Academic literature on the topic 'Capillary endothelial cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Capillary endothelial cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Capillary endothelial cells"

1

Vigne, P., R. Marsault, J. P. Breittmayer, and C. Frelin. "Endothelin stimulates phosphatidylinositol hydrolysis and DNA synthesis in brain capillary endothelial cells." Biochemical Journal 266, no. 2 (March 1, 1990): 415–20. http://dx.doi.org/10.1042/bj2660415.

Full text
Abstract:
Endothelin-1 (ET-1) is a novel vasoconstricting and cardiotonic peptide that is synthesized by the vascular endothelium. Bovine aortic endothelial cells which secrete ET in vitro lack membrane receptor sites for the peptide. Endothelial cells from rat brain microvessels that do not secrete ET in vitro express large amounts of high-affinity receptors for 125I-labelled ET-1 (Kd 0.8 nM). The ET receptor is recognized by sarafotoxin S6b and the different ET peptides with the following order of potency: ET-1 (Kd 0.5 nM) approximately equal to ET-2 (Kd 0.7 nM) greater than sarafotoxin S6b (Kd 27 nM) greater than ET-3 (Kd 450 nM). This structure-activity relationship is different from those found in vascular smooth muscle cells, renal cells and cardiac cells. ET-1 stimulates DNA synthesis in brain capillary endothelial cells. It is more potent than basic fibroblast growth factor. The action of ET on endothelial cells from microvessels involves phosphatidylinositol hydrolysis and intracellular Ca2+ mobilization. These observations suggest that brain endothelial cells might be an important target for ET.
APA, Harvard, Vancouver, ISO, and other styles
2

Dehouck, Bénédicte, Marie-Pierre Dehouck, Jean-Charles Fruchart, and Roméo Cecchelli. "Upregulation of the Low Density Lipoprotein Receptor at the Blood-Brain Barrier: Intercommunications between Brain Capillary Endothelial Cells and Astrocytes." Review & Expositor 84, no. 1 (February 1987): 465–73. http://dx.doi.org/10.1177/003463738708400125.

Full text
Abstract:
In contrast to the endothelial cells in large vessels where LDL receptors are downregulated, brain capillary endothelial cells in vivo express an LDL receptor. Using a cell culture model of the blood-brain barrier consisting of a coculture of brain capillary endothelial cells and astrocytes, we observed that the capacity of endothelial cells to bind LDL is enhanced threefold when cocultured with astrocytes. We next investigated the ability of astrocytes to modulate endothelial cell LDL receptor expression. We have shown that the lipid requirement of astrocytes increases the expression of endothelial cell LDL receptors. Experiments with dialysis membranes of different pore size showed that this effect is mediated by a soluble factor(s) with relative molecular mass somewhere between 3,500 and 14,000. Substituting astrocytes with smooth muscle cells or brain endothelium with endothelium from the aorta or the adrenal cortex did not enhance the luminal LDL receptor expression on endothelial cells, demonstrating the specificity of the interactions. This factor(s) is exclusively secreted by astrocytes cocultured with brain capillary endothelial cells, but it also upregulates the LDL receptor on other cell types. This study confirms the notion that the final fine tuning of cell differentiation is under local control.
APA, Harvard, Vancouver, ISO, and other styles
3

Dehouck, B., M. P. Dehouck, J. C. Fruchart, and R. Cecchelli. "Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes." Journal of Cell Biology 126, no. 2 (July 15, 1994): 465–73. http://dx.doi.org/10.1083/jcb.126.2.465.

Full text
Abstract:
In contrast to the endothelial cells in large vessels where LDL receptors are downregulated, brain capillary endothelial cells in vivo express an LDL receptor. Using a cell culture model of the blood-brain barrier consisting of a coculture of brain capillary endothelial cells and astrocytes, we observed that the capacity of endothelial cells to bind LDL is enhanced threefold when cocultured with astrocytes. We next investigated the ability of astrocytes to modulate endothelial cell LDL receptor expression. We have shown that the lipid requirement of astrocytes increases the expression of endothelial cell LDL receptors. Experiments with dialysis membranes of different pore size showed that this effect is mediated by a soluble factor(s) with relative molecular mass somewhere between 3,500 and 14,000. Substituting astrocytes with smooth muscle cells or brain endothelium with endothelium from the aorta or the adrenal cortex did not enhance the luminal LDL receptor expression on endothelial cells, demonstrating the specificity of the interactions. This factor(s) is exclusively secreted by astrocytes cocultured with brain capillary endothelial cells, but it also upregulates the LDL receptor on other cell types. This study confirms the notion that the final fine tuning of cell differentiation is under local control.
APA, Harvard, Vancouver, ISO, and other styles
4

Ganz, Peter R., Denis Dupuis, Anil K. Dudani, and Sofia Hashemi. "Characterization of plasminogen binding to human capillary and arterial endothelial cells." Biochemistry and Cell Biology 69, no. 7 (July 1, 1991): 442–48. http://dx.doi.org/10.1139/o91-067.

Full text
Abstract:
Phenotypic diversity of endothelial cells that line the various vascular spaces has been well established. However, it is not known if biochemical differences also exist, particularly in the numbers of receptors for plasma proteins. Equilibrium binding techniques were used to assess potential differences in the binding of 125I-labelled plasminogen to cultured human umbilical arterial endothelial cells and capillary endothelium, as compared with umbilical venous cells. The kinetic behaviour of plasminogen binding to all three types of cells was similar, with optimal binding occurring between 20 and 30 min of incubation. Binding of plasminogen to arterial, capillary, and venous cells was concentration dependent and reversible upon addition to excess unlabelled plasminogen. Scatchard analyses showed that artery, capillary, and venous endothelial cells all possess low affinity sites for plasminogen with Kd values of 0.30 ± 0.07, 0.40 ± 0.06, and 0.40 ± 0.08 μM, respectively. Vein cells also possess an additional higher affinity binding site with a Kd of 0.07 ± 0.01 μM, exhibiting a 6-fold greater affinity for plasminogen than the lower affinity sites on capillary and arterial endothelial cells. Assuming a stoichiometry of 1:1 for binding, the data indicate that arterial and capillary endothelial cells contain approximately 4.2 (± 0.9) × 106 and 4.1 (± 0.6) × 106 plasminogen receptors per cell. Venous cells contain both low and high density binding sites with 6.2 (± 0.8) × 106 and 12.4 (± 2.4) × 106 sites per endothelial cell. The presence of a higher affinity site on vein cells, but not on artery or capillary cells, may signal functional differences relating to fibrinolytic activity on the surface of these cells. Ligand blotting experiments, in which labelled plasminogen was adsorbed to polypeptides recovered from endothelial cell lysates, identified polypeptides of 46, 45, and 37 kDa, which may constitute the plasminogen-binding sites–receptors on endothelial cells.Key words: plasminogen, endothelial cells, receptors, fibrinolysis.
APA, Harvard, Vancouver, ISO, and other styles
5

Felice, Francesca, Ester Belardinelli, Alessandro Frullini, Tatiana Santoni, Egidio Imbalzano, and Rossella Di Stefano. "Effect of aminaphtone on in vitro vascular permeability and capillary-like maintenance." Phlebology: The Journal of Venous Disease 33, no. 9 (October 23, 2017): 592–99. http://dx.doi.org/10.1177/0268355517737662.

Full text
Abstract:
Objectives Aminaphtone, a naphtohydrochinone used in the treatment of capillary disorders, may affect oedema in chronic venous insufficiency. Aim of study is to investigate the effect of aminaphtone on vascular endothelial permeability in vitro and its effects on three-dimensional capillary-like structures formed by human umbilical vein endothelial cells. Method Human umbilical vein endothelial cells were treated with 50 ng/ml VEGF for 2 h and aminaphtone for 6 h. Permeability assay, VE-cadherin expression and Matrigel assay were performed. Results VEGF-induced permeability was significantly decreased by aminaphtone in a range concentration of 1–20 µg/ml. Aminaphtone restored VE-cadherin expression. Finally, 6 h pre-treatment with aminaphtone significantly preserved capillary-like structures formed by human umbilical vein endothelial cells on Matrigel up to 48 h compared to untreated cells. Conclusions Aminaphtone significantly protects endothelium permeability and stabilises endothelial cells organised in capillary-like structures, modulating VE-cadherin expression. These data might explain the clinical benefit of aminaphtone on chronic venous insufficiency.
APA, Harvard, Vancouver, ISO, and other styles
6

Montesano, R., and L. Orci. "Intracellular diaphragmed fenestrae in cultured capillary endothelial cells." Journal of Cell Science 89, no. 3 (March 1, 1988): 441–47. http://dx.doi.org/10.1242/jcs.89.3.441.

