Journal articles on the topic 'Capricorn Orogen'

To see the other types of publications on this topic, follow the link: Capricorn Orogen.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Capricorn Orogen.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fielding, Imogen, and Simon Johnson. "Gold metallogeny of the northern Capricorn Orogen." ASEG Extended Abstracts 2019, no. 1 (November 11, 2019): 1–6. http://dx.doi.org/10.1080/22020586.2019.12073049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lampinen, Heta, Sandra Occhipinti, Mark Lindsay, and Carsten Laukamp. "Magnetic susceptibility of Edmund Basin, Capricorn Orogen, WA." ASEG Extended Abstracts 2016, no. 1 (December 2016): 1–8. http://dx.doi.org/10.1071/aseg2016ab254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Occhipinti, S. A., S. Sheppard, C. Passchier, I. M. Tyler, and D. R. Nelson. "Palaeoproterozoic crustal accretion and collision in the southern Capricorn Orogen: the Glenburgh Orogeny." Precambrian Research 128, no. 3-4 (January 2004): 237–55. http://dx.doi.org/10.1016/j.precamres.2003.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Murdie, Ruth E., Huaiyu Yuan, Michael Dentith, and Xioabing Xu. "Passive seismic studies of the Capricorn Orogen, Western Australia." ASEG Extended Abstracts 2019, no. 1 (November 11, 2019): 1–5. http://dx.doi.org/10.1080/22020586.2019.12072953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sheppard, S., SA Occhipinti, and DR Nelson. "Intracontinental reworking in the Capricorn Orogen, Western Australia: the 1680 – 1620 Ma Mangaroon Orogeny*." Australian Journal of Earth Sciences 52, no. 3 (June 2005): 443–60. http://dx.doi.org/10.1080/08120090500134589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

SELWAY, K., S. SHEPPARD, A. THORNE, S. JOHNSON, and P. GROENEWALD. "Identifying the lithospheric structure of a Precambrian orogen using magnetotellurics: The Capricorn Orogen, Western Australia." Precambrian Research 168, no. 3-4 (February 2009): 185–96. http://dx.doi.org/10.1016/j.precamres.2008.09.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ley-Cooper, A. Yusen, Tim Munday, and Tania Ibrahimi. "Determining cover variability in the Capricorn Orogen with airborne EM." ASEG Extended Abstracts 2015, no. 1 (December 2015): 1–6. http://dx.doi.org/10.1071/aseg2015ab105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Banaszczyk, Sasha, David Annetts, and Michael Dentith. "Towards resolving dipping contacts undercover in the Capricorn Orogen using AEM." ASEG Extended Abstracts 2016, no. 1 (December 2016): 1–8. http://dx.doi.org/10.1071/aseg2016ab167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Johnson, S. P., A. M. Thorne, I. M. Tyler, R. J. Korsch, B. L. N. Kennett, H. N. Cutten, J. Goodwin, et al. "Crustal architecture of the Capricorn Orogen, Western Australia and associated metallogeny." Australian Journal of Earth Sciences 60, no. 6-7 (October 2013): 681–705. http://dx.doi.org/10.1080/08120099.2013.826735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pirajno, F., and S. A. Occhipinti. "Three Palaeoproterozoic basins—Yerrida, Bryah and Padbury—Capricorn Orogen, Western Australia." Australian Journal of Earth Sciences 47, no. 4 (August 2000): 675–88. http://dx.doi.org/10.1046/j.1440-0952.2000.00800.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Thorne, R. L., S. C. Spinks, and R. R. Anand. "Geomorphic provinces and regolith-landform evolution of the Capricorn Orogen, Western Australia." Australian Journal of Earth Sciences 68, no. 5 (January 21, 2021): 641–58. http://dx.doi.org/10.1080/08120099.2021.1848923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Alghamdi, Abdulrhman H., Alan R. A. Aitken, and Michael C. Dentith. "Deep Crustal Structure of the Capricorn Orogen from Gravity and Seismic Data." ASEG Extended Abstracts 2015, no. 1 (December 2015): 1–3. http://dx.doi.org/10.1071/aseg2015ab207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Alghamdi, A. H., A. R. A. Aitken, and M. C. Dentith. "The composition and structure of the deep crust of the Capricorn Orogen." Australian Journal of Earth Sciences 65, no. 1 (November 13, 2017): 9–24. http://dx.doi.org/10.1080/08120099.2018.1389769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Cawood, Peter A., and Ian M. Tyler. "Assembling and reactivating the Proterozoic Capricorn Orogen: lithotectonic elements, orogenies, and significance." Precambrian Research 128, no. 3-4 (January 2004): 201–18. http://dx.doi.org/10.1016/j.precamres.2003.09.