Contents
Academic literature on the topic 'Capteurs de gaz à oxyde métallique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Capteurs de gaz à oxyde métallique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Capteurs de gaz à oxyde métallique"
Yoboue, N'Goran Pamela Marie Josephe. "Etude technologique pour l'amélioration des performances d'un capteur à gaz à oxyde métallique : développement d'une plateforme chauffante et intégration de couche sensible nanostructurée." Toulouse 3, 2010. http://thesesups.ups-tlse.fr/911/.
Full textIn recent years, the development of metal oxides gas sensors has experienced a considerable growth because of an interest more and more important in the protection of environment and people safety. Thanks to technological advances in microelectronics that promote better performances, low costs in terms of consumption and production, these sensors can be used for monitoring air quality in many fields such as transport, industry or housing environment. It is clear that metal oxide sensors sold today present mixed performances. Indeed, despite an interesting sensitivity with a detection threshold around the ppm, those sensors also have low selectivity and great instability, which limit their use to simple detectors. For that matter, these imperfections are the motor of many researches including development of new sensing materials but also new transducers. The goal of this thesis is to prove that it is possible to improve the performances of those metal oxide gas sensors especially on aspects of consumption (<80mW) with a remarkable mechanical stability and electrothermal stability up to 600°C. For that, our work consisted firstly to redefine a new design and then to optimize technological process to develop high-temperature microhotplate. Then we worked on the optimization of ink jet process as a new technological way to integrate nanoparticular sensitive materials; a way much more reproducibly than current deposition techniques. The first tests were conducted with ZnO nanoparticles and have shown promising results especially for flexible integration of various sensing materials for new multisensors
Favard, Alexandre. "Multicapteurs intégrés pour la détection des BTEX." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0123/document.
Full textOutdoor air quality is subjected to the law LAURE since 1996. In 2008, the european directive 2008/50/EC introduced measurement requirements and thresholds that should not be exceeded for certain pollutants on a european scale. According to several toxicological and epidemiological studies, air pollution causes respiratory failure, asthma, cardiovascular diseases and cancers. In Europe, air pollution is responsible for more than 300 000 early deaths a year.Volatile organic compounds (VOCs), particularly benzene, toluene, ethylbenzene and xylenes (BTEX compounds) are proven pollutants and play a major role in the degradation of indoor and outdoor air quality. This thesis is dedicated to the development of a metal oxide based multi-gas sensor for the detection of traces of BTEX within the framework of the SMARTY project (SMart AiR qualiTY). A complete electrical characterization system was designed and implemented for the detection of sub-ppm concentrations of BTEX.Based on the state-of-art, several materials were selected (WO3, ZnO, SnO2). The electrical characterizations of the selected sensitive layers were carried out under dry air and under different humidity levels in the presence of BTEX and interfering gases (NO2, CO2). Tungsten oxide (WO3) exhibits the best performance in the presence of moisture and is chosen for the technology transfer that accompanies the new patented AMU transducers. The WO3-based multi-sensor has a lower limit of detection (LOD) of 1 ppb at 50% relative humidity and effectively detects and quantifies BTEX
Favard, Alexandre. "Multicapteurs intégrés pour la détection des BTEX." Electronic Thesis or Diss., Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0123.
Full textOutdoor air quality is subjected to the law LAURE since 1996. In 2008, the european directive 2008/50/EC introduced measurement requirements and thresholds that should not be exceeded for certain pollutants on a european scale. According to several toxicological and epidemiological studies, air pollution causes respiratory failure, asthma, cardiovascular diseases and cancers. In Europe, air pollution is responsible for more than 300 000 early deaths a year.Volatile organic compounds (VOCs), particularly benzene, toluene, ethylbenzene and xylenes (BTEX compounds) are proven pollutants and play a major role in the degradation of indoor and outdoor air quality. This thesis is dedicated to the development of a metal oxide based multi-gas sensor for the detection of traces of BTEX within the framework of the SMARTY project (SMart AiR qualiTY). A complete electrical characterization system was designed and implemented for the detection of sub-ppm concentrations of BTEX.Based on the state-of-art, several materials were selected (WO3, ZnO, SnO2). The electrical characterizations of the selected sensitive layers were carried out under dry air and under different humidity levels in the presence of BTEX and interfering gases (NO2, CO2). Tungsten oxide (WO3) exhibits the best performance in the presence of moisture and is chosen for the technology transfer that accompanies the new patented AMU transducers. The WO3-based multi-sensor has a lower limit of detection (LOD) of 1 ppb at 50% relative humidity and effectively detects and quantifies BTEX
Yoboue, N'Goran Pamela. "Etude technologique pour l'amélioration des performances d'un capteur de gaz à oxyde métallique: développement d'une plateforme chauffante haute température et intégration de couche sensible nanostructurée." Phd thesis, Université Paul Sabatier - Toulouse III, 2010. http://tel.archives-ouvertes.fr/tel-00509149.
Full textSendi, Aymen. "Nez électronique communicant pour le contrôle de la qualité de l'air intérieur." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30245.
Full textMeasuring indoor air quality is a relatively recent need. Humans spend more than 90% of their time in a closed environment that contains several gaseous pollutants. The existence of such gaseous contaminants in the indoor air as well as short or long term exposure to these pollutants can causes many respiratory problems and several chronic diseases. Studies show that the indoor air quality has an impact on well-being and productivity. VOCs (volatile organic compounds) such as acetaldehyde and formaldehyde are strongly presented in indoor air. This type of pollutants come from materials used in interior design (computer equipment, furniture, paints, fabrics, floors, etc.). We can also found in close envirements many others contaminants such as CO2, CO, and NO2 which come from urban pollution, intensive use of location and poor ventilation. Offices, meeting rooms, classrooms and practical work rooms in universities and / or schools are therefore potentially polluted. In a densely occupied and poorly ventilated room, the measurement of the VOC/CO2 rate may exceed the regulatory thresholds. These gaseous pollutants in the air in high concentrations, due to lack of sufficient ventilation and air quality control, can cause drowsiness and decreased productivity. Measuring and monitoring indoor air quality is therefore essential to ensure a better quality life in workspaces. This thesis is being carried out within the framework of the neOCampus GIS (scientific interest group), led by Paul Sabatier University and dedicated to the development of an innovative, connected and sustainable campus for a better quality life for users. We are interested by the development of micro-gas sensors MOS (metal oxide sensors) and the indoor air quality monitoring in offices, classrooms and meeting rooms. The objective of this study is to control these pollution levels in order to correct them through measures to ventilate the premises. Making a decision about how to correct air quality is an essential step in the process. For example: regulating ventilation in a room if the authorized threshold is exceeded for the identified pollutants. As part of this work, we produced prototypes of miniaturized multi-gas sensors integrated with their electronic card in a witness room and capable of detecting levels of indoor air pollution. These prototypes include a multi-sensor cell (with 4 independent cells), proximity electronics allowing the control and recovery of data from these cells, an IOT (internet of things) type communication module based on the LoRA protocol allowing send to the "Cloud NeoCampus", remotely and wirelessly, an indoor air quality status signal. This multi-sensor is based on semiconductor sensors based on nanostructured metal oxides synthesized at the LCC (coordination chemistry laboratory). [...]
Jérisian, Robert. "Comportement de frittés et de films d'oxyde de titane en présence de mélanges gazeux CO-CO2-O2-Ar hors équilibre thermodynamique : mise au point de capteurs résistifs pour la régulation de combustions." Tours, 1990. http://www.theses.fr/1990TOUR4003.
Full textMiranda, Cavalcante Neto Luiz. "Dynamic indicator of individual exposure to air quality based on multi-sensor measurements : a tool for personalized prevention." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Lille Douai, 2024. http://www.theses.fr/2024MTLD0009.
Full textRecent developments in gas sensing technology have made the use of microsensors popular for a large variety of applications, such as the analysis of quality of food products, odor nuisances, and air pollution monitoring in the ambient and in the indoor air. Notably, metal-oxide-based gas sensors (MOX sensors) have dominated the market for off-the-shelf gas sensor due to their miniaturization, cost-effectiveness, and availability. Despite that, MOX sensors are usually not used individually to measure a single gas as they are notoriously known to be sensitive to a large number of parameters, including multiple gases at the same time, as well as being prone to drift in their measurement during their lifetime. The solution to that is that is most applications, these sensors are grouped in clusters (sometimes called electronic noses) containing different models of MOX sensors capable of measuring different species of gases with different levels of sensitivity and, with proper data treatment in the form of a pattern recognition algorithm, they can provide valuable information about the sample presented to them. For indoor air quality (IAQ) applications, these clusters of MOX sensors are typically used to measure concentration of volatile organic compounds (VOCs)in the indoor air, with results sometimes comparable to analytical laboratory equipment. In this thesis, we study which type of information these clusters of sensors can provide to us, specifically in IAQ applications and how we can convey this information to the occupant of a monitored indoor environment in the form of a dynamic individual IAQ index, hence the title of the thesis. The chosen approach was, at first, to study the number of degrees of freedom of a system containing multiple MOX sensors using a dimensional analysis tool (the intrinsic dimensionality, or ID, of the system) to try to find an ideal configuration for an IAQ monitor to. To do so, multiple datasets were analyzed, which contained different IAQ situations. We ended up developing our own dataset containing reproductions of 10 different day-to-day indoor activities monitored by a large number of MOX sensors. During the analysis of this dataset, we realized that the ID can also be an important indicator of the state of the air pollution in the monitored indoor environment, so after further exploring the effects of the performed activities in the ID of the system, a paper was published with the findings of this study
Menini, Philippe. "Du capteur de gaz à oxydes métalliques vers les nez électroniques sans fil." Habilitation à diriger des recherches, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00697471.
Full textGomri, Sami. "Spectroscopie du bruit électronique dans les microcapteurs de gaz : étude théorique et expérimentale." Aix-Marseille 1, 2006. http://www.theses.fr/2006AIX11047.
Full textParret, Frederic. "Méthode d'analyse sélective et quantitative d'un mélange gazeux à partir d'un microcapteur à oxyde métallique nanoparticulaire." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2006. http://tel.archives-ouvertes.fr/tel-00012018.
Full text