Full text
Abstract:
The endothelium of visceral capillaries is characterized by the occurrence of numerous fenestrae, which are usually bridged by a thin, single-layered diaphragm. Both in vivo and in vitro, diaphragmed fenestrae perforate the endothelial cell cytoplasm in the most attenuated regions of the cell. We report here that in capillary endothelial cells grown under experimental conditions promoting the development of intracellular lumina (for example, suspension within a three-dimensional collagen matrix), diaphragmed fenestrae can form in a unique, previously undescribed intracellular location - that is, within thin cytoplasmic septa separating contiguous luminal compartments.
APA, Harvard, Vancouver, ISO, and other styles
7

Dehouck, Marie-Pierre, Paul Vigne, Gérard Torpier, Jean Philippe Breittmayer, Roméo Cecchelli, and Christian Frelin. "Endothelin-1 as a Mediator of Endothelial Cell–Pericyte Interactions in Bovine Brain Capillaries." Journal of Cerebral Blood Flow & Metabolism 17, no. 4 (April 1997): 464–69. http://dx.doi.org/10.1097/00004647-199704000-00012.

Full text
Abstract:
Endothelial cells and pericytes are closely associated in brain capillaries. Together with astrocytic foot processes, they form the blood–brain barrier. Capillaries were isolated from bovine brain cortex. Pure populations of endothelial cells and pericytes were isolated and cultured in vitro. Polarized monolayers of endothelial cells preferentially secreted immunoreactive endothelin-1 (Et-1) at their abluminal (brain-facing) membrane. They did not express receptors for Et-1. Pericytes expressed BQ-123-sensitive ETA receptors for endothelins as evidenced by 125I-Et-1 binding experiments. These receptors were coupled to phospholipase C as demonstrated by intracellular calcium measurements using indo-1-loaded cells. Addition of Et-1 to pericytes induced marked changes in the cell morphology that were associated with a reorganization of F-actin and intermediate filaments. It is concluded that Et-1 is a paracrine mediator at the bovine blood–brain barrier and that capillary pericytes are target cells for endothelium-derived Et-1.
APA, Harvard, Vancouver, ISO, and other styles
8

Sage, E. Helene. "Secretion of SPARC by endothelial cells transformed by polyoma middle T oncogene inhibits the growth of normal endothelial cells in vitro." Biochemistry and Cell Biology 70, no. 7 (July 1, 1992): 579–92. http://dx.doi.org/10.1139/o92-089.

Full text
Abstract:
Endothelioma cells expressing the polyoma virus middle T oncogene induced hemangiomas in mice by the recruitment of nonproliferating endothelial cells from host blood vessels (Williams et al. 1989). I now report that SPARC, a Ca2+-binding glycoprotein that perturbs cell–matrix interactions and inhibits the endothelial cell cycle, is produced by endothelioma cells and is in part responsible for the alterations in the morphology and growth that occur when nontransformed bovine aortic endothelial cells are cocultured with endothelioma cells. Normal endothelial cells cocultured with two different middle T-positive endothelial cell lines, termed End cells, exhibited changes in shape that were accompanied by the formation of cell clusters. Media conditioned by End cells repressed proliferation of normal endothelial cells, but enhanced that of an established line of murine capillary endothelium. Radiolabeling studies revealed no apparent differences in the profile of proteins secreted by aortic or capillary cells cultured in End cell conditioned media. Characterization of proteins produced by End cells led to the identification of type IV collagen, laminin, entactin, and SPARC as major secreted products. Although SPARC did not affect the morphology of End or capillary cells, it was associated with overt changes in the shape of aortic endothelial cells. Moreover, SPARC and a synthetic peptide from SPARC domain II inhibited the incorporation of [3H]thymidine by aortic cells, but had minimal to no effect on the capillary endothelial cell line. The inhibition of growth exhibited by aortic endothelial cells cultured in End cell conditioned media could be partially reversed by antibodies specific for SPARC and SPARC peptides. These studies indicate a potential role for SPARC in the generation of hemangiomas by End cells in vivo, a process that requires normal (host) endothelial cells to disengage from the extracellular matrix, withdraw from the cell cycle, migrate, and reassociate into the disorganized cellular networks that comprise cavernous and capillary hemangiomas.Key words: endothelial cells, hemangioma, cell proliferation, SPARC.
APA, Harvard, Vancouver, ISO, and other styles
9

Anderson, Christopher R., Ana M. Ponce, and Richard J. Price. "Absence of OX-43 antigen expression in invasive capillary sprouts: identification of a capillary sprout-specific endothelial phenotype." American Journal of Physiology-Heart and Circulatory Physiology 286, no. 1 (January 2004): H346—H353. http://dx.doi.org/10.1152/ajpheart.00772.2003.

Full text
Abstract:
Endothelial cells exhibit a number of unique phenotypes, some of which are angiogenesis dependent. To identify a capillary sprout-specific endothelial phenotype, we labeled angiogenic rat mesentery tissue using a microvessel and capillary sprout marker (laminin), selected endothelial cell markers (CD31, tie-2, and BS-I lectin), and the OX-43 monoclonal antibody, which recognizes a 90-kDa membrane glycoprotein of unknown function. In tissues that were stimulated through wound healing and compound 48/80 application, double-immunolabeling experiments with an anti-laminin antibody revealed that the OX-43 antigen was expressed strongly in all microvessels. However, the OX-43 antigen was completely absent from a large percentage (>85%) of the capillary sprouts that were invading the avascular tissue space. In contrast, sprouts that were introverting back into the previously vascularized tissue retained high levels of OX-43 antigen expression. Double-labeling experiments with endothelial markers indicated that the OX-43 antigen was expressed by microvessel endothelium but was absent from virtually all invasive capillary sprout endothelial cells. We conclude that the absence of OX-43 antigen expression marks a novel, capillary sprout-specific, endothelial cell phenotype. Endothelial cells of this phenotype are particularly abundant in capillary sprouts that invade avascular tissue during angiogenesis.
APA, Harvard, Vancouver, ISO, and other styles
10

Ladoux, Annie, and Christian Frelin. "Endothelins inhibit adenylate cyclase in brain capillary endothelial cells." Biochemical and Biophysical Research Communications 180, no. 1 (October 1991): 169–73. http://dx.doi.org/10.1016/s0006-291x(05)81271-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Capillary endothelial cells"

1

Tretiach, Marina Louise. "Bovine Models of Human Retinal Disease: Effect of Perivascular Cells on Retinal Endothelial Cell Permeability." University of Sydney, 2005. http://hdl.handle.net/2123/1153.