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hynes, A., and R. D. Gee. "Geological setting and petrochemistry of the Narracoota Volcanics, Capricorn Orogen, Western Australia." Precambrian Research 31, no. 2 (March 1986): 107–32. http://dx.doi.org/10.1016/0301-9268(86)90070-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Occhipinti, Sandra, Alan Aitken, Mark Lindsay, and Lara Ramos. "Archean controls on basin development and mineralisation in the Southern Capricorn Orogen." ASEG Extended Abstracts 2018, no. 1 (December 2018): 1–7. http://dx.doi.org/10.1071/aseg2018abt4_3g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jakica, Sara, and Lucy Brisbout. "Application of passive seismic and AEM to 3D paleochannel imaging: Capricorn Orogen." ASEG Extended Abstracts 2019, no. 1 (November 11, 2019): 1–5. http://dx.doi.org/10.1080/22020586.2019.12073067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hancock, E. A., and A. M. Thorne. "Mineralogy of lode and alluvial gold from the western Capricorn Orogen, Western Australia." Australian Journal of Earth Sciences 58, no. 7 (October 2011): 793–801. http://dx.doi.org/10.1080/08120099.2011.605802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Occhipinti, S. A., S. Sheppard, D. R. Nelson, J. S. Myers, and I. M. Tyler. "Syntectonic granite in the southern margin of the Palaeoproterozoic Capricorn Orogen, Western Australia." Australian Journal of Earth Sciences 45, no. 4 (August 1998): 509–12. http://dx.doi.org/10.1080/08120099808728408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kinny, P. D., A. P. Nutman, and S. A. Occhipinti. "Reconnaissance dating of events recorded in the southern part of the Capricorn Orogen." Precambrian Research 128, no. 3-4 (January 2004): 279–94. http://dx.doi.org/10.1016/j.precamres.2003.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Korhonen, Fawna J., and Simon P. Johnson. "The role of radiogenic heat in prolonged intraplate reworking: The Capricorn Orogen explained?" Earth and Planetary Science Letters 428 (October 2015): 22–32. http://dx.doi.org/10.1016/j.epsl.2015.06.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Pirajno, F., J. A. Jones, R. M. Hocking, and J. Halilovic. "Geology and tectonic evolution of Palaeoproterozoic basins of the eastern Capricorn Orogen, Western Australia." Precambrian Research 128, no. 3-4 (January 2004): 315–42. http://dx.doi.org/10.1016/j.precamres.2003.09.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Martin, D. McB, and A. M. Thorne. "Tectonic setting and basin evolution of the Bangemall Supergroup in the northwestern Capricorn Orogen." Precambrian Research 128, no. 3-4 (January 2004): 385–409. http://dx.doi.org/10.1016/j.precamres.2003.09.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pirajno, Franco. "Metallogeny in the Capricorn Orogen, Western Australia, the result of multiple ore-forming processes." Precambrian Research 128, no. 3-4 (January 2004): 411–39. http://dx.doi.org/10.1016/j.precamres.2003.09.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hackney, Ron. "Gravity anomalies, crustal structure and isostasy associated with the Proterozoic Capricorn Orogen, Western Australia." Precambrian Research 128, no. 3-4 (January 2004): 219–36. http://dx.doi.org/10.1016/j.precamres.2003.09.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Reddy, Steven M., and Sandra A. Occhipinti. "High-strain zone deformation in the southern Capricorn Orogen, Western Australia: kinematics and age constraints." Precambrian Research 128, no. 3-4 (January 2004): 295–314. http://dx.doi.org/10.1016/j.precamres.2003.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Agangi, Andrea, Diana Plavsa, Steve M. Reddy, Hugo Olierook, and Andrew Kylander-Clark. "Compositional modification and trace element decoupling in rutile: Insight from the Capricorn Orogen, Western Australia." Precambrian Research 345 (August 2020): 105772. http://dx.doi.org/10.1016/j.precamres.2020.105772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Occhipinti, Sandra, Václav Metelka, Mark Lindsay, Alan Aitken, Franco Pirajno, and Ian Tyler. "The evolution from plate margin to intraplate mineral systems in the Capricorn Orogen, links to prospectivity." Ore Geology Reviews 127 (December 2020): 103811. http://dx.doi.org/10.1016/j.oregeorev.2020.103811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sánchez, Adrián Misael León, and Luis Alonso Gallardo Delgado. "2D cross-gradient joint inversion of magnetic and gravity data across the Capricorn Orogen in Western Australia." ASEG Extended Abstracts 2015, no. 1 (December 2015): 1–5. http://dx.doi.org/10.1071/aseg2015ab275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lampinen, Heta M., Carsten Laukamp, Sandra A. Occhipinti, and Lyndon Hardy. "Mineral footprints of the Paleoproterozoic sediment-hosted Abra Pb-Zn-Cu-Au deposit Capricorn Orogen, Western Australia." Ore Geology Reviews 104 (January 2019): 436–61. http://dx.doi.org/10.1016/j.oregeorev.2018.11.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Armandola, S., M. Barham, S. M. Reddy, C. Clark, R. J. M. Taylor, and S. C. Spinks. "Geochronological and provenance constraints on the sedimentary rocks hosting the Abra polymetallic deposit, Capricorn Orogen, Western Australia." Precambrian Research 350 (November 2020): 105896. http://dx.doi.org/10.1016/j.precamres.2020.105896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tyler, I. M., and A. M. Thorne. "The northern margin of the Capricorn Orogen, Western Australia—an example of an Early Proterozoic collision zone." Journal of Structural Geology 12, no. 5-6 (January 1990): 685–701. http://dx.doi.org/10.1016/0191-8141(90)90082-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Occhipinti, Sandra A., and Steven M. Reddy. "Neoproterozoic reworking of the Palaeoproterozoic Capricorn Orogen of Western Australia and implications for the amalgamation of Rodinia." Geological Society, London, Special Publications 327, no. 1 (2009): 445–56. http://dx.doi.org/10.1144/sp327.18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Fielding, Imogen O. H., Simon P. Johnson, Jian-Wei Zi, Birger Rasmussen, and Stephen Sheppard. "Gold metallogeny of the northern Capricorn Orogen: The relationship between crustal architecture, fault reactivation and hydrothermal fluid flow." Ore Geology Reviews 122 (July 2020): 103515. http://dx.doi.org/10.1016/j.oregeorev.2020.103515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Olierook, Hugo K. H., Stephen Sheppard, Simon P. Johnson, Sandra A. Occhipinti, Steven M. Reddy, Christopher Clark, Ian R. Fletcher, et al. "Extensional episodes in the Paleoproterozoic Capricorn Orogen, Western Australia, revealed by petrogenesis and geochronology of mafic–ultramafic rocks." Precambrian Research 306 (March 2018): 22–40. http://dx.doi.org/10.1016/j.precamres.2017.12.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Reading, A. M., and B. L. N. Kennett. "Lithospheric structure of the Pilbara Craton, Capricorn Orogen and northern Yilgarn Craton, Western Australia, from teleseismic receiver functions." Australian Journal of Earth Sciences 50, no. 3 (June 2003): 439–45. http://dx.doi.org/10.1046/j.1440-0952.2003.01003.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

SHEPPARD, S., B. RASMUSSEN, J. R. MUHLING, T. R. FARRELL, and I. R. FLETCHER. "Grenvillian-aged orogenesis in the Palaeoproterozoic Gascoyne Complex, Western Australia: 1030?950�Ma reworking of the Proterozoic Capricorn Orogen." Journal of Metamorphic Geology 25, no. 4 (May 2007): 477–94. http://dx.doi.org/10.1111/j.1525-1314.2007.00708.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Evans, D. A. D., K. N. Sircombe, M. T. D. Wingate, M. Doyle, M. McCarthy, R. T. Pidgeon, and H. S. Van Niekerk. "Revised geochronology of magmatism in the western Capricorn Orogen at 1805-1785 Ma: diachroneity of the Pilbara-Yilgarn collision." Australian Journal of Earth Sciences 50, no. 6 (December 2003): 853–64. http://dx.doi.org/10.1111/j.1400-0952.2003.01031.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Johnson, Simon P. "Twenty years of pre-competitive geoscience data in the Capricorn Orogen: the link between mineral systems and crustal evolution." ASEG Extended Abstracts 2019, no. 1 (November 11, 2019): 1–3. http://dx.doi.org/10.1080/22020586.2019.12073250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Uren, Ashley L., Alan R. A. Aitken, Sandra A. Occhipinti, and Annette D. George. "An integrated approach to mapping crustal geology and structures in the NE Capricorn Orogen, Western Australia: Implications for uranium exploration." ASEG Extended Abstracts 2018, no. 1 (December 2018): 1–8. http://dx.doi.org/10.1071/aseg2018abt4_2g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Sheppard, Stephen, Ian R. Fletcher, Birger Rasmussen, Jian-Wei Zi, Janet R. Muhling, Sandra A. Occhipinti, Michael T. D. Wingate, and Simon P. Johnson. "A new Paleoproterozoic tectonic history of the eastern Capricorn Orogen, Western Australia, revealed by U–Pb zircon dating of micro-tuffs." Precambrian Research 286 (November 2016): 1–19. http://dx.doi.org/10.1016/j.precamres.2016.09.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Piechocka, Agnieszka M., Stephen Sheppard, Ian C. W. Fitzsimons, Simon P. Johnson, Birger Rasmussen, and Fred Jourdan. "Neoproterozoic 40Ar/39Ar mica ages mark the termination of a billion years of intraplate reworking in the Capricorn Orogen, Western Australia." Precambrian Research 310 (June 2018): 391–406. http://dx.doi.org/10.1016/j.precamres.2018.04.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pirajno, Franco, Yanjing Chen, Nuo Li, Chao Li, and Limin Zhou. "Besshi-type mineral systems in the Palaeoproterozoic Bryah Rift-Basin, Capricorn Orogen, Western Australia: Implications for tectonic setting and geodynamic evolution." Geoscience Frontiers 7, no. 3 (May 2016): 345–57. http://dx.doi.org/10.1016/j.gsf.2015.09.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Henne, Anicia, Nathan Reid, Robert L. Thorne, Samuel C. Spinks, Tenten Pinchand, and Alistair White. "Multi-Media Geochemical Exploration in the Critical Zone: A Case Study over the Prairie and Wolf Zn–Pb Deposits, Capricorn Orogen, Western Australia." Minerals 11, no. 11 (October 22, 2021): 1174. http://dx.doi.org/10.3390/min11111174.

Full text
Abstract:
In this study, we compared traditional lithochemical sample media (soil) with hydrochemical (groundwater), biogeochemical (plant matter of mulga and spinifex), and other near-surface sample media (ferro-manganese crust), in a case study applied to mineral exploration in weathered terrain, through the critical zone at the fault-hosted Prairie and Wolf Zn–Pb (Ag) deposits in Western Australia. We used multi-element geochemistry analyses to spatially identify geochemical anomalies in samples over known mineralization, and investigated metal dispersion processes. In all near-surface sample media, high concentrations of the metals of interest (Zn, Pb, Ag) coincided with samples proximal to the mineralization at depth. However, the lateral dispersion of these elements differed from regional (several km; groundwater) to local (several 100′s of meters; solid sample media) scales. Zinc in spinifex leaves over the Prairie and Wolf deposits exceeded the total concentrations in all other sample media, while the metal concentrations in mulga phyllodes were not as pronounced, except for Ag, which exceeded the concentrations in all other sample media. These observations indicate potential preferential metal-specific uptake by different media. Pathfinder elements in vegetation and groundwater samples also indicated the Prairie Downs fault zone at the regional (groundwater) and local (vegetation) scale, and are, therefore, potentially useful tools to trace fault systems that host structurally controlled, hydrothermal Zn–Pb mineralization.
APA, Harvard, Vancouver, ISO, and other styles
45

León-Sánchez, Adrián Misael, Luis A. Gallardo, and Alan Yusen Ley-Cooper. "Two dimensional cross-gradient joint inversion of gravity and magnetic data sets constrained by airborne electromagnetic resistivity in the Capricorn Orogen, Western Australia." Exploration Geophysics 49, no. 6 (November 2018): 940–51. http://dx.doi.org/10.1071/eg16069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Piña-Varas, Perla, and Michael Dentith. "Magnetotelluric data from the Southeastern Capricorn Orogen, Western Australia: an example of widespread out-of-quadrant phase responses associated with strong 3-D resistivity contrasts." Geophysical Journal International 212, no. 2 (October 23, 2017): 1022–32. http://dx.doi.org/10.1093/gji/ggx459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Rasmussen, Birger, and Ian R. Fletcher. "Indirect dating of mafic intrusions by SHRIMP U–Pb analysis of monazite in contact metamorphosed shale: an example from the Palaeoproterozoic Capricorn Orogen, Western Australia." Earth and Planetary Science Letters 197, no. 3-4 (April 2002): 287–99. http://dx.doi.org/10.1016/s0012-821x(02)00501-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Meadows, Holly R., Steven M. Reddy, Chris Clark, Chris Harris, Laure Martin, and Alistair J. R. White. "Isotopic constraints on fluid evolution and ore precipitation in a sediment-hosted Pb-Ag-Ba-Zn-Cu-Au deposit in the Capricorn Orogen, Western Australia." Applied Geochemistry 96 (September 2018): 217–32. http://dx.doi.org/10.1016/j.apgeochem.2018.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Verberne, R., S. M. Reddy, D. W. Saxey, D. Fougerouse, W. D. A. Rickard, D. Plavsa, A. Agangi, and A. R. C. Kylander-Clark. "The geochemical and geochronological implications of nanoscale trace-element clusters in rutile." Geology 48, no. 11 (July 21, 2020): 1126–30. http://dx.doi.org/10.1130/g48017.1.

Full text
Abstract:
Abstract The geochemical analysis of trace elements in rutile (e.g., Pb, U, and Zr) is routinely used to extract information on the nature and timing of geological events. However, the mobility of trace elements can affect age and temperature determinations, with the controlling mechanisms for mobility still debated. To further this debate, we use laser-ablation–inductively coupled plasma–mass spectrometry and atom probe tomography to characterize the micro- to nanoscale distribution of trace elements in rutile sourced from the Capricorn orogen, Western Australia. At the >20 µm scale, there is no significant trace-element variation in single grains, and a concordant U-Pb crystallization age of 1872 ± 6 Ma (2σ) shows no evidence of isotopic disturbance. At the nanoscale, clusters as much as 20 nm in size and enriched in trace elements (Al, Cr, Pb, and V) are observed. The 207Pb/206Pb ratio of 0.176 ± 0.040 (2σ) obtained from clusters indicates that they formed after crystallization, potentially during regional metamorphism. We interpret the clusters to have formed by the entrapment of mobile trace elements in transient sites of radiation damage during upper amphibolite facies metamorphism. The entrapment would affect the activation energy for volume diffusion of elements present in the cluster. The low number and density of clusters provides constraints on the time over which clusters formed, indicating that peak metamorphic temperatures are short-lived, <10 m.y. events. Our results indicate that the use of trace elements to estimate volume diffusion in rutile is more complex than assuming a homogeneous medium.
APA, Harvard, Vancouver, ISO, and other styles
50

Dentith, Michael, Huaiyu Yuan, Simon Johnson, Ruth Murdie, and Perla Piña-Varas. "Application of deep-penetrating geophysical methods to mineral exploration: Examples from Western Australia." GEOPHYSICS 83, no. 3 (May 1, 2018): WC29—WC41. http://dx.doi.org/10.1190/geo2017-0482.1.

Full text
Abstract:
The emergence of the concept of a “mineral system” has changed the way regional-scale mineral prospectivity is assessed. Geographically widespread data sets and deep-penetrating geophysical methods are required to map the various components of the mineral system, which may encompass areas of perhaps thousands of square kilometers and extend to mantle depths. Key mineral system components that can be detected in this fashion include deep-penetrating faults and the suture zones between major geologic blocks, which are important controls on the movement of metal-carrying magmas and brines in a variety of mineral systems. Two case studies from mineralized terrains in Western Australia illustrate the use of deep-penetrating geophysical methods in mineral exploration. Magnetotelluric (MT) data from a 300-km-long traverse in the Archean Yilgarn Craton map numerous steeply dipping conductive zones, which coincide with linear anomalies in potential field data and are interpreted as deep-penetrating faults. Also, lateral changes in crustal and upper mantle resistivity structure suggest the juxtaposition of two, or perhaps three, different major crustal blocks with intervening suture zones. Teleseismic data from a 250-km-long traverse in the Proterozoic Capricorn Orogen provide information on deep crustal structure and composition. Interpretation in association with deep seismic reflection data allows previously unrecognized suture zones to be recognized in the deep crust and under thick cover. Passive seismic and MT methods represent a comparatively cost effective way to identify key mineral system indicators of regional prospectivity, even in the geologically complex terrains of Western Australia.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography