Journal articles on the topic 'Capillary condensation'

To see the other types of publications on this topic, follow the link: Capillary condensation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Capillary condensation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Guyer, R. A. "Capillary condensation refrigerator." Physical Review B 47, no. 17 (May 1, 1993): 11591–94. http://dx.doi.org/10.1103/physrevb.47.11591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sing, Kenneth S. W., and Ruth T. Williams. "Historical aspects of capillarity and capillary condensation." Microporous and Mesoporous Materials 154 (May 2012): 16–18. http://dx.doi.org/10.1016/j.micromeso.2011.09.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Evans, R., and U. Marini Bettolo Marconi. "Capillary condensation versus prewetting." Physical Review A 32, no. 6 (December 1, 1985): 3817–20. http://dx.doi.org/10.1103/physreva.32.3817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dobbs, H. T., G. A. Darbellay, and J. M. Yeomans. "Capillary Condensation Between Spheres." Europhysics Letters (EPL) 18, no. 5 (March 1, 1992): 439–44. http://dx.doi.org/10.1209/0295-5075/18/5/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bojan, M. J., E. Cheng, M. W. Cole, and W. A. Steele. "Topologies of capillary condensation." Adsorption 2, no. 1 (1996): 51–58. http://dx.doi.org/10.1007/bf00127098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

He, Yun Li, Hai Peng Liu, Shi Qiao Gao, and Cai Feng Wang. "Capillary Condensation Adhesion Phenomena and Analysis of the Micromechanical Gyroscope." Key Engineering Materials 562-565 (July 2013): 251–54. http://dx.doi.org/10.4028/www.scientific.net/kem.562-565.251.

Full text
Abstract:
In MEMS, the size of micro-structure is usually in the micron and even nanoscale. It's easier to form capillary phenomenon than the macroscopic system. In view of this phenomenon, this article is based on the micro-mechanical gyroscope as the research object, to analyze the occurrence of capillary condensation of adhesion phenomenon. Firstly, we derive the Kelvin equation for capillary condensation, and then combination of the Kelvin equation introduce the capillary condensation of the adhesion phenomenon; Secondly, it analyzes the dynamics characteristics of its structure existing the liquid bridge, and analyzes the causes of the liquid bridge; Finally, it analyzes the capillary adhesion phenomena on the performance of the micro-mechanical gyroscope,as well as how to avoid the generation of capillary condensation adhesion.
APA, Harvard, Vancouver, ISO, and other styles
7

Röcken, Petra, and Pedro Tarazona. "Capillary condensation in structured pores." Journal of Chemical Physics 105, no. 5 (August 1996): 2034–43. http://dx.doi.org/10.1063/1.472072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Calbi, M. Mercedes, Flavio Toigo, Silvina M. Gatica, and Milton W. Cole. "Capillary condensation for quantum fluids." Physical Review B 60, no. 21 (December 1, 1999): 14935–42. http://dx.doi.org/10.1103/physrevb.60.14935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lazarowich, R. J., and P. Taborek. "Superfluid Onset and Capillary Condensation." Journal of Low Temperature Physics 149, no. 3-4 (August 22, 2007): 151–55. http://dx.doi.org/10.1007/s10909-007-9506-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saam, W. F. "Wetting, Capillary Condensation and More." Journal of Low Temperature Physics 157, no. 3-4 (July 18, 2009): 77–100. http://dx.doi.org/10.1007/s10909-009-9904-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Barthelemy, Pierre, Mher Ghulinyan, Zeno Gaburro, Costanza Toninelli, Lorenzo Pavesi, and Diederik S. Wiersma. "Optical switching by capillary condensation." Nature Photonics 1, no. 3 (March 2007): 172–75. http://dx.doi.org/10.1038/nphoton.2007.24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