Full text
Abstract:
Doctor of Philosophy (Medicine)
Background: Diabetic vascular complications affect both the macro- and microvasculature. Microvascular pathology in diabetes may be mediated by biochemical factors that precipitate cellular changes at both the gene and protein levels. In the diabetic retina, vascular pathology is found mainly in microvessels, including the retinal precapillary arterioles, capillaries and venules. Macular oedema secondary to breakdown of the inner blood-retinal barrier is the most common cause of vision impairment in diabetic retinopathy. Müller cells play a critical role in the trophic support of retinal neurons and blood vessels. In chronic diabetes, Müller cells are increasingly unable to maintain their supportive functions and may themselves undergo changes that exacerbate the retinal pathology. The consequences of early diabetic changes in retinal cells are primarily considered in this thesis. Aims: This thesis aims to investigate the effect of perivascular cells (Müller cells, RPE, pericytes) on retinal endothelial cell permeability using an established in vitro model. Methods: Immunohistochemistry, cell morphology and cell growth patterns were used to characterise primary bovine retinal cells (Müller cells, RPE, pericytes and endothelial cells). An in vitro model of the blood-retinal barrier was refined by coculturing retinal endothelial cells with perivascular cells (Müller cells or pericytes) on opposite sides of a permeable Transwell filter. The integrity of the barrier formed by endothelial cells was assessed by transendothelial electrical resistance (TEER) measurements. Functional characteristics of endothelial cells were compared with ultrastructural morphology to determine if different cell types have barrier-enhancing effects on endothelial cell cultures. Once the co-culture model was established, retinal endothelial cells and Müller cells were exposed to different environmental conditions (20% oxygen, normoxia; 1% oxygen, hypoxia) to examine the effect of perivascular cells on endothelial cell permeability under reduced oxygen conditions. Barrier integrity was assessed by TEER measurements and permeability was measured by passive diffusion of radiolabelled tracers from the luminal to the abluminal side of the endothelial cell barrier. A further study investigated the mechanism of laser therapy on re-establishment of retinal endothelial cell barrier integrity. Müller cells and RPE, that comprise the scar formed after laser photocoagulation, and control cells (Müller cells and pericytes, RPE cells and ECV304, an epithelial cell line) were grown in long-term culture and treated with blue-green argon laser. Lasered cells were placed underneath confluent retinal endothelial cells growing on a permeable filter, providing conditioned medium to the basal surface of endothelial cells. The effect of conditioned medium on endothelial cell permeability was determined, as above. Results: Co-cultures of retinal endothelial cells and Müller cells on opposite sides of a permeable filter showed that Müller cells can enhance the integrity of the endothelial cell barrier, most likely through soluble factors. Low basal resistances generated by endothelial cells from different retinal isolations may be the result of erratic growth characteristics (determined by ultrastructural studies) or the selection of vessel fragments without true ‘barrier characteristics’ in the isolation step. When Müller cells were co-cultured in close apposition to endothelial cells under normoxic conditions, the barrier integrity was enhanced and permeability was reduced. Under hypoxic conditions, Müller cells had a detrimental effect on the integrity of the endothelial cell barrier and permeability was increased in closely apposed cells. Conditioned medium from long-term cultured Müller cells and RPE that typically comprise the scar formed after lasering, enhanced TEER and reduced permeability of cultured endothelial cells. Conclusions: These studies confirm that bovine tissues can be used as a suitable model to investigate the role of perivascular cells on the permeability of retinal endothelial cells. The dual effect of Müller cells on the retinal endothelial cell barrier under different environmental conditions, underscores the critical role of Müller cells in regulating the blood-retinal barrier in health and disease. These studies also raise the possibility that soluble factor(s) secreted by Müller cells and RPE subsequent to laser treatment reduce the permeability of retinal vascular endothelium. Future studies to identify these factor(s) may have implications for the clinical treatment of macular oedema secondary to diseases including diabetic retinopathy.
APA, Harvard, Vancouver, ISO, and other styles
2

Mudau, Mashudu. "Endothelial dysfunction in cardiac microvascular endothelial cells : an investigation into cellular mechanisms and putative role of oleanolic acid in reversing endothelial dysfunction." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5297.

Full text
Abstract:
Thesis (MScMedSc (Biomedical Sciences. Medical Physiology))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: Introduction: The discovery of the endothelium as a regulator of vascular tone, and the subsequent discovery of nitric oxide (NO) as the major endothelium-derived relaxing factor (EDRF), has opened up vast possibilities in the continued efforts to prevent and manage cardiovascular disease. Endothelial dysfunction (ED) is defined as reduced NO bioavailability and hence the reduced ability of the endothelium to maintain vascular homeostasis. ED represents the first, reversible step in the initiation of atherosclerotic disease and is thus regarded as a strong predictive tool of ischaemic heart disease (IHD). ED and its underlying mechanisms have been largely under-investigated in myocardial capillary-derived endothelial cells (cardiac microvascular endothelial cells, CMECs), and this study aimed to address this gap in the literature. Oleanolic acid (OA) is a bioactive triterpenoid derived from leaf extracts of African medicinal plants such as Syzigium cordatum (Water berry tree), and has been reported to elicit vasodilatory, hypoglycaemic and hypolipidaemic properties. However its effects particularly on CMECs and its putative role in reversing ED remain unclear, and this study aimed to investigate such effects. Aims: The aims of this study were to: (1) Establish an in vitro model of ED in cultured myocardial capillary-derived CMECs by developing protocols for the induction of ED. (2) Asses ED induction by measurement of the following biomarkers: (i) intracellular NO production, (ii) superoxide (O2-) production, (iii) nitrotyrosine expression and (iv) NADPH oxidase expression. (3) Investigate underlying cellular mechanisms of our ED model by measuring and comparing eNOS and PKB/Akt expression and activation in control and dysfunctional CMECs. (4) Investigate the effects of OA derived from leaf extracts obtained from Syzigium cordatum (Hochst.) [Myrtaceace], in both control and dysfunctional CMECs. Methods: (1) To induce ED, hyperglycaemia and inflammation were simulated by incubation with 25 mM glucose (24 hours) and 1 ng/ml TNF-á (24 hours) or 5 ng/ml TNF-á (6 and 24 hours) respectively. Reduced intracellular NO production was used as the main indicator of ED. NO production and cell viability were quantified by FACS analysis of the fluorescent probes, DAF-2/DA and propidium iodide (PI) / Annexin V respectively. Cellular mechanisms were investigated by measurement of O2- levels via FACS analysis of DHE fluorescence, and measurement of total and activated PKB / Akt and eNOS, p22-phox, nitrotyrosine expression via Western blotting. (2) Effects of OA on CMECs were investigated by pre-treatment with 30 or 40 ìM OA for 5 and 20 min followed by NO production and cell viability measurements. To investigate the effects of OA on ED, CMECs were pre-treated with 40 ìM OA 1 hour prior ED induction followed by NO, cell viability, and eNOS expression / activation measurements. Results: (1) 25 mM glucose (24hours), 1 ng/ml TNF-á (24 hours) and 5 ng/ml TNF-á (6 hours) failed to induce ED as verified by an increase in NO production in the treated cells. A model of ED was successfully achieved by incubating CMECs with 5 ng/ml TNF-á (24 hours), as verified by a significant decrease in NO production. Investigations into cellular mechanisms underlying our TNF-á-induced ED model, showed that activated eNOS and PKB / Akt levels were reduced. Furthermore, O2- levels remained unchanged, however p22-phox (NADPH) expression was significantly increased suggesting oxidative stress. Nitrotyrosine levels (an oxidative / nitrosative stress marker and indirect measure of eNOS uncoupling) remained at control levels. (2) Investigations into the effects of OA on CMECs showed that 30 ìM OA increased NO production after 5 and 20 min of incubation whereas 40 ìM increased NO production after 20 min only. Pre-treatment with 40 ìM OA significantly reversed ED by restoring NO production back to control levels. Data from cellular mechanism investigations showed that 40 ìM OA significantly increased eNOS activation in both normal and dysfunctional CMECs. Cellular viability was not negatively affected by any of the above interventions. Discussion and Conclusions: Based on our findings, reduced activation of the PKB / Akt-eNOS pathway appears to be the primary mechanistic pathway of the TNF-á-induced model of ED. Though O2- levels remained at control levels, the significant increase in p22-phox is indicative of increased expression of the O2- producing enzyme, NADPH oxidase, thus suggesting oxidative stress. However, based on our nitrotyrosine expression data, there was no strong evidence of eNOS uncoupling in our ED model. OA significantly stimulated NO production in our model of CMECs. Furthermore, our findings showed that OA is able to reverse ED. The NO production stimulatory effects of OA in our cells appear to be achieved via the increased activation of eNOS. We have, for the first time as far as we are aware, developed a TNF-á-induced model of ED in myocardial capillary-derived endothelial cells. It appears that reduced activation of the PKB/Akt-eNOS pathway is the primary mechanism leading to decreased NO production in this model. However, we did find some evidence of elevated oxidative stress, which led us to believe that eNOS uncoupling cannot be excluded as a mechanism of ED in our model. In this study, we report for the first time convincing evidence that OA has powerful NO-increasing properties in myocardial capillary-derived CMECs. Our study also show novel data, which suggest that OA is able to reverse ED in this model. Follow-up investigations could shed more light on the exact mechanisms underlying OA.s effects in this model.
AFRIKAANSE OPSOMMING: Inleiding: Die ontdekking dat endoteel 'n reguleerder van vaskulêre tonus is, en die gevolglike ontdekking dat stikstofoksied (NO) die belangrikste endoteel-afgeleide verslappingsfaktor (EDRF) is, het verskeie moontlikhede in aangaande pogings om kardiovaskulêre siektes te voorkom en hanteer, ontsluit. Endoteel-disfunksie (ED), word gedefineer as verlaagde NO biobeskikbaarheid en dus 'n ingekorte vermoë van die endoteel om vaskulêre homeostase te handhaaf. ED verteenwoordig die eerste, omkeerbare stap in die ontstaan van aterosklerotiese siekte en word dus beskou as 'n sterk instrument waarmee isgemiese hartsiekte voorspel kan word. Studies oor ED en sy onderliggende meganismes, veral in miokardiale kapillêre-afgeleide endoteelselle (kardiale mikrovaskulêre endoteelselle, CMECs), word redelik afgeskeep in die literatuur, en hierdie studie het dit ten doel gehad om die gaping in die literatuur aan te spreek. Oleanoliese suur (OA) is 'n bio-aktiewe triterpenoïede wat gevind word in blaar ekstrakte van inheemse medisinale plante soos bv. Syzigium cordatum (Waterbessie boom). OA het bewese vasodilatoriese, hipoglukemiese en hipolipidemiese eienskappe. OA se effekte op CMECs, en sy moontlike rol in die omkering van ED, is egter onbekend, en hierdie studie het dit ten doel gehad om sulke effekte te ondersoek. Doelwitte: Die doelwitte van hierdie studie was: (1) Die vestiging van 'n in vitro model van ED in gekultuurde CMECs afkomstig van miokardiale kapillêre deur protokolle vir die induksie van ED te ontwikkel. (2) Die evaluering van ED induksie deur die volgende bio-merkers te meet: (i) intrasellulêre NO produksie, (ii) superoksied (O2-) produksie, (iii) nitrotirosien uitdrukking en (iv) NADPH oksidase uitdrukking. (3) Die ondersoek na onderliggende sellulere meganismes van ED in ons model deur die meting en vergelyking van eNOS and PKB/Akt uitdrukking en aktivering in kontrole en disfunksionele CMECs. (4) Ondersoek na die effekte van OA afkomstig van blaar ekstrakte verkry van Syzigium cordatum (Hochst.) [Myrtaceace], in beide kontrole en disfunksionele CMECs. Metodes: (1) Daar was gepoog om ED te induseer deur hiperglukemie en inflammasie te simuleer met onderskeidelik 25 mM glukose (24 uur) en 1 ng/ml TNF-a (24 uur) of 5 ng/ml (6 en 24 uur) inkubasie. Verlaagde intrasellulere NO produksie was ingespan as die hoof indikator van ED. NO produksie en sellewensvatbaarheid was gekwantifiseer deur vloeisitometriese analises (FACS) van die fluoresserende agense, DAF-2/DA en propidium jodied (PI) / Annexin V onderskeidelik. Sellulere meganismes was ondersoek deur O2- vlakke via FACS analise van DHE fluoressensie te meet, asook die meting van totale en geaktiveerde PKB / Akt en eNOS, p22-phox, nitrotirosien uitdrukking via Western blot tegnieke. (2) Effekte van OA op CMECs was ondersoek deur vooraf-behandeling met 30 of 40 µM OA vir 5 en 20 min gevolg deur NO produksie en sellewensvatbaarheid metings. Resultate: (1) 25 mM glukose (24 uur), 1 ng/ml TNF-a (24 uur) and 5 ng/ml TNF-ƒaa (6 uur) kon nie daarin slaag om ED te induseer nie, soos blyk uit die verhoogde NO produksie waargeneem in die behandelde selle. 'n Model van ED was suksesvol verkry deur CMECs met 5 ng/ml TNF-a (24 uur) te inkubeer, soos waargeneem deur verlaagde NO produksie. Ondersoek na sellulere meganismes onderliggend tot ons TNF-a-geinduseerde ED model, het getoon dat geaktiveerde eNOS en PKB / Akt vlakke verlaag was. Verder is gevind dat O2- vlakke onveranderd gebly het hoewel p22-phox (NADPH) uitdrukking betekenisvol toegeneem het, wat 'n aanduiding van oksidatiewe skade is. Nitrotirosien vlakke (.n oksidatiewe / nitrosatiewe stres merker en indirekte maatstaf van eNOS ontkoppeling) het onveranderd rondom kontrole vlakke gebly. (2) Ondersoek na die effekte van OA op CMECs het getoon dat 30 µM OA tot verhoogde NO produksie na 5 en 20 min inkubasie gelei het, terwyl 40 µM slegs na 20 min NO-verhogende effekte gehad het. Vooraf behandeling met 40 µM OA het ED betekenisvol omgekeer deur NO terug na kontrole vlakke te laat herstel. Ondersoek na sellulere meganismes het getoon dat 40 µM OA eNOS aktivering betekenisvol verhoog het in beide normale en disfunksionele CMECs. Sellulere lewensvatbaarheid was nie negatief geaffekteer deur enige van bogeneemde ingrepe nie. Bespreking en afleidings: Gebaseer op ons bevindinge, blyk verlaagde aktivering van die PKB/Akt-eNOS pad die primere meganistiese pad in ons TNF-a-geïnduseerde model van ED te wees. Alhoewel O2- vlakke rondom kontrole vlakke gebly het, was die betekenisvolle toename in p22-phox .n aanduiding van verhoogde uitdrukking van die O2- produserende ensiem, NADPH oksidase, wat dus suggererend van oksidatiewe stres was. Aan die ander kant was daar nie sterk bewyse van eNOS ontkoppeling in ons ED model nie, gebaseer op die nitrotirosien uitdrukking data. OA het duidelik NO produksie in ons model van CMECs gestimuleer. Verder wys ons resultate dat OA in staat is om ED om te keer. Die NO produksie-stimulerende effekte van OA in ons selle blyk die gevolg te wees van verhoogde aktivering van die PKB / Akt-eNOS pad. Ons het hier vir die eerste keer, sover ons bewus is, 'n TNF-a-geinduseerde model van ED in CMECs afkomstig van miokardiale kapillere gevestig. Dit blyk dat verlaagde aktivering van die PKB/Akt-eNOS pad die primere meganisme was waardeur verlaagde NO produksie in ons model veroorsaak was. Ons het egter wel bewyse van verhoogde oksidatiewe stress gevind, wat ons laat glo dat eNOS ontkoppeling nie heeltemal as .n meganisme van ED in ons model uitgesluit kan word nie. In hierdie studie toon ons vir die eerste maal oortuigende bewyse dat OA kragtige NO-verhogende eienskappe in miokardiale kapillere-afgeleide CMECs het. Ons studie bring ook nuwe data na vore, wat suggereer dat OA in staat is om ED in hierdie model om te keer. Opvolgstudies sal meer lig kan werp op die onderliggende meganismes van OA in hierdie model.
APA, Harvard, Vancouver, ISO, and other styles
3

Nguyen, Hieu Thi Minh. "The effect of cardiolipin synthase deficiency on the mitochondrial function and barrier properties of human cerebral capillary endothelial cells." Elsevier, 2014. http://hdl.handle.net/1993/30184.

Full text
Abstract:
The blood brain barrier (BBB), formed by endothelial cells lining the lumen of the brain capillaries, is a restrictively permeable interface that only allows transport of specific compounds into the brain. Cardiolipin (CL) is a mitochondrial- specific phospholipid known to be required for the activity and integrity of the respiratory chain. The current study examined the role of cardiolipin in maintaining an optimal mitochondrial function that may be necessary to support the barrier properties of the brain microvessel endothelial cells (BMECs). Endothelial cells have been suggested to obtain most of their energy through an-aerobic glycolysis based on studies of cells that were obtained from the peripheral vasculatures. However, here, we showed that the adult human brain capillary endothelial cell line (hCMEC/D3) appeared to produce ~60% of their basal ATP requirement through mitochondrial oxidative phosphorylation. In addition, RNAi mediated knockdown of the CL biosynthetic enzyme cardiolipin synthase (CLS), although did not grossly affect the mitochondrial coupling efficiency of the hCMEC/D3 cells, did seem to reduce their ability to increase their mitochondrial function under conditions of increased demand. Furthermore, the knockdown appeared to have acted as a metabolic switch causing the hCMEC/D3 cells to become more dependent on glycolysis. These cells also showed increase in [3H]-2-deoxyglucose uptake under a low glucose availability condition, which might have served as a mechanism to compensate for their reduced energy production efficiency. Interestingly, the increase in glucose uptake appeared correlated to an increase in [3H]-2-deoxyglucose glucose transport across the knockdown confluent hCMEC/D3 monolayers grown on Transwell® plates, which was used in our study as an in vitro model for the human BBB. This suggests that changes in the brain endothelial energy status may play a role in regulating glucose transport across the BBB. These observations, perhaps, also explain why the brain capillary endothelial cells were previously observed to possess higher mitochondrial content than those coming from non-BBB regions (Oldendorf et al. 1977).
APA, Harvard, Vancouver, ISO, and other styles
4

Glass, Catherine Ann. "Regulation of microvascular permeability by endothelial cell calcium." Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Howe, Grant Alexander. "Identification of Mechanisms Regulating Endothelial Cell Capillary Morphogenesis." Thesis, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/26196.

Full text
Abstract:
In order to effectively treat disorders whose pathology is marked by neovascularization, a better understanding of the pathways that mediate the processes involved in angiogenesis is needed. To this end we have identified two important pathways that regulate endothelial cell capillary morphogenesis, a key process in angiogenesis. We have identified the small GTPase RhoB as being induced by vascular endothelial growth factor (VEGF) in human umbilical vein endothelial cells (HUVECs). Depletion of RhoB inhibited endothelial cell VEGF - mediated migration, sprouting, and cord formation. Cells depleted of RhoB showed a marked increase in RhoA activation in response to VEGF. Defects in cord formation in RhoB - depleted cells could be partially restored through treatment with the Rho inhibitor C3 transferase or ROCK I/II inhibitors, indicating increased RhoA activity and enhanced downstream signaling from RhoA contribute to the phenotype of decreased cord formation observed in cells depleted of RhoB. Interestingly, we did not observe a significant change in RhoC activity in RhoB - depleted cells suggesting differential regulation of RhoA and RhoC by RhoB in HUVECs. We have also identified microRNA - 30b (miR - 30b) as being negatively regulated by VEGF and as being a negative regulator of HUVEC capillary morphogenesis. Overexpression of miR - 30b significantly reduced HUVEC cord formation in vitro, while inhibition of miR - 30b enhanced cord formation. Neither overexpression nor inhibition of miR - 30b affected migration or viability of endothelial cells. Interestingly, miR - 30b regulated the expression of TGFβ2 but not TGFβ1, with overexpression of miR - 30b inducing expression of TGFβ2 mRNA and protein, and inducing phosphorylaton of Smad2 , suggesting TGFβ2 produced in response to miR - 30b overexpression functions in an iii autocrine manner to stimulate HUVECs . MiR - 30b effects on TGFβ2 expression were found to be regulated to an extent by ATF2, as miR - 30b overexpressing cells exhibited increased levels of phosphorylated ATF2 , with depletion of ATF2 via siRNA resulting in inhibition of miR - 30b - induced TGFβ2 expression. Treatment of HUVECs with TGFβ2 inhibited cord formation, while TGFβ1 had no effect, indicating a major difference in how endothelial cells respond to these two related growth factors. Inhibition of TGFβ2 with a neutralizing antibody restored cord formation in miR - 30b overexpressing cells to levels similar to control cells, thus identifying TGFβ2 expression as contributing to the inhibitory effects of miR - 30b overexpression on capillary morphogenesis. Thus, we have identified two signaling pathways regulated by VEGF in HUVECs that further our understanding of the process of angiogenesis and may provide novel targets for therapeutic intervention into diseases involving angiogenesis.
APA, Harvard, Vancouver, ISO, and other styles
6

Allen, William Edward. "Antiangiogenesis : inhibitory factors affecting capillary endothelial cell growth." Thesis, Queen's University Belfast, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vogt, Camille Janette. "Microvascular oxidative injury, endothelial cell death, and capillary rarefaction in glucocorticoid-induced hypertension /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p9938582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aor, Bruno. "Engineering microchannels for vascularization in bone tissue engineering." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0430/document.

Full text
Abstract:
In vitro, la formation de structures de type tubulaire avec des cellules endothéliales de veine ombilicale humaine (HUVEC) a été étudiée en combinant la fonctionnalisation de la chimie des matériaux et le développement de la géométrie tridimensionnelle. Le polycarbonate (PC) a été utilisé comme modèle pour le développement de l'échafaud. Le film de polysaccharide naturel, basé sur un dépôt alternatif couche par couche (LbL) d’acide hyaluronique (HA) et de chitosane (CHI), a d’abord été appliqué sur une surface PC et caractérisé en termes de croissance d’épaisseur microscopie à balayage lascar (CLSM). Cette première fonctionnalisation se traduit par un revêtement complet de la couche PC. Une biofonctionnalisation supplémentaire avec un peptide adhésif (RGD) et deux peptides angiogénétiques (SVV et QK) a été étudiée, immobilisant ces peptides sur le groupe carboxylique de HA précédemment déposé, en utilisant la chimie bien connue du carbodiimide. La version marquée de chaque peptide a été utilisée pour caractériser l’immobilisation et la pénétration des peptides dans les couches de polyélectrolytes, aboutissant à une greffe réussie avec une pénétration complète dans toute l’épaisseur du LbL. Des tests in vitro ont été effectués à l'aide de cellules HUVEC pour évaluer leur efficacité d'adhésion et leur activité métabolique sur la LbL avec et sans immobilisation de peptides, ce qui a permis d'améliorer l'activité préliminaire lorsque des combinaisons de peptides sont utilisées. Enfin, les micro-canaux PC (μCh) ont été développés et caractérisés pour la première fois, et les autres expériences ont été réalisées sur un micromètre de 25 μm de largeur, fonctionnalisé avec une architecture (HA / CHI) 12,5 (PC-LbL) avec des peptides RGD et QK -RGD + QK) ou avec des peptides RGD et SVV (PC-RGD + SVV). Notre première expérience de tubulogénèse a montré de manière surprenante la formation de structures de type tubulaire déjà après 2h d'incubation en utilisant la combinaison double-peptides, mais uniquement avec PC-RGD + QK. Les tubes étaient également présents après 3 et 4 heures de culture. L'expérience de co-culture avec des péricytes humains dérivés du placenta (hPC-PL) montre comment la stabilisation des tubes a été améliorée après 3 et 4 heures également pour l'échantillon de PC-RGD + SVV. Globalement, notre matériel bio-fonctionnel avec les peptides PC-RGD + QK et PC-RGD + SVV permet la formation d'une structure de type tubulaire à la fois dans une expérience de monoculture et de co-culture
In vitro, tubular-like structures formation with human umbilical vein endothelial cells (HUVECs) was investigated by combining material chemistry functionalization and three-dimensional geometry development. Polycarbonate (PC) was used as a template for the development of the scaffold. Natural polysaccharide’s film based on alternate layer-by-layer (LbL) deposition of hyaluronic acid (HA) and chitosan (CHI), was first applied to PC surface and characterized in terms of thickness growth both, in dry conditions using ellipsometry, and confocal lascar scanning microscopy (CLSM). This first functionalization results in a complete coating of the PC layer. Further biofunctionalization with one adhesive peptide (RGD) and two angiogenetic peptides (SVV and QK) was investigated, immobilizing those peptides on the carboxylic group of HA previously deposited, using the well-known carbodiimide chemistry. The labeled version of each peptide was used to characterize the peptides’ immobilization and penetration into the polyelectrolytes layers, resulting in a successful grafting with complete penetration through the entire thickness of the LbL. In vitro tests were performed using HUVECs to assess their adhesion efficiency and their metabolic activity on the LbL with and without peptide immobilization, resulting in a preliminary improved activity when peptide-combinations is used. Finally, PC micro-channels (μCh) were first developed and characterized, and the rest of the experiments were performed on μCh of 25μm width, functionalized with (HA/CHI)12.5 architecture (PC-LbL) with RGD and QK peptides (PC-RGD+QK) or with RGD and SVV peptides (PC-RGD+SVV). Our first tubulogenesis experiment surprisingly showed the formation of tubular-like structures already after 2h of incubation using the double-peptides combination but only using PC-RGD+QK the tubes were present also after 3 and 4 hours of culture. The co-culture experiment with human pericytes derived from placenta (hPC-PL) demonstrates how the stabilization of the tubes was improved after 3 and 4 hours also for the PC-RGD+SVV sample. Globally our bio-functional material with PC-RGD+QK and PC-RGD+SVV peptides allow the formation of tubular-like structure in both mono and co-culture experiment
APA, Harvard, Vancouver, ISO, and other styles
9

Seehra, Kamaljit Jyoti Kaur. "An investigation into mechanisms inhibiting human microvascular endothelial cell (HMEC-1) capillary cord formation on collagen type 1." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tsang, Tsz Ming Jeremy. "Capillary Morphogenesis Gene Protein 2 (CMG2) Mediates Matrix Protein Uptake and is Required for Endothelial Cell Chemotaxis in Response to Multiple Vascular Growth Factors." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8410.

