Academic literature on the topic 'Capture et la conversion du CO2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Capture et la conversion du CO2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Capture et la conversion du CO2"
Yin, Huayi, and Dihua Wang. "(Invited) Electrochemical Conversion of CO2 Into Oxygen/ and C/CO in Molten Carbonate." ECS Meeting Abstracts MA2023-01, no. 56 (August 28, 2023): 2737. http://dx.doi.org/10.1149/ma2023-01562737mtgabs.
Full textSong, Jun Tae, Yuta Takaoka, Atsushi Takagaki, Motonori Watanabe, and Tatsumi Ishihara. "Synergistic Integration of Zr-MOF (UiO-66) and Bi Electrocatalysts for Enhanced CO2 Conversion to Formate." ECS Meeting Abstracts MA2023-02, no. 47 (December 22, 2023): 2382. http://dx.doi.org/10.1149/ma2023-02472382mtgabs.
Full textReisner, Erwin. "(Invited) Solar Panel Technologies for Light-to-Chemical Conversion." ECS Meeting Abstracts MA2023-02, no. 47 (December 22, 2023): 2370. http://dx.doi.org/10.1149/ma2023-02472370mtgabs.
Full textBohlen, Barbara, Nick Daems, and Tom Breugelmans. "Electrochemical Production of Formate Directly from Amine-Based CO2 Capture Media." ECS Meeting Abstracts MA2023-01, no. 26 (August 28, 2023): 1722. http://dx.doi.org/10.1149/ma2023-01261722mtgabs.
Full textOwhoso, Fiki V., and David G. Kwabi. "Effect of Covalent Modification on Proton-Coupled Electron Transfer at Quinone-Functionalized Carbon Electrodes." ECS Meeting Abstracts MA2022-02, no. 57 (October 9, 2022): 2171. http://dx.doi.org/10.1149/ma2022-02572171mtgabs.
Full textNovoselova, Inessa, Sergiy Kuleshov, and Anatoliy Omel'chuk. "(Digital Presentation) Electrochemical Conversion of CO2 into Tungsten Carbides in Molten Salts." ECS Meeting Abstracts MA2023-01, no. 26 (August 28, 2023): 1744. http://dx.doi.org/10.1149/ma2023-01261744mtgabs.
Full textCobb, Samuel J., Azim M. Dharani, Ana Rita Oliveira, Inês A. C. Pereira, and Erwin Reisner. "Using Enzymes to Understand and Control the Local Environment of Catalysis." ECS Meeting Abstracts MA2023-02, no. 52 (December 22, 2023): 2530. http://dx.doi.org/10.1149/ma2023-02522530mtgabs.
Full textHu, Shu. "(Invited) A Coating Strategy for Heterogeneous Photocatalysis Producing Renewable Fuels." ECS Meeting Abstracts MA2022-01, no. 36 (July 7, 2022): 1554. http://dx.doi.org/10.1149/ma2022-01361554mtgabs.
Full textCarpenter, Chris. "Well-Integrity Risk-Assessment Strategy Applied to CO2 Sequestration Project." Journal of Petroleum Technology 75, no. 01 (January 1, 2023): 78–80. http://dx.doi.org/10.2118/0123-0078-jpt.
Full textBass, Adam Stuart, Anand Chandra Singh, Scott Paulson, and Viola Ingrid Birss. "Minimizing Coke Formation at La0.3Ca0.7Fe0.7Cr0.3O3-δ Perovskite Anodes in a Syngas Fed-SOFC." ECS Meeting Abstracts MA2023-02, no. 46 (December 22, 2023): 2238. http://dx.doi.org/10.1149/ma2023-02462238mtgabs.
Full textDissertations / Theses on the topic "Capture et la conversion du CO2"
Danaci, Simge. "Optimisation et intégration de catalyseurs structurés en réacteurs structurés pour la conversion de CO₂ en méthane." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI041/document.
Full textIn this doctoral study, the three dimensional fibre deposition (3DFD) technique has been applied to develop and manufacture advanced multi-channelled catalytic support structures. By using this technique, the material, the porosity, the shape and size of the channels and the thickness of the fibres can be controlled. The aim of this research is to investigate the possible benefits of 3D-designed structured supports for CO2 methanation in terms of activity, selectivity and stability and the impact of specific properties introduced in the structural design of the supports
Brandvoll, Øyvind. "Chemical looping combustion : fuel conversion with inherent CO2 capture." Doctoral thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1203.
Full textChemical looping combustion (CLC) is a new concept for fuel energy conversion with CO2 capture. In CLC, fuel combustion is split into seperate reduction and oxidation processes, in which a solid carrier is reduced and oxidized, respectively. The carrier is continuously recirculated between the two vessels, and hence direct contact between air and suel is avoided. As a result, a stoichiometric amount of oxygen is transferred to the fuel by a regenerable solid intermediate, and CLC is thus a varient of oxy-fuel combustion. In principle, pure CO2 can be obtained from the reduction exhaust by condensation of the produced water vapor. The termodynamic potential and feasibility of CLC has been studied by means of process simulatons and experimental studies of oxygen carriers. Process simulations have focused on parameter sensitivity studies of CLC implemented in 3 power cycles; CLC-Combined Cycle, CLC-Humid Air Turbine and CLC-Integrated Steam Generation. Simulations indicate that overall fuel conversion ratio, oxidation temperature and operating pressure are among the most imortant process parameters in CLC. A promising thermodynamic potentail of CLC has been found, with efficiencies comparable to, - or better than existing technologies for CO2 capture. The proposed oxygen carrier nickel oxide on nickel spinel (NiONiA1) has been studied in reduction with hydrogen, methane and methane/steam as well as oxidation with dry air. It has been found that at atmosphereic pressure and temperatures above 600° C, solid reduction with dry methane occurs with overall fuel conversion of 92%. Steam methane reforming is observed along with methane cracking as side reactions, yealding an overall selectivity of 90% with regard to solid reduction. If steam is added to the reactant fuel, coking can be avoided. A methodology for long term investigation of solid chemical activity in a batch reactor is proposed. The method is based on time variables for oxidaton. The results for NiONiA1 do not rule out CLC as a viable alternative for CO2 capture, but long term durability studies along with realistic testing of the carrier in a continuous rig is needed to firmly conclude. For comparative purposes a perovskite was synthesized and tested in CLC, under similar conditions as NiONiA1. The results indicate that in a moving bed CLC application, perovskites have inherent disadvantages as compared to simpler compounds, by virtue of low relative oxygen content.
Kim, Hyung Rae. "Chemical Looping Process for Direct Conversion of Solid Fuels In-Situ CO2 Capture." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250605561.
Full textMARCHESE, MARCO. "Conversion of industrial CO2 to value-added fuels and chemicals via Fischer-Tropsch upgrade." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2914540.
Full textBoulmene, Rida. "Etude théorique de l'aspect microscopique de la capture et du stockage de CO2 par les zéolites : étude des clusters de Zn-Imidazole et triazole avec CO2." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1093/document.
Full textSeveral experimental and theoretical studies have shown the ability of zeolitic-imidazole frameworks (ZIFs) materials to capture the CO2 gas. In this study, we have focused on the interaction of CO2 with one of the sub-unit of ZIFs ie the complex between the imidazole and zinc (Im-Zn+q, q = 0 ,1, 2) or triazole without zinc. Various adsorption sites are examined for these complexes.The calculations were performed using ab initio methods MP2; CCSD(T)-F12 and density functional theory with PBE PBE0, M1 and M05-2X functionals with different basis set (aug-cc-pVDZ, aug-cc-pVTZ and 6-311++G(d, p), tightly integrated in GAUSSIAN and MOLPRO packages. The Grimme corrections for dispersion forces description (DFT-D3) are also included.Our results shows that the stability of our complex structures is achieved by the presence of strong covalent bonds (chemical bonds of organic ligands) and also by Van der Waals and hydrogen weak bonds. Both types of bonding are in competition. This allowed us to better understand the experimental observations
Younes, Mourad. "Capture du CO2 par anti-sublimation : conception, simulation et réalisation d'un prototype." Paris, ENMP, 2003. http://www.theses.fr/2003ENMP1192.
Full textMissions of CO2 are increasing, leading to temperature increase of Earth. This led to the Kyoto Protocol which aims at the elaboration of policies of limitation of the emissions of greenhouse gases among which CO2. A large number of options exist to limit CO2 emissions associated with energy production, one of them is developed in this dissertation, the CO2 capture from flue gases. Usual techniques of CO2 capture are briefly analyzed. The major part of this work concerns the development of a new CO2 capture based on the CO2 frosting at low temperature. The CO2 frosting is performed by a refrigerating system composed of an integrated cascade, which offers evaporating temperatures lower than the CO2 frosting temperature. Several architectures are analyzed in order to choose the most energy efficient one. A prototype mock-up has been designed and realized for the validation of the global concepts of the CO2 frosting and defrosting. The components have been sized using computerized tools developed for the modeling of multi-stage integrated cascades. The system includes two low-temperature evaporators operating alternatively in frosting and defrosting modes to permit continuous system operation. The "cold" energy from defrosting is recovered by the refrigerant blend, which permits to improve the energy efficiency of the system
Ricci, Olivia. "Capture et stockage géologique du CO2 à partir de biomasse : quelles perspectives économiques ?" Thesis, Orléans, 2011. http://www.theses.fr/2011ORLE0506/document.
Full textIn a context of unbridled growth of global energy demand and environmental pressure in the fight againstglobal warming, this thesis studies one of the proposed technologies to reduce carbon dioxide (CO2)emissions: carbon capture and geological storage (CCS). We therefore consider the application of thistechnology to the production of bioenergies (BCCS) because this technology allows purifying theatmosphere while providing a clean energy alternative to fossil fuels. The first part of this work analyzesthe economic and environmental potential of BCCS. First, an economic and environmental assessment ofBCCS in the bioethanol production in France is conducted. Then, using the bottom-up optimization modelTIAM-FR, we study the global and regional potential of this technology in the electricity sector. Finally,the economic incentives that need to be provided to ensure BCCS deployment are highlighted. In thesecond part, a general equilibrium model is used to evaluate environmental policies. We construct thetheoretical model by introducing the CCS and BCCS as well as a wide range of economic instruments.The model is then calibrated to compare the effectiveness of environmental policy instruments at a globallevel and at a French level
Coupan, Romuald. "Clathrates d’Hydroquinone : aspects fondamentaux et appliqués pour la séparation du CO2 d’un mélange CO2/CH4." Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3033/document.
Full textOrganic clathrate compounds, particularly those formed between hydroquinone (HQ) and gases, are supramolecular entities recently highlighted as promising alternatives for applications such as gas storage and separation processes. This study deals with an evaluation of the HQ clathrates to separate CO2 from CO2/CH4 gas mixtures through direct gas-solid reaction. On the fundamental point of view, new insights into several properties of the CO2-, CO2/CH4-, and CH4-HQ clathrates were studied: spectroscopic signatures, crystal structures, morphologies, gas storage capacities, guest release temperatures and structural transition temperatures. This work also offers new elements of understanding HQ clathrate formation and dissociation mechanisms. It is shown that, for capturing CO2 the most selectively and efficiently, the enclathration reaction has to be done with the “guest-free intermediate” derived from the CO2−HQ clathrates. On a practical point of view, the equilibrium curves, the dissociation enthalpies, and the occupancies at the equilibrium clathrate forming conditions, were determined for the CO2- and CH4-HQ clathrates in an extended range of temperature from about 288 to 354 K. Moreover, the kinetics of the gas-solid enclathration reaction were studied experimentally and modelled. In this way, HQ-based composite materials were developed and allows to reversibly capture and store gases, and to significantly improve the enclathration kinetics. The hydroquinone clathrate based gas separation (HCBGS) process was also investigated. The influence of the process operating parameters (i.e. reaction time, pressure, temperature and feed gas composition) on the CO2 capture kinetics, the selectivity toward CO2, and the storage capacity were assessed through experiments performed at pilot scale
Debost, Maxime. "Synthèse et étude structurale de nanozeolites à petits micropores pour la capture du CO2." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC232.
Full textThe goal of this work is to prepare template-free small pore nanosized zeolites. The direct synthesis of nanosized CHA and RHO type zeolites without organic structure directing agents provided materials with a Si/Al ratio suitable for the separation of CO2 from CH4. The first part of this study concerns the development of a new synthetic route towards preparation of small pore nanozeolites from water clear precursor suspensions. The nanocrystals have a diameter of 30 - 200 nm and a Si/Al ratio of 1.4 to 2.6. The second part is dedicated on the crystallographic analysis of the RHO and CHA nanosized zeolites in hydrated and dehydrated forms. Precession electron diffraction tomography (PEDT) and in-situ powder XRD methods were used to characterize the structure of the newly synthesized materials with nanosized dimensions. The third part of the thesis includes the adsorption studies of CO2 and CH4 in the CHA and RHO nanosized zeolites. The high selectivity of the zeolite nanocrystals synthesized with different cations (Cs, Na, K) towards CO2 in the presence of CH4 is demonstrated
Bougie, Francis, and Francis Bougie. "Sterically hindered amine based absorbents and application for CO2 capture in membrane contactors." Doctoral thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/25107.
Full textTableau d'honneur de la Faculté des études supérieures et postdoctorales, 2014-2015
La séparation des gaz dans des contacteurs à membrane (MC) est une technologie de pointe qui offre plusieurs avantages par rapport aux contacteurs traditionnels (colonnes garnies), mais très peu d'efforts ont été consacrés pour développer de nouvelles solutions absorbantes spécialement optimisées pour les applications dans les MC. Actuellement, aucun absorbant disponible ne répond complètement aux exigences pour la mise en œuvre de la séparation industrielle des gaz acides, le CO2 en particulier, dans les contacteurs à membranes. L'objectif principal de ce travail a été de développer un absorbant à base d’alcanolamine à encombrement stérique (SHA), présentant les caractéristiques spécifiques exigées pour application dans les MC (bonnes capacité et cinétique d’absorption, régénération facile et plus économique, résistance à la dégradation, compatibilité avec les membranes et haute tension superficielle) et d’étudier son efficacité pour la capture du CO2 dans différentes configurations de contacteurs à membrane et conditions opératoires. Bien que les alcanolamine fortement encombrées stériquement sont caractérisées par une faible cinétique d’absorption du CO2, le fait qu’elles possèdent un grand potentiel pour réduire la consommation d'énergie lors de la régénération des solutions riches en CO2 a été l’un des paramètres clés dans le choix de l’AHPD (2-amino-2-hydroxyméthyle-1,3-propanediol). Pour améliorer le taux d'absorption, la pipérazine (Pz) s'est avérée un activateur très efficace; l'addition de petites quantités de Pz aux solutions aqueuses d’AHPD améliore significativement la cinétique d'absorption du CO2. Il a été aussi trouvé que le mélange AHPD-Pz a également une très bonne capacité d’absorption. L'étude de la régénération des solutions d’amines usées (contenant du CO2) a révélé que des solutions à base d’alcanolamines fortement encombrées stériquement (AHPD en particulier), sont beaucoup plus facilement régénérables par rapport à la MEA, l'amine de référence utilisée industriellement dans la séparation des gaz acides. De plus, l'ajout d'une petite quantité de Pz dans une solution aqueuse d’AHPD permet d’obtenir presque la même capacité cyclique et efficacité de régénération que les solutions non-activées par la Pz, mais pour la moitié de la durée du processus d'absorption. Outre les propriétés absorbantes des liquides, les performances des MC pour la séparation du CO2 dépendent fortement de la compatibilité entre la membrane et l’absorbant. Sur la base des propriétés liées au mouillage des membranes, comme la tension superficielle du liquide, l’angle de contact, la pression de percée et la stabilité chimique, une nouvelle méthode graphique d’estimation de la tension superficielle des solutions aqueuses d'amines, d'alcools ou d’alcanolamines a été développée pour permettre la sélection des meilleures conditions pour éviter le mouillage des membranes. Il a été trouvé que les solutions à base d’AHPD (comme AHPD + Pz) ont un fort potentiel d'utilisation dans les MC en raison de leur tension superficielle élevée. La méthode développée a aussi permis d'identifier de nouvelles amines potentielles pouvant être utilisées dans les MC. Une bonne stabilité et résistance à la dégradation est une autre caractéristique importante des solutions absorbantes. L'étude de la stabilité de différentes solutions aqueuses d’amines à la dégradation thermique et oxydative, en absence et en présence de CO2, a révélé que les SHA sont plus résistantes à la dégradation thermique que les amines conventionnelles, mais que la présence d'oxygène les dégrade plus significativement en absence de CO2. Toutefois, la présence de CO2 dans les solutions à base de SHA est bénéfique, car la formation préférentielle du bicarbonate conduit à une réduction significative du taux de dégradation oxydative. Le faible degré de dégradation de la solution aqueuse AHPD + Pz confirme son potentiel comme absorbant pour le CO2. Finalement, la performance des solutions aqueuses AHPD + Pz pour la capture du CO2 dans des MC a été étudiée dans différentes conditions opératoires et configurations des modules (fibres creuses et membranes plates, membranes en PTFE, PP et laminées PTFE/PP, différents débits du liquide, compositions de gaz et orientations des flux gazeux et liquide (co- et contre-courant)). Les solutions AHPD + Pz ont montré une excellente performance. Sur la base des données expérimentales, une étude de modélisation de la capture du CO2 dans des MC à fibres creuses PTFE a démontré l'effet positif des solutions présentant une tension superficielle élevée sur la réduction du mouillage de la membrane. En conclusion, les résultats de cette thèse ont montré que les solutions aqueuses AHPD + Pz possèdent une bonne capacité et cinétique d’absorption, régénération plus facile et moins énergivore, résistance à la dégradation, haute tension superficielle et démontre d'excellentes performances pour la capture du CO2 dans les MC, en représentant une alternative intéressante à la MEA.
La séparation des gaz dans des contacteurs à membrane (MC) est une technologie de pointe qui offre plusieurs avantages par rapport aux contacteurs traditionnels (colonnes garnies), mais très peu d'efforts ont été consacrés pour développer de nouvelles solutions absorbantes spécialement optimisées pour les applications dans les MC. Actuellement, aucun absorbant disponible ne répond complètement aux exigences pour la mise en œuvre de la séparation industrielle des gaz acides, le CO2 en particulier, dans les contacteurs à membranes. L'objectif principal de ce travail a été de développer un absorbant à base d’alcanolamine à encombrement stérique (SHA), présentant les caractéristiques spécifiques exigées pour application dans les MC (bonnes capacité et cinétique d’absorption, régénération facile et plus économique, résistance à la dégradation, compatibilité avec les membranes et haute tension superficielle) et d’étudier son efficacité pour la capture du CO2 dans différentes configurations de contacteurs à membrane et conditions opératoires. Bien que les alcanolamine fortement encombrées stériquement sont caractérisées par une faible cinétique d’absorption du CO2, le fait qu’elles possèdent un grand potentiel pour réduire la consommation d'énergie lors de la régénération des solutions riches en CO2 a été l’un des paramètres clés dans le choix de l’AHPD (2-amino-2-hydroxyméthyle-1,3-propanediol). Pour améliorer le taux d'absorption, la pipérazine (Pz) s'est avérée un activateur très efficace; l'addition de petites quantités de Pz aux solutions aqueuses d’AHPD améliore significativement la cinétique d'absorption du CO2. Il a été aussi trouvé que le mélange AHPD-Pz a également une très bonne capacité d’absorption. L'étude de la régénération des solutions d’amines usées (contenant du CO2) a révélé que des solutions à base d’alcanolamines fortement encombrées stériquement (AHPD en particulier), sont beaucoup plus facilement régénérables par rapport à la MEA, l'amine de référence utilisée industriellement dans la séparation des gaz acides. De plus, l'ajout d'une petite quantité de Pz dans une solution aqueuse d’AHPD permet d’obtenir presque la même capacité cyclique et efficacité de régénération que les solutions non-activées par la Pz, mais pour la moitié de la durée du processus d'absorption. Outre les propriétés absorbantes des liquides, les performances des MC pour la séparation du CO2 dépendent fortement de la compatibilité entre la membrane et l’absorbant. Sur la base des propriétés liées au mouillage des membranes, comme la tension superficielle du liquide, l’angle de contact, la pression de percée et la stabilité chimique, une nouvelle méthode graphique d’estimation de la tension superficielle des solutions aqueuses d'amines, d'alcools ou d’alcanolamines a été développée pour permettre la sélection des meilleures conditions pour éviter le mouillage des membranes. Il a été trouvé que les solutions à base d’AHPD (comme AHPD + Pz) ont un fort potentiel d'utilisation dans les MC en raison de leur tension superficielle élevée. La méthode développée a aussi permis d'identifier de nouvelles amines potentielles pouvant être utilisées dans les MC. Une bonne stabilité et résistance à la dégradation est une autre caractéristique importante des solutions absorbantes. L'étude de la stabilité de différentes solutions aqueuses d’amines à la dégradation thermique et oxydative, en absence et en présence de CO2, a révélé que les SHA sont plus résistantes à la dégradation thermique que les amines conventionnelles, mais que la présence d'oxygène les dégrade plus significativement en absence de CO2. Toutefois, la présence de CO2 dans les solutions à base de SHA est bénéfique, car la formation préférentielle du bicarbonate conduit à une réduction significative du taux de dégradation oxydative. Le faible degré de dégradation de la solution aqueuse AHPD + Pz confirme son potentiel comme absorbant pour le CO2. Finalement, la performance des solutions aqueuses AHPD + Pz pour la capture du CO2 dans des MC a été étudiée dans différentes conditions opératoires et configurations des modules (fibres creuses et membranes plates, membranes en PTFE, PP et laminées PTFE/PP, différents débits du liquide, compositions de gaz et orientations des flux gazeux et liquide (co- et contre-courant)). Les solutions AHPD + Pz ont montré une excellente performance. Sur la base des données expérimentales, une étude de modélisation de la capture du CO2 dans des MC à fibres creuses PTFE a démontré l'effet positif des solutions présentant une tension superficielle élevée sur la réduction du mouillage de la membrane. En conclusion, les résultats de cette thèse ont montré que les solutions aqueuses AHPD + Pz possèdent une bonne capacité et cinétique d’absorption, régénération plus facile et moins énergivore, résistance à la dégradation, haute tension superficielle et démontre d'excellentes performances pour la capture du CO2 dans les MC, en représentant une alternative intéressante à la MEA.
Gas separation in membrane contactors (MC) is a forefront technology offering several advantages over traditional packed columns, but very few efforts have been made to develop new absorbent solutions optimized specifically for application in MC. Currently, no available absorbent meets all required characteristics for the implementation of membrane contactors for acid gas separation (CO2 in particular) in industrial units. The main objective of this work was to develop a dedicated sterically hindered alkanolamine (SHA) based absorbent with improved characteristics for application in MC (good absorption capacity and reaction kinetics, regeneration facility, resistance to degradation, compatibility with membranes and high surface tension) and to investigate its efficiency for CO2 capture in different membrane contactor configurations and operation conditions. Although low kinetics characterizes highly sterically hindered alkanolamines, their potential to reduce the energy consumption during the regeneration step brings us to focus on AHPD (2-amino-2-hydroxymethyl-1,3-propanediol). To improve the absorption rate, piperazine (Pz) was found to be a very effective activator; the addition of small amounts of Pz to aqueous AHPD solutions has significant effect on the enhancement of the CO2 absorption rate. The blend AHPD-Pz was also found to present very good absorption capacity. The investigation of the regeneration of loaded (CO2 containing) amine solutions revealed that highly hindered SHA based solutions (AHPD in particular) are much easier to regenerate compared to MEA, the benchmark amine industrially used in acid gas separations. Moreover, the addition of small amount of Pz into AHPD aqueous solution allowed to obtain almost the same cyclic capacity and regeneration efficiency as non-activated solutions, but for half of the absorption time. Besides the liquid absorbent properties, the performances of MC for CO2 separation strongly depend on the compatibility between absorbent and membrane. Based on wetting-related properties like liquid surface tension, contact angle, membrane breakthrough pressure and chemical stability, a new graphical surface tension estimation method for aqueous amine, alcohol or alkanolamine solutions was developed to select the best conditions to elude the unwanted membrane wetting phenomenon. AHPD-based solutions (like the AHPD + Pz solution) were found to have a strong potential for use in MC because of their very high surface tension. In addition, the developed method allowed to identify new potential amines for use in MC. A good stability and resistance to degradation is another important feature of CO2 absorbents. The investigation of the stability of different aqueous amine solutions to thermal and oxidative degradation, in the absence and the presence of CO2, revealed that SHA are more resistant to thermal degradation than conventional amines, but the presence of oxygen degraded them more significantly in the absence of CO2. However, the presence of CO2 is beneficial to SHA as the preferential bicarbonate formation in solutions reduces by a large extent the oxidative degradation rate. The low degradation degree of the AHPD + Pz aqueous solution reaffirms its potential as CO2 absorbent. Finally, the performance of the AHPD + Pz aqueous solution for CO2 capture in MC was investigated in different operational conditions and module configurations (hollow fibers and flat sheets membranes, PTFE, PP and laminated PTFE/PP membranes, various liquid flow rates, gas compositions and flow orientation (co- and counter-current)). Excellent performance was found for AHPD + Pz solutions. Based on experimental data, a modeling study of CO2 capture in PTFE hollow fiber MC revealed the positive effect of solutions presenting high surface tension on the reduction of membrane wetting. In summary, the results of this thesis showed that AHPD + Pz aqueous solution possess good absorption capacity, reaction kinetics, regenerative potential, and degradation resistance, as well as high surface tension and showed excellent performance for CO2 capture in MC, representing an interesting alternative to MEA.
Gas separation in membrane contactors (MC) is a forefront technology offering several advantages over traditional packed columns, but very few efforts have been made to develop new absorbent solutions optimized specifically for application in MC. Currently, no available absorbent meets all required characteristics for the implementation of membrane contactors for acid gas separation (CO2 in particular) in industrial units. The main objective of this work was to develop a dedicated sterically hindered alkanolamine (SHA) based absorbent with improved characteristics for application in MC (good absorption capacity and reaction kinetics, regeneration facility, resistance to degradation, compatibility with membranes and high surface tension) and to investigate its efficiency for CO2 capture in different membrane contactor configurations and operation conditions. Although low kinetics characterizes highly sterically hindered alkanolamines, their potential to reduce the energy consumption during the regeneration step brings us to focus on AHPD (2-amino-2-hydroxymethyl-1,3-propanediol). To improve the absorption rate, piperazine (Pz) was found to be a very effective activator; the addition of small amounts of Pz to aqueous AHPD solutions has significant effect on the enhancement of the CO2 absorption rate. The blend AHPD-Pz was also found to present very good absorption capacity. The investigation of the regeneration of loaded (CO2 containing) amine solutions revealed that highly hindered SHA based solutions (AHPD in particular) are much easier to regenerate compared to MEA, the benchmark amine industrially used in acid gas separations. Moreover, the addition of small amount of Pz into AHPD aqueous solution allowed to obtain almost the same cyclic capacity and regeneration efficiency as non-activated solutions, but for half of the absorption time. Besides the liquid absorbent properties, the performances of MC for CO2 separation strongly depend on the compatibility between absorbent and membrane. Based on wetting-related properties like liquid surface tension, contact angle, membrane breakthrough pressure and chemical stability, a new graphical surface tension estimation method for aqueous amine, alcohol or alkanolamine solutions was developed to select the best conditions to elude the unwanted membrane wetting phenomenon. AHPD-based solutions (like the AHPD + Pz solution) were found to have a strong potential for use in MC because of their very high surface tension. In addition, the developed method allowed to identify new potential amines for use in MC. A good stability and resistance to degradation is another important feature of CO2 absorbents. The investigation of the stability of different aqueous amine solutions to thermal and oxidative degradation, in the absence and the presence of CO2, revealed that SHA are more resistant to thermal degradation than conventional amines, but the presence of oxygen degraded them more significantly in the absence of CO2. However, the presence of CO2 is beneficial to SHA as the preferential bicarbonate formation in solutions reduces by a large extent the oxidative degradation rate. The low degradation degree of the AHPD + Pz aqueous solution reaffirms its potential as CO2 absorbent. Finally, the performance of the AHPD + Pz aqueous solution for CO2 capture in MC was investigated in different operational conditions and module configurations (hollow fibers and flat sheets membranes, PTFE, PP and laminated PTFE/PP membranes, various liquid flow rates, gas compositions and flow orientation (co- and counter-current)). Excellent performance was found for AHPD + Pz solutions. Based on experimental data, a modeling study of CO2 capture in PTFE hollow fiber MC revealed the positive effect of solutions presenting high surface tension on the reduction of membrane wetting. In summary, the results of this thesis showed that AHPD + Pz aqueous solution possess good absorption capacity, reaction kinetics, regenerative potential, and degradation resistance, as well as high surface tension and showed excellent performance for CO2 capture in MC, representing an interesting alternative to MEA.
Books on the topic "Capture et la conversion du CO2"
Li, Lan, Winnie Wong-Ng, Kevin Huang, and Lawrence P. Cook, eds. Materials and Processes for CO2 Capture, Conversion, and Sequestration. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.
Full textTreviño, Martha Alejandra Arellano. A study of catalytic metals and alkaline metal oxides leading to the development of a stable Ru-doped Ni Dual Function Material for CO2 capture from flue gas and in-situ catalytic conversion to methane. [New York, N.Y.?]: [publisher not identified], 2020.
Find full textMaterials and Processes for CO2 Capture, Conversion, and Sequestration. Wiley-American Ceramic Society, 2018.
Find full textLi, Lan, Kevin Huang, Winnie Wong-Ng, and Lawrence P. Cook. Materials and Processes for CO2 Capture, Conversion, and Sequestration. Wiley & Sons, Limited, John, 2018.
Find full textAdvances in CO2 Capture, Sequestration, and Conversion. American Chemical Society, 2016.
Find full textNanomaterials for CO2 Capture, Storage, Conversion and Utilization. Elsevier, 2021. http://dx.doi.org/10.1016/c2019-0-04209-4.
Full textBenard, Pierre, Phuong Nguyen Tri, Tuán Anh Nguyen, Haobin Wu, and Simon Barnabe. Nanomaterials for CO2 Capture, Storage, Conversion and Utilization. Elsevier, 2021.
Find full textNanomaterials for CO2 Capture, Storage, Conversion and Utilization. Elsevier, 2021.
Find full textLi, Lan, Kevin Huang, Winnie Wong-Ng, and Lawrence P. Cook. Materials and Processes for CO2 Capture, Conversion, and Sequestration. Wiley & Sons, Incorporated, John, 2018.
Find full textLi, Lan, Kevin Huang, Winnie Wong-Ng, and Lawrence P. Cook. Materials and Processes for CO2 Capture, Conversion, and Sequestration. Wiley & Sons, Incorporated, John, 2018.
Find full textBook chapters on the topic "Capture et la conversion du CO2"
Bredesen, Rune, and Thijs A. Peters. "Membranes in Energy Systems with CO2 Capture." In Membranes for Energy Conversion, 217–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. http://dx.doi.org/10.1002/9783527622146.ch7.
Full textShah, Yatish T. "Plasma-Activated Catalysis for CO2 Conversion." In CO2 Capture, Utilization, and Sequestration Strategies, 347–417. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-7.
Full textShah, Yatish T. "Biological Conversion of Carbon Dioxide." In CO2 Capture, Utilization, and Sequestration Strategies, 113–92. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-4.
Full textDuan, Lunbo, and Lin Li. "OCAC for Fuel Conversion Without CO2 Capture." In Oxygen-Carrier-Aided Combustion Technology for Solid-Fuel Conversion in Fluidized Bed, 19–63. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9127-1_3.
Full textSharma, Tanvi, Abhishek Sharma, Swati Sharma, Anand Giri, Ashok Kumar, and Deepak Pant. "Recent Developments in CO2-Capture and Conversion Technologies." In Chemo-Biological Systems for CO2 Utilization, 1–14. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429317187-1.
Full textShah, Yatish T. "Carbon Dioxide Conversion Using Solar Thermal and Photo Catalytic Processes." In CO2 Capture, Utilization, and Sequestration Strategies, 281–345. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-6.
Full textZhang, Peng, Jingjing Tong, and Kevin Huang. "Electrochemical CO2Capture and Conversion." In Materials and Processes for CO2 Capture, Conversion, and Sequestration, 213–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.ch5.
Full textYang, Zhen-Zhen, Qing-Wen Song, and Liang-Nian He. "CO2 Capture, Activation, and Subsequent Conversion with PEG." In SpringerBriefs in Molecular Science, 71–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31268-7_6.
Full textShah, Yatish T. "CO2 Conversion to Fuels and Chemicals by Thermal and Electro-Catalysis." In CO2 Capture, Utilization, and Sequestration Strategies, 193–280. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-5.
Full textAsgari, Mehrdad, and Wendy L. Queen. "Carbon Capture in Metal-Organic Frameworks." In Materials and Processes for CO2 Capture, Conversion, and Sequestration, 1–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.ch1.
Full textConference papers on the topic "Capture et la conversion du CO2"
Dasgupta, Nabankur, and Tuan HO. "CO2 capture and conversion in clay nanoconfinements." In Proposed for presentation at the AIChE conference held November 13-17, 2022 in Phoenix, AZ. US DOE, 2022. http://dx.doi.org/10.2172/2006052.
Full textGutierrez-Sanchez, Oriol, Bert De Mot, Deepak Pant, Tom Breugelmans, and Metin Bulut. "Direct Air Capture and Electrochemical Conversion of CO2." In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.115.
Full textWang, Wei-Ning. "Facile Development of Nanostructured Photocatalysts for CO2 Capture and Conversion." In Nano-Micro Conference 2017. London: Nature Research Society, 2017. http://dx.doi.org/10.11605/cp.nmc2017.01047.
Full textMiersemann, Ulrike, Matteo Loizzo, and Patrick Lamy. "Evaluating Old Wells for Conversion to CO2 Injectors: Experience From the Rousse Field." In SPE International Conference on CO2 Capture, Storage, and Utilization. Society of Petroleum Engineers, 2010. http://dx.doi.org/10.2118/139506-ms.
Full textHernandez, Simelys, Hilmar Guzman, Federica Zammillo, Roger Miro, Alberto Lopera, Adrianna Nogalska, Maria J. Lopez-Tendero, and Miriam Diaz de los Bernardos. "Scaling-up the sun-driven electrocatalytic CO2 capture and conversion to Syngas." In MATSUS Spring 2024 Conference. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.177.
Full textLi, Mengran, Hugo Pieter Iglesias van Montfort, Erdem Irtem, Maryam Abdinejad, Kailun Yang, Mark Sassenburg, Siddhartha Subramanian, Joost Middelkoop, and Thomas Burdyny. "Probing dominant catalytically active species for CO2 electrochemical conversion in ethanolamine capture medium." In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.042.
Full textWagstaff, Christopher, Mohammad AlGahtani, Sylvain Michaux, Sai Shrinivas Sreedharan, Deoras Prabhudharwadkar, and William Roberts. "Technology Demonstration of Multi-Species (CO2, SO2, NO2, & PM) Capture." In ADIPEC. SPE, 2023. http://dx.doi.org/10.2118/216559-ms.
Full textKenarsari, Saeed Danaei, and Yuan Zheng. "CO2 Capture Using Calcium Oxide Applicable to In-Situ Separation of CO2 From H2 Production Processes." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62619.
Full textMereu, Federico, Jayangi D. Wagaarachchige, Zulkifli Idris, Klaus-Joachim Jens, and Maths Halstensen. "Response Surface Modelling to Reduce CO2 Capture Solvent Cost by Conversion of OZD to MEA." In 64th International Conference of Scandinavian Simulation Society, SIMS 2023 Västerås, Sweden, September 25-28, 2023. Linköping University Electronic Press, 2023. http://dx.doi.org/10.3384/ecp200003.
Full textZaidin, M. F., S. M. Amin, F. J. Azuddin, A. A. Razak, N. Mohsin, Y. W. Pin, and R. D. Tewari. "Enhancing CO2-H2S Storage Predictions in High H2S Fields: Improving Model Accuracy and Kinetic Rate Information." In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-23878-ea.
Full textReports on the topic "Capture et la conversion du CO2"
Tsouris, Costas, and Radu Custelcean. Integrated Process for Direct Air Capture of CO2 and Electrochemical Conversion to Ethanol. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2333761.
Full textDagle, Robert, Jotheeswari Kothandaraman, and David Heldebrant. Integrated Capture and Conversion of CO2 to Methanol (ICCCM) Process Technology - CRADA 449 (Final Report). Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/1916459.
Full textDagle, Robert. Simultaneous Capture and Conversion of CO2 to Methanol via a Switchable Ionic Liquid and Low-Temperature Metal Catalyst - CRADA 449. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1827784.
Full textFourrier, Marine. Integration of in situ and satellite multi-platform data (estimation of carbon flux for trop. Atlantic). EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d7.6.
Full text