OHNISHI, Satomi. "Adsorption, Capillary Condensation and Friction." Hyomen Kagaku 30, no. 10 (2009): 575–79. http://dx.doi.org/10.1380/jsssj.30.575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bochkarev, A. A., and V. I. Polyakova. "Stimulated adsorption and capillary condensation." Journal of Applied Mechanics and Technical Physics 52, no. 1 (January 2011): 107–15. http://dx.doi.org/10.1134/s0021894411010147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Godshalk, K. M., D. T. Smith, and R. B. Hallock. "Hysteretic capillary condensation of 4He on Nuclepore substrates: simultaneous third-sound and direct-capacitance measurements." Canadian Journal of Physics 65, no. 11 (November 1, 1987): 1566–68. http://dx.doi.org/10.1139/p87-257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chmiel, C., K. Karykowski, A. Patrykiejew, W. Rżysko, and S. Sokołowski. "Capillary condensation in non-uniform pores." Molecular Physics 81, no. 3 (February 20, 1994): 691–703. http://dx.doi.org/10.1080/00268979400100461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Restagno, Frédéric, Lydéric Bocquet, and Thierry Biben. "Metastability and Nucleation in Capillary Condensation." Physical Review Letters 84, no. 11 (March 13, 2000): 2433–36. http://dx.doi.org/10.1103/physrevlett.84.2433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yang, Qian, P. Z. Sun, L. Fumagalli, Y. V. Stebunov, S. J. Haigh, Z. W. Zhou, I. V. Grigorieva, F. C. Wang, and A. K. Geim. "Capillary condensation under atomic-scale confinement." Nature 588, no. 7837 (December 9, 2020): 250–53. http://dx.doi.org/10.1038/s41586-020-2978-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Schoen, Martin. "Capillary condensation between mesocopically rough surfaces." Colloids and Surfaces A: Physicochemical and Engineering Aspects 206, no. 1-3 (July 2002): 253–66. http://dx.doi.org/10.1016/s0927-7757(02)00080-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Urrutia, Ignacio, and Leszek Szybisz. "Capillary condensation of in cylindrical pores." Physica A: Statistical Mechanics and its Applications 342, no. 1-2 (October 2004): 410–15. http://dx.doi.org/10.1016/j.physa.2004.06.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kornev, Konstantin G., Inna K. Shingareva, and Alexander V. Neimark. "Capillary condensation as a morphological transition." Advances in Colloid and Interface Science 96, no. 1-3 (February 2002): 143–67. http://dx.doi.org/10.1016/s0001-8686(01)00079-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lilly, M. P., and R. B. Hallock. "Spatial extent of capillary condensation avalanches." Czechoslovak Journal of Physics 46, S1 (January 1996): 141–42. http://dx.doi.org/10.1007/bf02569486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Knežević, M., and H. Stark. "Capillary condensation in an active bath." EPL (Europhysics Letters) 128, no. 4 (February 4, 2020): 40008. http://dx.doi.org/10.1209/0295-5075/128/40008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bryk, Paweł, Orest Pizio, and Stefan Sokolowski. "Capillary condensation of short-chain molecules." Journal of Chemical Physics 122, no. 19 (May 15, 2005): 194904. http://dx.doi.org/10.1063/1.1898484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Walton, J. P. R. B., and N. Quirke. "Capillary Condensation: A Molecular Simulation Study." Molecular Simulation 2, no. 4-6 (February 1989): 361–91. http://dx.doi.org/10.1080/08927028908034611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dobbs, H. T., and J. M. Yeomans. "Capillary condensation and prewetting between spheres." Journal of Physics: Condensed Matter 4, no. 50 (December 14, 1992): 10133–38. http://dx.doi.org/10.1088/0953-8984/4/50/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Restagno, Frédéric, Lydéric Bocquet, Thierry Biben, and Élisabeth Charlaix. "Thermally activated dynamics of capillary condensation." Journal of Physics: Condensed Matter 12, no. 8A (February 17, 2000): A419—A424. http://dx.doi.org/10.1088/0953-8984/12/8a/357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhang, Yuwen, A. Faghri, and M. B. Shafii. "Capillary Blocking in Forced Convective Condensation in Horizontal Miniature Channels." Journal of Heat Transfer 123, no. 3 (November 13, 2000): 501–11. http://dx.doi.org/10.1115/1.1351808.

Full text
Abstract:
Forced convective condensation in miniature channels is investigated numerically. Capillary blocking that occurs due to condensation in a horizontal miniature tube and between parallel plates is simulated by using the Volume of Fluid (VOF) method. The effects of vapor inlet velocity, saturation temperature, surface tension, and diameter on effective condensation length, film thickness, and heat transfer coefficient are investigated. The film thickness and the condensation length decrease as the hydraulic diameter or the distance between parallel plates decreases. When the total mass flow rate drops, the condensation length decreases significantly.
APA, Harvard, Vancouver, ISO, and other styles
28

Nagy, Stanislaw, and Jakub Siemek. "Confined Phase Envelope of Gas-Condensate Systems in Shale Rocks." Archives of Mining Sciences 59, no. 4 (December 1, 2014): 1005–22. http://dx.doi.org/10.2478/amsc-2014-0069.

Full text
Abstract:
Abstract Natural gas from shales (NGS) and from tight rocks are one of the most important fossil energy resource in this and next decade. Significant increase in gas consumption, in all world regions, will be marked in the energy sector. The exploration of unconventional natural gas & oil reservoirs has been discussed recently in many conferences. This paper describes the complex phenomena related to the impact of adsorption and capillary condensation of gas-condensate systems in nanopores. New two phase saturation model and new algorithm for search capillary condensation area is discussed. The algorithm is based on the Modified Tangent Plane Criterion for Capillary Condensation (MTPCCC) is presented. The examples of shift of phase envelopes are presented for selected composition of gas-condensate systems.
APA, Harvard, Vancouver, ISO, and other styles
29

Bui, Binh T., Hui-Hai Liu, Jinhong Chen, and Azra N. Tutuncu. "Effect of Capillary Condensation on Gas Transport in Shale: A Pore-Scale Model Study." SPE Journal 21, no. 02 (April 14, 2016): 601–12. http://dx.doi.org/10.2118/179731-pa.

Full text
Abstract:
Summary The condensation of the gas inside nanopores at pressures lower than the dewpoint pressure, or capillary condensation, is an important physical phenomenon affecting the gas flow/transport process in shale. This work investigates the underlying transport mechanism and governing factors for the gas transport at a pore scale associated with capillary condensation. We numerically simulate and compare the gas-transport process within pores for two cases, with and without capillary condensation, while Knudsen diffusion, wall slippage, and phase transition are included in the numerical model. In each case, the simulations are performed for two pore geometries corresponding to a single pore and two parallel-connected pores. The main objective is to determine whether capillary condensation blocks or enhances gas transport during production. The results show that the presence of the liquid phase in the pore throat initially enhances the gas flow rate to the outlet of the pore, but significantly reduces it later. This blockage depends on pore geometry and the properties of the oil and gas phases. The relatively low mobility of the condensed liquid in the pore throat is the main factor that reduces the mass transport along the pore. The reduction of overall mass transport in a single pore is more significant than that for the parallel pore geometry. Implications of this work for predicting large-scale gas transport in shale are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
30

Gatica, Silvina M., M. Mercedes Calbi, and Milton W. Cole. "Capillary condensation transitions in a slab geometry." Physical Review E 59, no. 4 (April 1, 1999): 4484–89. http://dx.doi.org/10.1103/physreve.59.4484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhou, Shiqi. "Modulation of capillary condensation by trace component." AIP Advances 1, no. 2 (2011): 022148. http://dx.doi.org/10.1063/1.3608790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Morishige, K., K. Kawamura, M. Yamamoto, and I. Ohfuji. "Capillary condensation of xenon on exfoliated graphite." Langmuir 6, no. 8 (August 1990): 1417–21. http://dx.doi.org/10.1021/la00098a016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Morishige, Kunimitsu, Takumi Kawai, and Shigeharu Kittaka. "Capillary Condensation of Water in Mesoporous Carbon." Journal of Physical Chemistry C 118, no. 9 (February 24, 2014): 4664–69. http://dx.doi.org/10.1021/jp4103564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Beamish, J. R., and T. Herman. "Capillary Condensation and Hysteresis for4He in Aerogel." Journal of Low Temperature Physics 134, no. 1/2 (January 2004): 339–44. http://dx.doi.org/10.1023/b:jolt.0000012576.47564.be.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dobbs, H. T., and J. M. Yeomans. "Capillary condensation within an array of cylinders." Molecular Physics 80, no. 4 (November 1993): 877–84. http://dx.doi.org/10.1080/00268979300102731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kim, Seonmin, and Sheryl H. Ehrman. "Capillary Condensation onto Titania (TiO2) Nanoparticle Agglomerates." Langmuir 23, no. 5 (February 2007): 2497–504. http://dx.doi.org/10.1021/la062456l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Broseta, Daniel, Loïc Barré, Olga Vizika, Noushine Shahidzadeh, Jean-Pierre Guilbaud, and Sandrine Lyonnard. "Capillary Condensation in a Fractal Porous Medium." Physical Review Letters 86, no. 23 (June 4, 2001): 5313–16. http://dx.doi.org/10.1103/physrevlett.86.5313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Parry, Andrew O., Nelson R. Bernardino, and Carlos Rascón. "Scaling of correlation functions near capillary condensation." Molecular Physics 109, no. 7-10 (March 30, 2011): 1015–27. http://dx.doi.org/10.1080/00268976.2010.538739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gil, Tamir, and John H. Ipsen. "Capillary condensation between disks in two dimensions." Physical Review E 55, no. 2 (February 1, 1997): 1713–21. http://dx.doi.org/10.1103/physreve.55.1713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wang, Ruisong, and Dion S. Antao. "Capillary-Enhanced Filmwise Condensation in Porous Media." Langmuir 34, no. 46 (October 29, 2018): 13855–63. http://dx.doi.org/10.1021/acs.langmuir.8b02611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Celestini, F. "Capillary condensation within nanopores of various geometries." Physics Letters A 228, no. 1-2 (March 1997): 84–90. http://dx.doi.org/10.1016/s0375-9601(97)00070-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Vincent, Olivier, Bastien Marguet, and Abraham D. Stroock. "Imbibition Triggered by Capillary Condensation in Nanopores." Langmuir 33, no. 7 (February 8, 2017): 1655–61. http://dx.doi.org/10.1021/acs.langmuir.6b04534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Weinberger, B., F. Darkrim-Lamari, and D. Levesque. "Capillary condensation and adsorption of binary mixtures." Journal of Chemical Physics 124, no. 23 (June 21, 2006): 234712. http://dx.doi.org/10.1063/1.2205848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Yarom, Michal, and Abraham Marmur. "Capillary Condensation with a Grain of Salt." Langmuir 33, no. 46 (November 10, 2017): 13444–50. http://dx.doi.org/10.1021/acs.langmuir.7b03197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Christenson, Hugo K. "Capillary condensation in systems of immiscible liquids." Journal of Colloid and Interface Science 104, no. 1 (March 1985): 234–49. http://dx.doi.org/10.1016/0021-9797(85)90028-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Marc, Miscevic, Médéric Béatrice, Lavieille Pascal, Soupremanien Ulrich, and Serin Valérie. "Condensation in capillary-driven two-phase loops." Microgravity Science and Technology 19, no. 3-4 (October 2007): 116–20. http://dx.doi.org/10.1007/bf02915770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Inoue, S., N. Ichikuni, T. Suzuki, T. Uematsu, and K. Kaneko. "Capillary Condensation of N2on Multiwall Carbon Nanotubes." Journal of Physical Chemistry B 102, no. 24 (June 1998): 4689–92. http://dx.doi.org/10.1021/jp973319n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zhong, Junjie, Jason Riordon, Seyed Hadi Zandavi, Yi Xu, Aaron H. Persad, Farshid Mostowfi, and David Sinton. "Capillary Condensation in 8 nm Deep Channels." Journal of Physical Chemistry Letters 9, no. 3 (January 16, 2018): 497–503. http://dx.doi.org/10.1021/acs.jpclett.7b03003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rascón, Carlos, Andrew O. Parry, Robert Nürnberg, Alessandro Pozzato, Massimo Tormen, Lorenzo Bruschi, and Giampaolo Mistura. "The order of condensation in capillary grooves." Journal of Physics: Condensed Matter 25, no. 19 (April 24, 2013): 192101. http://dx.doi.org/10.1088/0953-8984/25/19/192101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Christenson, Hugo K. "Two-step crystal nucleation via capillary condensation." CrystEngComm 15, no. 11 (2013): 2030. http://dx.doi.org/10.1039/c3ce26887j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography