Cook, eds. Materials and Processes for CO2 Capture, Conversion, and Sequestration. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Treviño, Martha Alejandra Arellano. A study of catalytic metals and alkaline metal oxides leading to the development of a stable Ru-doped Ni Dual Function Material for CO2 capture from flue gas and in-situ catalytic conversion to methane. [New York, N.Y.?]: [publisher not identified], 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Materials and Processes for CO2 Capture, Conversion, and Sequestration. Wiley-American Ceramic Society, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Lan, Kevin Huang, Winnie Wong-Ng, and Lawrence P. Cook. Materials and Processes for CO2 Capture, Conversion, and Sequestration. Wiley & Sons, Limited, John, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Advances in CO2 Capture, Sequestration, and Conversion. American Chemical Society, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nanomaterials for CO2 Capture, Storage, Conversion and Utilization. Elsevier, 2021. http://dx.doi.org/10.1016/c2019-0-04209-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Benard, Pierre, Phuong Nguyen Tri, Tuán Anh Nguyen, Haobin Wu, and Simon Barnabe. Nanomaterials for CO2 Capture, Storage, Conversion and Utilization. Elsevier, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nanomaterials for CO2 Capture, Storage, Conversion and Utilization. Elsevier, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Lan, Kevin Huang, Winnie Wong-Ng, and Lawrence P. Cook. Materials and Processes for CO2 Capture, Conversion, and Sequestration. Wiley & Sons, Incorporated, John, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Lan, Kevin Huang, Winnie Wong-Ng, and Lawrence P. Cook. Materials and Processes for CO2 Capture, Conversion, and Sequestration. Wiley & Sons, Incorporated, John, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Capture et la conversion du CO2"

1

Bredesen, Rune, and Thijs A. Peters. "Membranes in Energy Systems with CO2 Capture." In Membranes for Energy Conversion, 217–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. http://dx.doi.org/10.1002/9783527622146.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shah, Yatish T. "Plasma-Activated Catalysis for CO2 Conversion." In CO2 Capture, Utilization, and Sequestration Strategies, 347–417. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shah, Yatish T. "Biological Conversion of Carbon Dioxide." In CO2 Capture, Utilization, and Sequestration Strategies, 113–92. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Duan, Lunbo, and Lin Li. "OCAC for Fuel Conversion Without CO2 Capture." In Oxygen-Carrier-Aided Combustion Technology for Solid-Fuel Conversion in Fluidized Bed, 19–63. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9127-1_3.

Full text
Abstract:
AbstractAs a new concept, oxygen carrier aided combustion (OCAC) technology proposed in 2013 by Chalmers University of Technology’s group, can alleviate the problem of uneven distribution of oxygen in the reactors. In the past 10 years,various research institutions, including Chalmers University of Technology, University of Cambridge, Tsinghua University, Friedrich-Alexander University and University of Nottingham, have conducted a series of studies on OCAC technology. It is worth mentioning that Chalmers University of Technology has complied with most of these studies from laboratory to industry scales. In particular, they carried out a serious of semi-industrial scale experiments in the 12 MWthCFB boiler, which is well-known research boiler. OCAC technology is comprehensively introduced from six aspects: combustion characteristics, NOx/SOx emission, ash-related issues, aging of oxygen carrier, oxygen carrier recovery and physicochemical characteristics of oxygen carrier. In this chapter, allsummarized studies were performed under traditional air-combustion conditions without much consideration of CO2 capture.
APA, Harvard, Vancouver, ISO, and other styles
5