Full text
Abstract:
Pathological angiogenesis, or new blood vessel formation, is involved in many pathologies, including cancer and serious eye diseases. While traditional anti-angiogenic therapies target vascular endothelial growth factor receptors to reduce or inhibit new vessel formation, this approach has several downsides, including unpleasant side effects and low efficacy over time. Therefore, identifying new targets to treat pathological angiogenesis is still needed. CMG2, one of the two identified anthrax toxin receptors, has been proposed as an alternative target to treat pathological angiogenesis. CMG2’s role as a cell surface receptor that mediates anthrax toxin internalization is very well documented. One physiological function for CMG2, not related to anthrax intoxication, is suggested by the observation that loss-of-function mutations in CMG2 cause hyaline fibromatosis syndrome (HFS), a genetic disease that results in accumulations of extra-cellular matrix (ECM) protein in different parts of the body. While the complete molecular mechanism for CMG2’s role in regulating angiogenesis has not been determined, this dissertation addresses multiple ways CMG2 regulates pathological angiogenesis. We have discovered that CMG2 plays a role in mediating ECM homeostasis via endocytosis of ECM proteins and protein fragments as a way to generate angiogenic signals from the cell. We have also demonstrated that a fragment from Col IV, S16, is endocytosed into the cells by interacting with CMG2, and S16 treatment to endothelial cells leads to a significant reduction in cell migration. Also, an endothelial cell migration assay with CMG2 knockout cells results in abolished directional migration, indicating that CMG2 is required for endothelial cell chemotaxis. Notably, we have identified that bFGF, VEGF, and PDGF are involved in CMG2 mediated chemotaxis but not insulin and sphingosine-1-phosphate (S1P). While recent literature reports show that CMG2 works closely with RhoA GTPase, which is commonly known to regulate cell migration, we have also observed that inhibition of RhoA also reduced cell chemotaxis towards VEGF but not S1P. These results could be leveraged to develop new classes of therapeutic molecules to treat pathological angiogenesis induced by multiple various growth factors via targeting CMG2.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Capillary endothelial cells"

1

K, Messmer, ed. Capillary functions and white cell interaction. Basel: Karger, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

B, Bassingthwaighte James, Goresky C. A. 1932-, and Linehan John H. 1938-, eds. Whole organ approaches to cellular metabolism: Permeation, cellular uptake, and product formation. New York: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Harrois, Anatole, and Jacques Duranteau. Pathophysiology of severe capillary leak. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0164.

Full text
Abstract:
Severe capillary leak plays an important role in the pathogenesis of several inflammatory syndromes, including sepsis, acute lung injury, and shock syndromes. Microvascular leak is caused by an increase in endothelial permeability. This is due to a range of inflammatory mediators that destabilize endothelial junctions, thereby causing tissue oedema with potential harmful effects on tissue oxygenation and organ function. Tissue oedema can impair tissue oxygenation by increasing the distance required for the diffusion of oxygen to cells, and by decreasing microvascular perfusion due to an increase in interstitial pressure. Better understanding of the pathogenesis of microvascular permeability may lead to new therapies targeting the microvascular barrier in sepsis and the acute respiratory distress syndrome.
APA, Harvard, Vancouver, ISO, and other styles
4

Banjara, Manoj, and Damir Janigro. Effects of the Ketogenic Diet on the Blood-Brain Barrier. Edited by Detlev Boison. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190497996.003.0030.

Full text
Abstract:
Ketone bodies (KBs) are always present in the blood, and their levels increase after high-fat diet intake, prolonged exercise, or extended fasting. Thus, one can predict effects on the brain capillary endothelium from high levels of ketones in the blood. Prolonged exposure of blood-brain barrier (BBB) endothelial cells to KBs induces expression of monocarboxylate transporters and enhances brain uptake of KBs. In addition, cell migration and expression of gap junction proteins are up-regulated by KBs. Thus, beneficial effects of the ketogenic diet may depend on increased brain uptake of KBs to match metabolic demand and repair of a disrupted BBB. As the effects of KBs on the BBB and their transport mechanisms across the BBB are better understood, it will be possible to develop alternative strategies to optimize the therapeutic benefits of KBs for brain disorders where the BBB is compromised.
APA, Harvard, Vancouver, ISO, and other styles
5

Sun, Lisa, and Michael V. Johnston. Rickettsial Diseases. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0157.

Full text
Abstract:
Tick-borne rickettsioses are emerging as more important health problems throughout the world. The spotted fever group including Rickettsia rickettsia can cause encephalopathy, meningitis and brain damage by selectively targeting capillary endothelial cells in the brain, and stimulating inflammation, capillary leakage, hemorrhage, and intravascular coagulation. Rickettsia are are arthropod-borne gram-negative coccobacilli bacteria and are obligate intracellular organisms that do not survive in artificial medium. In North and South America, the most common rickettsial disorder is rocky mountain spotted fever (RMSF) transmitted by the dog tick Dermacentor variabilis or the wood tick Dermacentor andersoni. A characteristic “starry sky” pattern can be seen on MRI imaging of the brain in some patients with RMSF encephalopathy and is thought to reflect the organisms targeting of brain endothelial cells in capillaries the white matter. Early treatment with doxycycline is curative and reverses signs of encephalopathy if given within a few day of onset, but delayed treatment can be associated with permanent neurological disability. The typhus group of rickettsia bacteria include R. prowazekii, which causes epidemic typhus and R. typhi, which causes murine typhus (endemic) typhus in tropical and subtropical parts of the world. Flying squirrels and humans carry R prowazekii and rats are carry R. typhi. Q fever caused by the rickettsia organism Coxiella burnetti is transmitted from farm animals including sheep and is seen throughout the world including the United States.
APA, Harvard, Vancouver, ISO, and other styles
6

Lennon, Rachel, and Neil Turner. The molecular basis of glomerular basement membrane disorders. Edited by Neil Turner. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0320_update_001.

Full text
Abstract:
The glomerular basement membrane (GBM) is a condensed network of extracellular matrix molecules which provides a scaffold and niche to support the function of the overlying glomerular cells. Within the glomerulus, the GBM separates the fenestrated endothelial cells, which line capillary walls from the epithelial cells or podocytes, which cover the outer aspect of the capillaries. In common with basement membranes throughout the body, the GBM contains core components including collagen IV, laminins, nidogens, and heparan sulphate proteoglycans. However, specific isoforms of these proteins are required to maintain the integrity of the glomerular filtration barrier.Across the spectrum of glomerular disease there is alteration in glomerular extracellular matrix (ECM) and a number of histological patterns are recognized. The GBM can be thickened, expanded, split, and irregular; the mesangial matrix may be expanded and glomerulosclerosis represents a widespread accumulation of ECM proteins associated with loss of glomerular function. Whilst histological patterns may follow a sequence or provide diagnostic clues, there remains limited understanding about the mechanisms of ECM regulation and how this tight control is lost in glomerular disease. Monogenic disorders of the GBM including Alport and Pierson syndromes have highlighted the importance of both collagen IV and laminin isoforms and these observations provide important insights into mechanisms of glomerular disease.
APA, Harvard, Vancouver, ISO, and other styles
7

(Editor), David H. Lewis, ed. Endothelial Cell Vesicles (Progress in Applied Microcirculation, Vol 9). S. Karger AG (Switzerland), 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Frithjof, Hammersen, Lewis David H, and World Congress for Microcirculation. (3rd : 1984 : Oxford, Oxfordshire), eds. Endothelial cell vesicles: Proceedings of a workshop at the Third World Congress for Microcirculation, Oxford/United Kingdom, September 9th-14th, 1984. Basel ; New York: Karger, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

(Editor), James Bassingthwaighte, Carl A. Goresky (Editor), and John H. Linehan (Editor), eds. Whole Organ Approaches to Cellular Metabolism: Permeation, Cellular Uptake, and Product Formation. Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

van Hinsbergh, Victor W. M. Physiology of blood vessels. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198755777.003.0002.

Full text
Abstract:
This chapter covers two major fields of the blood circulation: ‘distribution’ and ‘exchange’. After a short survey of the types of vessels, which form the circulation system together with the heart, the chapter describes how hydrostatic pressure derived from the heartbeat and vascular resistance determine the volume of blood that is locally delivered per time unit. The vascular resistance depends on the length of the vessel, blood viscosity, and, in particular, on the diameter of the vessel, as formulated in the Poiseuille-Hagen equation. Blood flow can be determined in vivo by different imaging modalities. A summary is provided of how smooth muscle cell contraction is regulated at the cellular level, and how neuronal, humoral, and paracrine factors affect smooth muscle contraction and thereby blood pressure and blood volume distribution among tissues. Subsequently the exchange of solutes and macromolecules over the capillary endothelium and the contribution of its surface layer, the glycocalyx, are discussed. After a description of the Starling equation for capillary exchange, new insights are summarized(in the so-called glycocalyx cleft model) that led to a new view on exchange along the capillary and on the contribution of oncotic pressure. Finally mechanisms are indicated in brief that play a role in keeping the blood volume constant, as a constant volume is a prerequisite for adequate functioning of the circulatory system.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Capillary endothelial cells"

1

Koyama, T., M. Gao, T. Ueda, S. Batra, K. Itoh, T. Ushiki, and K. Abe. "Different Enzyme Activities in Coronary Capillary Endothelial Cells." In Advances in Experimental Medicine and Biology, 359–64. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5865-1_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dehouck, M. P., M. Chamoux, J. C. Fruchart, G. Spik, J. Montreuil, and R. Cecchelli. "Angiogenin Acts as a Direct Mitogen on Bovine Brain Capillary Endothelial Cells." In Vascular Endothelium, 249. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3736-6_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Charlton, D. E., and B. J. Allen. "Dose Sparing of Capillary Endothelial Cells for BSH and BPA." In Cancer Neutron Capture Therapy, 479–83. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9567-7_68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kawai, N., R. M. McCarron, and Maria Spatz. "The Effect of Endothelins on Ion Transport Systems in Cultured Rat Brain Capillary Endothelial Cells." In Brain Edema X, 138–40. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-6837-0_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Delpiano, M. A., and Burton M. Altura. "Transmembrane Currents in Capillary Endothelial Cells are Modulated by External Mg2+ Ions." In Frontiers in Arterial Chemoreception, 115–18. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5891-0_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tewes, Bernhard J., and Hans-Joachim Galla. "Membrane Fractionation of Brain Capillary Endothelial Cells and Analysis of Lipid Polarity." In Biology and Physiology of the Blood-Brain Barrier, 97–101. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9489-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Samoto, Ken, K. Ikezaki, N. Yokoyama, and M. Fukui. "P-Glycoprotein Expression in Brain Capillary Endothelial Cells After Focal Ischemia in Rat." In Brain Edema IX, 257–60. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-9334-1_68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cecchelli, Roméo, Bénédicte Dehouck, Marie Pierre Dehouck, and Jean Charles Fruchart. "Inter-Communication Between Brain Capillary Endothelial Cells and Astrocytes: Upregulation of the LDL Receptor at the Blood-Brained Barrier." In Vascular Endothelium, 157–58. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2437-3_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bassingthwaighte, James B., Keith Kroll, Lisa M. Schwartz, Gary M. Raymond, and Richard B. King. "Strategies for Uncovering the Kinetics of Nucleoside Transport and Metabolism in Capillary Endothelial Cells." In Whole Organ Approaches to Cellular Metabolism, 163–88. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2184-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Giese, H., K. Mertsch, R. F. Haselof, F. H. Härtel, and I. E. Blasig. "Hypoxia and Reoxygenation of a Cellular Barrier Consisting of Brain Capillary Endothelial Cells and Astrocytes." In Biology and Physiology of the Blood-Brain Barrier, 317–22. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9489-2_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Capillary endothelial cells"

1

de Agostini, A., J. Marcum, and R. Rosenberg. "THE BINDING OF ANTITHROMBIN TO CAPILLARY ENDOTHELIAL CELLS GROWN IN VITRO." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643343.

Full text
Abstract:
Cloned endothelial cells from rat epididymal fat pads synthesize anticoagulantly active heparan sulfate proteoglycans containing the disaccharide, GlcA→ AMN-3,6-O-SO3, which is a marker for the antithrombin-binding domain of heparin. To demonstrate that antithrombin (AT) binds to cell surface heparan sulfate, a binding assay employing 125I-AT and cell monolayers has been developed. Post-confluent endothelial cells (7 days) were incubated with radiolabeled AT for 1 h at 4° and washed with PBS. Bound radioactivity was quantitated after solubilizing whole cells. Under these conditions, ∼1% (2174±50 cpm/5x104 cells) of the 125I-AT bound to the endothelial cell monolayer, whereas none of the radiolabeled protein bound to CHO cells or bovine smooth muscle cells. Utilization of unlabeled AT (1 μM) in experiments conducted as described above resulted in a reduction (73%) of the binding of the labeled species to endothelial cells. To assess whether heparan sulfate was responsible for AT binding, cell monolayers were incubated for 1 h at 37° with purified Flavobacterium heparinase (0.2 units). Over 90% of 125I-AT binding to these cellular elements was suppressed with the bacterial enzyme. Internalization of radiolabeled AT by endothelial cells was examined by incubating the protease inhibitor and cells at 4° and 37 . An initial rapid binding was observed at both temperatures. At 4° AT binding plateaued within 15 min, whereas at 37° binding did not plateau until 60 min and was 30% greater than that observed at 4. These data suggest that surface-associated AT can be internalized by endothelial cells. In addition, AT binding was shown to increase with the length of endothelial cell postconfluence, indicating an accumulation of heparan sulfate by these cells during quiescence. In conclusion, our studies support the hypothesis that the vascular endothelium is coated with heparan sulfate-bound AT, which is responsible for the antithrombotic properties of these natural surfaces.
APA, Harvard, Vancouver, ISO, and other styles
2

Savion, N., A. Gamliel, and N. Farzame. "THROMBIN INTERACTION WITH CULTURED AORTIC AND CAPILLARY ENDOTHELIAL CELLS: BINDING, INTERNALIZATION, DEGRADATION AND RELEASE OF PROTEASE NEXINS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644734.

Full text
Abstract:
Thrombin (Th) binds specifically to confluent cultures of bovine aortic (ABAE) and brain capillary (BBC) endothelial cells. Saturation of 125I-Th binding is observed after 1 h exposure to the ligand and at an extracellular concentration of 0.5 and 1.0 µg/ml for ABAE and BBC cells, respectively. Under optimal conditions both ABAE and BBC cultures bind about 2 to 5 ng/106 cells, which represents about 20% of Th binding.to bovine corneal endothelial (BCE) cells. The cell associated 125I-Th in ABAE and BBC cells is internalized and degraded as described in BCE cells. The nature of the cell associated radioactivity is analyzed on SDS-polyacrylamide -gel electrophoresis and in ABAE and BBC cells about 30% of the I-Th appears in a complex with protease nexin I (PN I) while in BCE cells about 70% of the binding is mediated by PN I. ABAE cells possess 3 types of complexes, one which appears only on the cell surface with a molecular weight of 78 kDa, and two other complexes which appear only in the conditioned medium (CM) with molecular weights of 84 and 85 kDa. BBC and BCE cells demonstrate only one type of complex with a molecular weight of 77 kDa which appears both on the cell surface and in the CM. Preincubation of BCE cultures in the presence of Th is known to up-regulate the amount of PN I on the cell surface and in the CM, but this Th induced up-regulation effect is not observed in ABAE or BBC cells.The results described above indicate a difference between ABAE and BBC cells although both cell types growunder similar conditins and demonstrate similar morphological appearance. However, in both vascular endothelial cell types the total amount of PN I and its metabolism is relatively small compared to corneal endothelial cells. It, therefore, may indicate the lower capacity of vascular endothelial cells to control serine proteases activity at or near their cell surfaces as compared to corneal endothelial cells. This research was supported by a grant from the NationalCouncil for Research and Development, Israel and G.S.F. Munchen, Germany
APA, Harvard, Vancouver, ISO, and other styles
3

Tien, Joe, John L. Tan, Celeste M. Nelson, and Christopher S. Chen. "Building Cellular Microenvironments to Control Capillary Endothelial Cell Proliferation, Death, and Differentiation." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/bed-23154.

Full text
Abstract:
Abstract The dynamic binding interactions between cell surface receptors and local bioactive ligands serves as the principal mechanism by which cells survey their microenvironment and accordingly modulate their behaviors, such as proliferation, differentiation, migration, and suicide. Using conventional and non-conventional microfabrication approaches to engineer well-defined cellular microenvironments, we are examining how cells recognize and respond to adhesive interactions with the insoluble extracellular matrix (ECM). We will discuss our approaches to control the architecture and geometry of the adhesive interactions, as well as our resulting progress in identifying and elucidating the mechanisms by which cells sense the physical, chemical, and structural information carried within the ECM. By developing these approaches to engineering cell-surface interactions, we hope to improve the interconnect between artificial surfaces and living cells.
APA, Harvard, Vancouver, ISO, and other styles
4

Vannucchi, S., F. Pasquali, P. Bianchi-ni, and M. Ruggiero. "BINDING AND METABOLISM OF HEPARIN BY ENDOTHELIAL CELLS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644187.

Full text
Abstract:
In this study we show that bovineadrenal capillary endothelial cells(BACE) contain heparin (HP); this HP has been found associated with the cell surface (i.e; trypsin-removable^and intracellularly. How-ever, experiments with [ sjsodium sulfate labelling, demonstrate that BACE cells donot synthesize HP de novo, but they uptake it from serum. We have studied binding, uptake, and metabolism odifferent molecular weight-HPs: 13 Kd-HP from bovine source, 14 Kd-HP from porcine source, 4.5 Kd, and 2.5-HP fragments. Comparison among different HPs, was carried out by calculating the IC from competition curves for [3HJ- HP. Binding of labelled-HP to BACE cells was specificand saturable. Dextran sulfate and glycosaminoglycans did not compete for binding; only heparan sulfate showed some competition. Binding of different HPs was strictly dependent on their molecular weight; 2.5 Kd- HP was unable to bind to cells, although sulfation degree of this fragment and of unfractionated HP was almost identical. Therefore, we assume that a specific oligosaccharide sequence could be responsible for HP binding to BACE cells; this hypothetical "binding sequence" could then be lost in very low molecular weight-HP fragments. BACE cells are also able to internalize HP, and they release its low molecular weight degradation products into culture medium. Thus we suggest that endothelial cells might represent a site for the metabolism of endogenous and exogenous HP in vivo.
APA, Harvard, Vancouver, ISO, and other styles
5

Banerjee, Aditi, Krishna Baksi, Alexandra Rivera, and Dipak K. Banerjee. "Abstract 2956: Genome-wide expression profiling in tunicamycin treated capillary endothelial cells." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-2956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

DeClerck, Y. A., R. Bock, and W. E. Laug. "PRODUCTION OF A TISSUE INHIBITOR OF METALLOPROTEINASES BY BOVINE VASCULAR CELLS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644603.

Full text
Abstract:
Tissue Inhibitor of Metalloproteinases (TIMP) plays an important role in collagen turnover in tissue due to its ability to irreversibly inhibit mammalian collagenases. We have investigated the production of such an inhibitor by various cells of bovine vessels including endothelial cells of arterial, venous and capillary origin and arterial smooth muscle cells. While large amounts of collagenase inhibitor (800 mU/106 cells/24 hr) were produced by vascular smooth muscle cells, smaller amounts were detected in* the medium conditioned by either arterial, capillary or venous endothelial cells (90, 1.7 and 1.1 mU/106 cells/24 hr respectively). An inhibitor with a Mr of 28,500 was purified from serum free medium conditioned by bovine smooth muscle cells using molecular sieve followed by heparin sepharose and carboxy-methylcellulose chromatography. It inhibited several vertebrate collagenases but was inactive against bacterial collagenase. This inhibitor was resistant to treatment with acid and heat but sensitive to trypsin and reduction alkylation. It formed with vertebrate collagenase an enzyme-inhibitor complex resistant to organomercurials or trypsin. This inhibitor, therefore, is similar to a collagenase inhibitor produced by human fibroblasts and a tissue inhibitor of metalloproteinases extracted from human amniotic fluid and rabbit bone.The production of TIMP by bovine vascular smooth muscle cells markedly increased during cell proliferation. In addition, when endothelial cells were grown on a preformed layer of smooth muscle cells, the production of TIMP was more than additive suggesting an enhancing effect of endothelial cells on vascular smooth muscle cells.These data suggest that the large amount of TIMP produced by vascular muscle cells may be responsible for the accumulation of collagen characteristically observed in conjunction with smooth muscle cells hyperplasia in atherosclerotic plaques.
APA, Harvard, Vancouver, ISO, and other styles
7

Hurley, Jennifer R., and Daria A. Narmoneva. "Fibroblasts Induce Mechanical Changes in the Extracellular Environment and Enhance Capillary-Like Network Formation." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193093.

Full text
Abstract:
Cardiac tissue engineering studies have demonstrated the importance of revascularization in engineered grafts for successful implantation and regeneration [1]. Understanding the myocardium’s complex cellular organization and the interactions between the major cardiac cell types (cardiomyocytes, endothelial cells, and cardiac fibroblasts) is critical for revascularization. Our previous studies have shown the importance of cardiomyocyte-endothelial interactions [2]. However, there is limited information available on endothelial-fibroblast interactions. We and others have previously observed that during capillary assembly, fibroblasts provide chemical signaling via expression of growth factors [3, 4]. In addition, fibroblasts may also regulate angiogenesis through alterations to the mechanical environment via myocardial remodeling, including matrix degradation and deposition, and tissue contraction. Changes to the extracellular mechanical enviroment may lead to changes in basic cell functions such as proliferation, apoptosis, and growth factor expression.
APA, Harvard, Vancouver, ISO, and other styles
8

Menasni, S., W. Hornebeck, L. Robert, and Y. Legrand. "ELASTASE TYPE ACTIVITY OF ENDOTHELIAL CELLS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643360.

Full text
Abstract:
Elastin degrading enzymes have been reported in the vessel wall and both fibroblasts and smooth muscle cells have been shown to produce elastase type enzymes in culture. Data is presented here showing that porcine aortic endothelial cells produce enzyme activities hydrolyzing elastin and synthetic substrates I Sue Ala Ala Ala nitroanilide, SAPNAI considered specific for elastase. Enzyme activity against the SAPNA but not against H-elastin was found to be associated with the cells after triton lysis .This activity was not secreted into the culture medium . The elastolytic activity has been partially characterized in relation to the kinetic of hydrolysis, pH optimum and susceptibility to different inhibitors. These studies revealed the presence of at least two enzymes: a metalo-protease with a pH optimum of 7.5 which accounts for approx. 80% of the total activity, and a serine protease with pH optimum of 8.0 which accounts for the remaining 20% . When the conditioned culture medium was studied, virtually no proteolytic activity could be detected even after activation with an organomercurial agent. However fractionation of the culture medium by gel filtration on HPLC resulted in elastolytic activity both against H-elastin and SAPNA. Proteolytic activity against casein could also be revealed after separation on SDS-PAGE. It is likely that these separation techniques remove an inhibitor also produced by the endothelial cells and allow the expression of proteolytic activity. That the elastolytic activity and the caseinolytic activity revealed by HPLC and PAGE respectively represent the activity of the same enzyme hase not yet been determined, and its relationship to the Stromelysin described by Herron et al(J. Biol. Chem. , 1986, 261. 2810-2813) in rabbit brain capillary endothelial cells is being investigated.
APA, Harvard, Vancouver, ISO, and other styles
9

Higuita-Castro, Natalia, Cosmin Mihai, Derek J. Hansford, and Samir N. Ghadiali. "In-Vitro Model of the Microscale Alveolar Environment." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53648.

Full text
Abstract:
The present work describes the development of a novel micro-nanoscale system that more closely resembles the alveolar-capillary barrier in the lung by recapitulating different parameters of the cellular microenvironment, including fibrous geometry, fiber stiffness, chemistry, and cell-cell interactions. The system consists of a three-dimensional multilayered structure. Two microchannel chambers that resemble alveolar/airway space and the capillary lumen, interfaced with a porous mesh of polymeric nanofibers that act as the basal substrate for seeding lung epithelial and endothelial cell. The top and bottom chambers of the device were fabricated using soft lithography techniques, while the nanofiber mesh was obtained via electrospinning. Human alveolar epithelial cells (A549) and human umbilical vein endothelial cells (HUVEC) were successfully co-cultured using this system. Various cellular and molecular biology techniques are being employed to investigate injury patterns and overall cell responses under different circumstances which mimic various lung disorders such acute lung injury, pulmonary fibrosis and emphysema.
APA, Harvard, Vancouver, ISO, and other styles
10

Vickerman Kelley, Vernella V., and Roger D. Kamm. "Microfluidics Bioreactor: A Platform for Studying Capillary Morphogenesis in Response to Biochemical and Biophysical Cues." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176655.

Full text
Abstract:
The in vivo microvasculature is a dynamic structure which is influenced by both biochemical (e.g. cytokines, growth factors) and biophysical factors (e.g. shear stress, interstitial flow). Important regulators of this structure are the endothelial cells which are normally quiescent but under certain conditions are able to form new vascular sprouts. Investigations into the mechanism of capillary morphogenesis of human endothelial cells warrant an in vitro model that closely mimics the physiological in vivo microenvironment. To this end, we have developed a novel microfabricated system which permits 2D and 3D culture of endothelial cells in biologically derived (e.g. type I collagen) or synthetic (self assembling peptides) scaffolds and delivers control flow rates and pressures. This system offers tremendous flexibility with regard to scaffold physical and chemical properties, physiologically relevant mechanical stress induced by surface shear and interstitial flow as well as chemotactic gradients. In addition we are able to directly monitor the progression of vascular networks in response to these critical factors.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography