Academic literature on the topic 'Capture efficiency'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Capture efficiency.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Capture efficiency"
Rutter, Andrew U., Alex T. Hanrahan, Clayton K. Nielsen, and Eric M. Schauber. "Functionality of a New Live-Capture Device for River Otters." Journal of Fish and Wildlife Management 11, no. 1 (December 17, 2019): 238–44. http://dx.doi.org/10.3996/092018-jfwm-083.
Full textVazquez, Jorge, Luisa Rodríguez-Martínez, Armando Bautista, Robyn Hudson, and Margarita Martínez-Gómez. "Evaluación de una nueva trampa para capturar conejos silvestres (Sylvilagus cunicularius y S. floridanus)." Revista Mexicana de Mastozoología (Nueva Epoca) 11, no. 1 (January 1, 2007): 34. http://dx.doi.org/10.22201/ie.20074484e.2007.11.1.127.
Full textJacob, J., H. Ylönen, and C. G. Hodkinson. "Trapping efficiency of Ugglan traps and Longworth traps for house mice in south-eastern Australia." Wildlife Research 29, no. 1 (2002): 101. http://dx.doi.org/10.1071/wr01048.
Full textMa, Gwo-Chin, Wen-Hsiang Lin, Chung-Er Huang, Ting-Yu Chang, Jia-Yun Liu, Ya-Jun Yang, Mei-Hui Lee, Wan-Ju Wu, Yun-Shiang Chang, and Ming Chen. "A Silicon-based Coral-like Nanostructured Microfluidics to Isolate Rare Cells in Human Circulation: Validation by SK-BR-3 Cancer Cell Line and Its Utility in Circulating Fetal Nucleated Red Blood Cells." Micromachines 10, no. 2 (February 17, 2019): 132. http://dx.doi.org/10.3390/mi10020132.
Full textBayley, Peter B., and Douglas J. Austen. "Capture Efficiency of a Boat Electrofisher." Transactions of the American Fisheries Society 131, no. 3 (May 2002): 435–51. http://dx.doi.org/10.1577/1548-8659(2002)131<0435:ceoabe>2.0.co;2.
Full textZhang, Shouhong, and Yiping Guo. "Stormwater Capture Efficiency of Bioretention Systems." Water Resources Management 28, no. 1 (November 23, 2013): 149–68. http://dx.doi.org/10.1007/s11269-013-0477-y.
Full textMierzejewska, Ewa J., Dorota Dwużnik, Katarzyna Tołkacz, Anna Bajer, Marek Panek, and Maciej Grzybek. "The Efficiency of Live-Capture Traps for the Study of Red Fox (Vulpes vulpes) Cubs: A Three-Year Study in Poland." Animals 10, no. 3 (February 26, 2020): 374. http://dx.doi.org/10.3390/ani10030374.
Full textSpence-Bailey, Lisa M., Dale G. Nimmo, Luke T. Kelly, Andrew F. Bennett, and Michael F. Clarke. "Maximising trapping efficiency in reptile surveys: the role of seasonality, weather conditions and moon phase on capture success." Wildlife Research 37, no. 2 (2010): 104. http://dx.doi.org/10.1071/wr09157.
Full textLi, Yuguo, Angelo Delsante, and Jeff Symons. "Residential Kitchen Range Hoods - Buoyancy-Capture Principle and Capture Efficiency Revisited." Indoor Air 7, no. 3 (September 1997): 151–57. http://dx.doi.org/10.1111/j.1600-0668.1997.00001.x.
Full textFestger, Adam D., and Gary R. Walter. "The Capture Efficiency Map: The Capture Zone Under Time-Varying Flow." Ground Water 40, no. 6 (November 2002): 619–28. http://dx.doi.org/10.1111/j.1745-6584.2002.tb02548.x.
Full textDissertations / Theses on the topic "Capture efficiency"
Rutter, Andrew U. "Survival and Capture Efficiency of River Otters in Southern Illinois." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2260.
Full textRatnesar-Shumate, Shanna. "Physical capture efficiency and disinfection capability of iodinated fiber media." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0010485.
Full textWillis, William Brandon. "Estimating the capture efficiency of a vegetative environmental buffer using Lidar." Thesis, University of Iowa, 2016. https://ir.uiowa.edu/etd/3219.
Full textIsse, Abdullahi. "Capacity of cover crops to capture excess fertilizer and maintain soil efficiency." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0021/MQ37132.pdf.
Full textMcCabe, Christie Renee. "A novel antibody based capture matrix utilizing human serum albumin and streptococcal Protein G to increase capture efficiency of bacteria." [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0002811.
Full textSoundararajan, Rengarajan. "Efficiency loss analysis for oxy-combustion CO2 capture process : Energy and Exergy analysis." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14177.
Full textDas, Debarun. "Enhanced capture of magnetic microbeads using sequentially switched electroosmotic flow." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1427962332.
Full textFestger, Adam Douglas. "Analysis of hydraulic capture zones and efficiency under time-varying flow and pumping conditions." Thesis, The University of Arizona, 2000. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2000_30_sip1_w.pdf&type=application/pdf.
Full textDixon, Daniel. "Effects of environmental and clinical interferents on the host capture efficiency of immobilized bacteriophages." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123296.
Full textLa résistance, de plus en plus avérée, aux antibiotiques a motivé l'intérêt d'utiliser des bactériophages pour le traitement, le contrôle et la détection de populations bactériennes pathogènes. Des bactériophages aux surfaces fonctionnalisées ont été mis au point pour une application à des surfaces antimicrobiennes, en tant que biocapteurs, dans des dispositifs médicaux permanents ou des pansements ainsi que dans des dispositifs pour la capture des bactéries. Dans cette étude, l'efficacité de capture des bactéries, de deux modèles de phage à surface fonctionnalisée, a été évaluée en présence de différents interférents potentiels environnementaux et biomédicaux. Les deux systèmes phages-bactéries utilisées dans cette étude sont le PRD1 de Salmonella Typhimurium et le T4 d'Escherichia coli. Les interférents potentiels testés comprenaient : les acides humiques et fulviques, les eaux souterraines naturelles, les microsphères de latex colloïdales, des substances polymères extracellulaires (SPE), l'albumine, le fibrinogène et le sérum. Tout d'abord, l'inactivation des phages sélectionnés par les interférents potentiels a été évaluée pour les phages en suspension dans des milieux aqueux. Ensuite, l'efficacité de capture des bactéries d'une surface de verre phage-fonctionnalisée a été évaluée en présence de différents interférents. Une SPE a été identifiée pour réduire l'efficacité de captage des PRD1 et des T4, et a également été trouvée pour réduire l'activité des PRD1 en suspension. Le sérum a diminué l'activité des deux phages en suspension, et a également abouti à une réduction de l'efficacité de capture bactérienne. L'addition d'acides humiques ou fulviques réduit l'efficacité de capture des surfaces T4-fonctionnalisées, mais n'a pas conduit à l'inactivation des virions en suspension. Ces résultats soulignent la nécessité pour une surface potentielle de phage fonctionnalisée, d'être testée pour ses performances dans les conditions d'application finale.
Thorbjörnsson, Anders. "Carbon Capture and Storage : Energy penalties and their impact on global coal consumption." Thesis, Uppsala universitet, Naturresurser och hållbar utveckling, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-235442.
Full textBooks on the topic "Capture efficiency"
Hunt, D. B. Measurement of volatile organic compound capture efficiency. Cincinnati, OH: U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, 1985.
Find full textGooch, Gordon E. Effects of ice boom geometry on ice capture efficiency. Hanover, N.H: U.S. Army Cold Regions Research and Engineering Laboratory, 1996.
Find full textDesideri, Umberto, Giampaolo Manfrida, and Enrico Sciubba, eds. ECOS 2012. Florence: Firenze University Press, 2012. http://dx.doi.org/10.36253/978-88-6655-322-9.
Full textBudzianowski, Wojciech M., ed. Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47262-1.
Full textProspects for advanced coal technologies: Efficient energy production, carbon capture and sequestration : hearing before the Subcommittee on Energy and Environment, Committee on Science and Technology, House of Representatives, One Hundred Tenth Congress, first session, May 15, 2007. Washington, D.C: U.S. G.P.O., 2008.
Find full textMichaels, Mallory P. Kitchen Exhaust Ventilation: Adoption and Capture Efficiency Issues. Nova Science Publishers, Incorporated, 2015.
Find full textEconomic Efficiency, Rent Capture and Market Failure in Tropical Forest Management. International Institute for Environment and Development, 1993.
Find full textTrap Responses Of Flying Insects: THE INFLUENCE OF TRAP DESIGN ON CAPTURE EFFICIENCY. Academic Press, 1991.
Find full textTietze, Uwe, Wilfried Thiele, and Rolf Lasch. Economic Performance And Fishing Efficiency of Marine Capture Fisheries (Fao Fisheries Technical Paper). Food & Agriculture Organization of the UN (FA, 2005.
Find full textAdamec, Lubomír, and Andrej Pavlovič. Mineral nutrition of terrestrial carnivorous plants. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198779841.003.0017.
Full textBook chapters on the topic "Capture efficiency"
Murchie, Erik H., Alexandra Townsend, and Matthew Reynolds. "Crop Radiation Capture and Use Efficiency." In Crop Science, 73–106. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8621-7_171.
Full textMurchie, Erik, and Matthew Reynolds. "Crop Radiation Capture and Use Efficiency." In Encyclopedia of Sustainability Science and Technology, 2615–38. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_171.
Full textMurchie, Erik H., Alexandra Townsend, and Matthew Reynolds. "Crop Radiation Capture and Use Efficiency." In Encyclopedia of Sustainability Science and Technology, 1–34. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-2493-6_171-3.
Full textMurchie, Erik, and Matthew Reynolds. "Crop Radiation Capture and Use Efficiency." In Sustainable Food Production, 591–614. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5797-8_171.
Full textJochem, Eberhard. "Carbon Dioxide-Free Power Stations/Carbon Dioxide Capture and Storage." In Improving the Efficiency of R&D and the Market Diffusion of Energy Technologies, 143–70. Heidelberg: Physica-Verlag HD, 2009. http://dx.doi.org/10.1007/978-3-7908-2154-3_6.
Full textMelnychuk, Olena, and D. Jed Harrison. "Evaluation of The Capture Efficiency for DNA in a Flow Through Device." In Micro Total Analysis Systems 2002, 903–5. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0504-3_101.
Full textXu, Ke, and Xiaochong Hou. "How to Capture the Tradeoff between Information Retrieval Effectiveness and Efficiency: An Overview." In Lecture Notes in Electrical Engineering, 431–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27323-0_54.
Full textWilson, Kenneth. "An Efficiency Comparison Between Capture-Recapture Estimators Derived Using Maximum Likelihood and Martingale Theory." In Wildlife 2001: Populations, 102–13. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2868-1_10.
Full textPatel, Ravi A., and Nikolaos I. Prasianakis. "Pore-Scale Numerical Modeling Tools for Improving Efficiency of Direct Carbon Capture in Compacts." In RILEM Bookseries, 141–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76551-4_13.
Full textBudzianowski, Wojciech M. "Useful Mechanisms, Energy Efficiency Benefits, and Challenges of Emerging Innovative Advanced Solvent Based Capture Processes." In Green Energy and Technology, 69–98. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47262-1_4.
Full textConference papers on the topic "Capture efficiency"
Dommergues, Bénédicte, Roberto Brambini, René Mettler, Zaki Abiza, and Bruno Sainte-Rose. "Hydrodynamics and Capture Efficiency of Plastic Cleanup Booms: Part II — 2D Vertical Capture Efficiency and CFD Validation." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-62012.
Full textPrasad, Santosh Kumar, Pradeep Sangli, Osman Buyukisik, and Dave Pugh. "Prediction of Gas Turbine Oil Scoop Capture Efficiency." In ASME 2014 Gas Turbine India Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gtindia2014-8329.
Full textYaguo, Lyu, Jiang Le, Liu Zhenxia, and Hu Jianping. "Simulation and Analysis of Oil Scoop Capture Efficiency." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75989.
Full textMalasek, L., and E. Janotkova. "85. Comparison of Local Exhaust Systems Capture Efficiency." In AIHce 2006. AIHA, 2006. http://dx.doi.org/10.3320/1.2759086.
Full textStephens, Michelle, Carl E. Wieman, K. Corwin, Zheng-Tian Lu, H. Gould, and T. Dinneen. "Optimizing capture efficiency in a magneto-optical trap." In Photonics West '95, edited by Bryan L. Fearey. SPIE, 1995. http://dx.doi.org/10.1117/12.206446.
Full textSafonov, Ivan M., Mykhailo V. Klymenko, and Igor A. Sukhoivanov. "Enhancement of electron capture efficiency in MQW structures." In Photonics Europe, edited by Daan Lenstra, Markus Pessa, and Ian H. White. SPIE, 2006. http://dx.doi.org/10.1117/12.660923.
Full textHershberger, Stefan J., Anthony Parakka, Beth Trudeau, Chandu Patel, Philip Schultz, Urs Häfeli, Wolfgang Schütt, and Maciej Zborowski. "Scalable Magnetic Designs to Achieve Comparable Capture Rates and Capture Efficiency across Multiple Vessel Diameters." In 8TH INTERNATIONAL CONFERENCE ON THE SCIENTIFIC AND CLINICAL APPLICATIONS OF MAGNETIC CARRIERS. AIP, 2010. http://dx.doi.org/10.1063/1.3530037.
Full textAkinnikawe, Oyewande Ayokunle, Anish Singh Chaudhary, Oscar Eli Vasquez, Chijioke Anthony Enih, and Christine A. Ehlig-Economides. "Increasing CO2-Storage Efficiency Through a CO2 Brine-Displacement Approach." In SPE International Conference on CO2 Capture, Storage, and Utilization. Society of Petroleum Engineers, 2010. http://dx.doi.org/10.2118/139467-ms.
Full textSood, Akash, and Savita Vyas. "Carbon dioxide capture efficiency determination for post combustion capture through MEA using Aspen HYSYS at low pressure." In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS). IEEE, 2017. http://dx.doi.org/10.1109/icecds.2017.8389738.
Full textChu, S. C., B. Y. Shew, C. K. Chen, Y. C. Su, S. J. Liu, and C. H. Leng. "Improvement of cell capture efficiency using a reversible DEP field." In TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2009. http://dx.doi.org/10.1109/sensor.2009.5285719.
Full textReports on the topic "Capture efficiency"
James, D. W., and A. S. Poore. Glovebox stripper system tritium capture efficiency-literature review. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1221779.
Full textTsotsis, Theodore T. A HIGH EFFICIENCY, ULTRA-COMPACT PROCESS FOR PRE-COMBUSTION CO2 CAPTURE. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1526847.
Full textZhou, F., Y. Nosochkov, J. C. Sheppard, and W. Liu. Collimation Optimizations, Capture Efficiency, and Primary-beam Power Loss in the ILC Positron Source Transport. Office of Scientific and Technical Information (OSTI), September 2007. http://dx.doi.org/10.2172/917271.
Full textJones, Sean E., Justin I. McIntyre, Matthew W. Cooper, Martin E. Keillor, Scott D. Kiff, and Hui Tan. Modeling Light Capture Efficiency on Various Radiation Detector Geometries Using Monte-Carlo Optical Transport Software. Office of Scientific and Technical Information (OSTI), April 2008. http://dx.doi.org/10.2172/952910.
Full textLai, Cheng-Yu, Daniela R. Radu, Nicholas Pizzi, and Po-Yu Hwang. Novel Silica Nanostructured Platforms with Engineered Surface Functionality and Spherical Morphology for Low-Cost High-Efficiency Carbon Capture. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1415194.
Full textChan, Wanyu R., Sangeetha Kumar, Alexandra Johnson, and Brett C. Singer. Simulations of short-term exposure to NO2 and PM2.5 to inform capture efficiency standards. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1633270.
Full textLiu, Kunlei, Liangyong Chen, Yi Zhang, Lisa Richburg, James Simpson, Jay White, and Gianalfredo Rossi. Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO2 Capture. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1123879.
Full textEckert, Charles, and Charles Liotta. Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1084025.
Full textZeger, Linda, and Amanda Peters. Efficient Methods for Broadcasting Multi-Slot Messages with Random Access with Capture. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada570576.
Full textStroeve, Pieter, and Roland Faller. Thermally and chemically responsive nanoporous materials for efficient capture of fission product gases. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1434414.
Full text