Sharma, Tanvi, Abhishek Sharma, Swati Sharma, Anand Giri, Ashok Kumar, and Deepak Pant. "Recent Developments in CO2-Capture and Conversion Technologies." In Chemo-Biological Systems for CO2 Utilization, 1–14. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429317187-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shah, Yatish T. "Carbon Dioxide Conversion Using Solar Thermal and Photo Catalytic Processes." In CO2 Capture, Utilization, and Sequestration Strategies, 281–345. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Peng, Jingjing Tong, and Kevin Huang. "Electrochemical CO2Capture and Conversion." In Materials and Processes for CO2 Capture, Conversion, and Sequestration, 213–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Zhen-Zhen, Qing-Wen Song, and Liang-Nian He. "CO2 Capture, Activation, and Subsequent Conversion with PEG." In SpringerBriefs in Molecular Science, 71–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31268-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shah, Yatish T. "CO2 Conversion to Fuels and Chemicals by Thermal and Electro-Catalysis." In CO2 Capture, Utilization, and Sequestration Strategies, 193–280. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Asgari, Mehrdad, and Wendy L. Queen. "Carbon Capture in Metal-Organic Frameworks." In Materials and Processes for CO2 Capture, Conversion, and Sequestration, 1–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Capture et la conversion du CO2"

1

Dasgupta, Nabankur, and Tuan HO. "CO2 capture and conversion in clay nanoconfinements." In Proposed for presentation at the AIChE conference held November 13-17, 2022 in Phoenix, AZ. US DOE, 2022. http://dx.doi.org/10.2172/2006052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gutierrez-Sanchez, Oriol, Bert De Mot, Deepak Pant, Tom Breugelmans, and Metin Bulut. "Direct Air Capture and Electrochemical Conversion of CO2." In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Wei-Ning. "Facile Development of Nanostructured Photocatalysts for CO2 Capture and Conversion." In Nano-Micro Conference 2017. London: Nature Research Society, 2017. http://dx.doi.org/10.11605/cp.nmc2017.01047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miersemann, Ulrike, Matteo Loizzo, and Patrick Lamy. "Evaluating Old Wells for Conversion to CO2 Injectors: Experience From the Rousse Field." In SPE International Conference on CO2 Capture, Storage, and Utilization. Society of Petroleum Engineers, 2010. http://dx.doi.org/10.2118/139506-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hernandez, Simelys, Hilmar Guzman, Federica Zammillo, Roger Miro, Alberto Lopera, Adrianna Nogalska, Maria J. Lopez-Tendero, and Miriam Diaz de los Bernardos. "Scaling-up the sun-driven electrocatalytic CO2 capture and conversion to Syngas." In MATSUS Spring 2024 Conference. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Mengran, Hugo Pieter Iglesias van Montfort, Erdem Irtem, Maryam Abdinejad, Kailun Yang, Mark Sassenburg, Siddhartha Subramanian, Joost Middelkoop, and Thomas Burdyny. "Probing dominant catalytically active species for CO2 electrochemical conversion in ethanolamine capture medium." In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wagstaff, Christopher, Mohammad AlGahtani, Sylvain Michaux, Sai Shrinivas Sreedharan, Deoras Prabhudharwadkar, and William Roberts. "Technology Demonstration of Multi-Species (CO2, SO2, NO2, & PM) Capture." In ADIPEC. SPE, 2023. http://dx.doi.org/10.2118/216559-ms.

Full text
Abstract:
Abstract Post-combustion capture of carbon dioxide usually requires other upstream pollutant capture systems such as selective catalytic reduction for NOx, flue gas desulfurization, electrostatic precipitators, etc (Dziejarski et al. (2023)). Traditional carbon capture technologies cannot be deployed at point emission sources that do not have these systems and use fuels containing sulfur (e.g., heavy fuel oil, sour gas, etc.). A novel pollutant capture system is being developed at KAUST that eliminates this limitation. A Cryogenic Carbon and Sulfur Capture (CCSC) technology is developed in partnership with Sustainable Energy Solutions (SES, part of Chart Industries). This technology focuses on post-combustion CO2 capture along with SO2, NO2, and other Particulate Matter (PM) pollutants. CCSC is modular in design and mounted on a 15-meter-long trailer. The multi-species co-capture system is mounted in the central section of the trailer and includes a separate control room and gas storage room on either end of the trailer. This trailer-mounted CCSC system has a nominal capacity of capturing 0.25 ton of CO2/day. This CCSC process cools exhaust flue gases below the desublimating temperatures of CO2 (~−130°C) where CO2 solidifies out of the flue gas. This separation process is done by spraying isopentane as a contact liquid into an upward-moving flue gas. CO2 freezes into the contact liquid and ultimately flows out as a slurry. The contact liquid is regenerated via screwpress, and then the interstitial liquid is recovered via distillation. An additional column is necessary for the separation of a third species SO2. The main objective of this trailer rig is to serve as a technology and IP development platform to cocapture multiple pollutants all using a single technology. The trailer rig is designed to be flue gas agnostic and finds applications in many facilities. Even though the system is currently optimized for the most probable site which is a heavy fuel oil (HFO) fired steam power plant, it can easily be adapted to shipboard carbon capture and co-capture of other pollutants more prominent from marine applications. A wetted-wire patented technology from KAUST (Wagstaff et al. (2022)) already shows promise for shipboard heat and mass transfer.
APA, Harvard, Vancouver, ISO, and other styles
8

Kenarsari, Saeed Danaei, and Yuan Zheng. "CO2 Capture Using Calcium Oxide Applicable to In-Situ Separation of CO2 From H2 Production Processes." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62619.

Full text
Abstract:
A lab-scale CO2 capture system is designed, fabricated, and tested for performing CO2 capture via carbonation of very fine calcium oxide (CaO) with particle size in micrometers. This system includes a fixed-bed reactor made of stainless steel (12.7 mm in diameter and 76.2 mm long) packed with calcium oxide particles dispersed in sand particles; heated and maintained at a certain temperature (500–550°C) during each experiment. The pressure along the reactor can be kept constant using a back pressure regulator. The conditions of the tests are relevant to separation of CO2 from combustion/gasification flue gases and in-situ CO2 capture process. The inlet flow, 1% CO2 and 99% N2, goes through the reactor at the flow rate of 150 mL/min (at standard conditions). The CO2 percentage of the outlet gas is monitored and recorded by a portable CO2 analyzer. Using the outlet composition, the conversion of calcium oxide is figured and employed to develop the kinetics model. The results indicate that the rates of carbonation reactions considerably increase with raising the temperature from 500°C to 550°C. The conversion rates of CaO-carbonation are well fitted to a shrinking core model which combines chemical reaction controlled and diffusion controlled models.
APA, Harvard, Vancouver, ISO, and other styles
9

Mereu, Federico, Jayangi D. Wagaarachchige, Zulkifli Idris, Klaus-Joachim Jens, and Maths Halstensen. "Response Surface Modelling to Reduce CO2 Capture Solvent Cost by Conversion of OZD to MEA." In 64th International Conference of Scandinavian Simulation Society, SIMS 2023 Västerås, Sweden, September 25-28, 2023. Linköping University Electronic Press, 2023. http://dx.doi.org/10.3384/ecp200003.

Full text
Abstract:
The increasing CO2 concentration in the atmosphere is the most urgent global challenge. The most mature CO2 abatement option is post-combustion CO2 capture employing Monoethanolamine (MEA) solvent. One challenge of using MEA is its in-service degradation to 2-oxazolidinone (OZD), a heterocyclic five-membered organic ring compound. Furthermore, OZD degrades more MEA leading to CO2 capture solvent loss and hence increased operational cost. It is therefore of interest to investigate methods to convert OZD back to MEA. This work reports the conversion of 2-oxazolidinone to MEA by heat treatment at an alkaline condition. Raman spectroscopy and Ion-Exchange chromatography were applied to qualify and quantify the reaction. The optimal reaction parameters were identified by an experimental design model using the Response Surface Methodology (RSM). A second-order model with three variables and five levels of focus was employed, with the OZD conversion percentage as the response. This methodology was chosen because such a model could estimate the main effects, interactions and quadratic terms by relying on a relatively small number of experiments. 17 experimental runs were designed by the software using this method. At a reaction time of 35 minutes, reaction temperature of 100°C, and 2.5 mole of hydroxide per mole of OZD resulted in a complete conversion of OZD to MEA.
APA, Harvard, Vancouver, ISO, and other styles
10

Zaidin, M. F., S. M. Amin, F. J. Azuddin, A. A. Razak, N. Mohsin, Y. W. Pin, and R. D. Tewari. "Enhancing CO2-H2S Storage Predictions in High H2S Fields: Improving Model Accuracy and Kinetic Rate Information." In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-23878-ea.

Full text
Abstract:
Abstract In the context of carbon capture and storage (CCS), the presence of impurities, such as Hydrogen Sulfide (H2S), in the injected Carbon Dioxide (CO2) stream poses a significant challenge (Bennion and Bachu, 2008). This challenge is particularly pronounced in carbonate reservoirs due to the potential precipitation of the minerals (Ahmad et al., 2023). Such precipitation can have detrimental effects on carbonate rock properties, including a reduction in rock porosity and permeability (Labus & Suchodolska, 2017; Clark et al., 2018). Ultimately, these changes can impact injectivity and storage capacity (Wang et al., 2012; (Zaidin et al., 2018), making it essential to comprehend the geochemical reactions involved, which are demonstrated as follows:
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Capture et la conversion du CO2"

1

Tsouris, Costas, and Radu Custelcean. Integrated Process for Direct Air Capture of CO2 and Electrochemical Conversion to Ethanol. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2333761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dagle, Robert, Jotheeswari Kothandaraman, and David Heldebrant. Integrated Capture and Conversion of CO2 to Methanol (ICCCM) Process Technology - CRADA 449 (Final Report). Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/1916459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dagle, Robert. Simultaneous Capture and Conversion of CO2 to Methanol via a Switchable Ionic Liquid and Low-Temperature Metal Catalyst - CRADA 449. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1827784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fourrier, Marine. Integration of in situ and satellite multi-platform data (estimation of carbon flux for trop. Atlantic). EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d7.6.

Full text
Abstract:
This report presents the results of task 7.3 on “Quantification of improvements in carbon flux data for the tropical Atlantic based on the multi-platform and neural network approach”. To better constrain changes in the ocean’s capture and sequestration of CO2 emitted by human activities, in situ measurements are needed. Tropical regions are considered to be mostly sources of CO2 to the atmosphere due to specific circulation features, with large interannual variability mainly controlled by physical drivers (Padin et al., 2010). The tropical Atlantic is the second largest source, after the tropical Pacific, of CO2 to the atmosphere (Landschützer et al., 2014). However, it is not a homogeneous zone, as it is affected by many physical and biogeochemical processes that vary on many time scales and affect surrounding areas (Foltz et al., 2019). The Tropical Atlantic Observing System (TAOS) has progressed substantially over the past two decades. Still, many challenges and uncertainties remain to require further studies into the area’s role in terms of carbon fluxes (Foltz et al., 2019). Monitoring and sustained observations of surface oceanic CO2 are critical for understanding the fate of CO2 as it penetrates the ocean and during its sequestration at depth. This deliverable relies on different observing platforms deployed specifically as part of the EuroSea project (a Saildrone, and 5 pH-equipped BGC-Argo floats) as well as on the platforms as part of the TAOS (CO2-equipped moorings, cruises, models, and data products). It also builds on the work done in D7.1 and D7.2 on the deployment and quality control of pH-equipped BGC-Argo floats and Saildrone data. Indeed, high-quality homogeneously calibrated carbonate variable measurements are mandatory to be able to compute air-sea CO2 fluxes at a basin scale from multiple observing platforms. (EuroSea Deliverable, D7.6)
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography