Dissertations / Theses on the topic 'Capillary and porous materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Capillary and porous materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
López, de Ramos Aura Luisa. "Capillary enhanced diffusion of CO2 in porous media /." Access abstract and link to full text, 1993. http://0-wwwlib.umi.com.library.utulsa.edu/dissertations/fullcit/9400131.
Full textZou, Yuliang. "Modelling of the dynamic effects in capillary pressure in coupling with deformation on the desiccation of porous materials." Thesis, Ecole centrale de Nantes, 2020. http://www.theses.fr/2020ECDN0034.
Full textThe durability of infrastructure made of porous materials such as soil, sand and cement based materials is closely related to the environmental conditions. Most of the mechanisms of deterioration are governed by moisture state in porous materials. Indeed, the moisture state determines the distribution of capillary pressure which is an important driving force for solid deformation and could increase cracking risk. However, most of fluid-solid interaction models used to predict moisture transport and solid deformation have ignored the existing physical phenomenon dynamic effects on capillary pressure. This thesis aims to refine the fluid-solid interaction model with the consideration of this dynamic capillarity effect. Three dynamic models corresponding to various types of porous materials have been developed. The first model is available for porous materials with relative high permeability such as sand and soil. The second model is used for mature cement-based materials with low permeability. The third model is developed for hardening cement-based materials exposed to extremely low relative humidity condition. Each dynamic model and corresponding non-dynamic model have been implemented to simulate documented drying (drainage) experiments for sand, mature cement paste and hardening concrete, respectively. Compared with experimental data, the numerical simulations show that modeling with dynamic effects gives better results than non dynamic modeling. All comparisons and investigations enhanced the necessity of considering dynamic capillarity effect to predict the moisture transport and solid deformation for fast drying (drainage) of porous materials
Maurath, Johannes [Verfasser], and N. [Akademischer Betreuer] Willenbacher. "Tailored Formulation of Capillary Suspensions as Precursor for Porous Sintered Materials / Johannes Maurath ; Betreuer: N. Willenbacher." Karlsruhe : KIT-Bibliothek, 2018. http://d-nb.info/1156327830/34.
Full textTörnkvist, Anna. "Aspects of Porous Graphitic Carbon as Packing Material in Capillary Liquid Chromatography." Doctoral thesis, Uppsala University, Analytical Chemistry, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3306.
Full textIn this thesis, porous graphitic carbon (PGC) has been used as packing material in packed capillary liquid chromatography. The unique chromatographic properties of PGC has been studied in some detail and applied to different analytical challenges using both electrospray ionization-mass spectrometry (ESI-MS) and ultra violet (UV) absorbance detection.
The crucial importance of disengaging the conductive PGC chromatographic separation media from the high voltage mass spectrometric interface has been shown. In the absence of a grounded point between the column and ESI emitter, a current through the column was present, and changed retention behaviors for 3-O-methyl-DOPA and tyrosine were observed. An alteration of the chromatographic properties was also seen when PGC was chemically oxidized with permanganate, possibly due to an oxidation of the few surface groups present on the PGC material.
The dynamic adsorption of the chiral selector lasalocid onto the PGC support resulted in a useful and stable chiral stationary phase. Extraordinary enantioselectivity was observed for 1-(1-naphthyl)ethylamine, and enantioseparation was also achieved for other amines, amino acids, acids and alcohols.
Finally, a new strategy for separation of small biologically active compounds in plasma and brain tissue has been developed. With PGC as stationary phase it was possible to utilize a mobile phase of high content of organic modifier, without the addition of ion-pairing agents, and still selectively separate the analytes.
Törnkvist, Anna. "Aspects of porous graphitic carbon as packing material in capillary liquid chromatography /." Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3306.
Full textNeacsu, Valentin. "Modeling and measurement of micro flow in dual scale porous media." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 280 p, 2010. http://proquest.umi.com/pqdweb?did=1998445961&sid=7&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textKharaghani, Abdolreza [Verfasser], and Evangelos [Gutachter] Tsotsas. "Drying and wetting of capillary porous materials : insights from imaging and physics-based modeling / Abdolreza Kharaghani ; Gutachter: Evangelos Tsotsas." Magdeburg : Universitätsbibliothek Otto-von-Guericke-Universität, 2020. http://d-nb.info/1220035491/34.
Full textXuefeng, Yang. "A network approach to the analysis of mass transfer from a capillary porous medium." reponame:Repositório Institucional da UFSC, 1995. https://repositorio.ufsc.br/xmlui/handle/123456789/157927.
Full textMade available in DSpace on 2016-01-08T19:37:50Z (GMT). No. of bitstreams: 1 101465.pdf: 9852443 bytes, checksum: b8cafd1383f95b320b58aaf21d5415f0 (MD5) Previous issue date: 1995
Um modelo de secagem microscópico para o meio poroso capilar é apresentado nesta tese. Este modelo microscópico é baseado em uma abordagem de rede para o meio poroso e é usado para estudar o comportamento da secagem no interior de meio poroso durante o processo de secagem em escala dos poros. A força motora para o transporte do líquido é a força capilar e a transferência de massa na fase gasosa é a difusão de vapor. O efeito Kelvin é considerado neste modelo, ou seja, a interface gás-líquido é tratada como um menisco. A força gravitacional é ignorada pois os tamanhos dos poros e gargantas da rede são relativamente grandes (>20mm). O processo de secagem é simulado usando este modelo em várias redes quadradas 100x20, contendo 2000 poros e 4000 gargantas. O líquido é álcool e o processo de secagem é assumido isotérmico.
Thomys, Oliver. "Asymptotic Behaviour of Capillary Problems governed by Disjoining Pressure Potentials." Doctoral thesis, Universitätsbibliothek Leipzig, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:15-20100412-072001-8.
Full textJacquard, Catherine. "Etude experimentale d'une barriere capillaire avec un modele de laboratoire." Paris, ENMP, 1988. http://www.theses.fr/1988ENMP0097.
Full textЕвсина, Наталья Александровна. "Синтез нечеткого регулятора для системы управления процессом сушки капиллярно-пористых материалов." Thesis, НТУ "ХПИ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/19590.
Full textThe thesis on Candidate Degree in Technical Sciences: Specialty 05.13. 03 - management systems and processes.– National Technical University "Kharkov Polytechnic Institute", Kharkov 2015. This thesis is devoted to the development and improvement of the synthesis method of a fuzzy regulator which ensures the specified quality to control the drying of the capillary and porous materials in a convection oven of periodic action and allows creating the control systems basing on the expert knowledge. The work describes the improved method of the optimal control sensitivity analysis in a linear system with a quadratic quality criterion which allowed obtaining the control insensitivity conditions to a slightly changed parameters in a closed system. Basing on the performed analysis the thesis shows the necessity to perform a joint research of the optimized functionality sensitivity and the sensitivity of the optimal movementtrajectory. The thesis offers a simple synthesis algorithm of the fuzzy and logical regulator which provides the ability to use a standard format describing the linguistic variables and a minimum set of the operating rules. The regulators built on the basis of fuzzy logic in some cases are capable to provide higher quality rates of the transition processes in comparison with classic regulators. Using the synthesis methods of fuzzy control algorithms, it is possible to optimize the difficult control loops omitting mathematical model specification.
Євсіна, Наталя Олександрівна. "Синтез нечіткого регулятора для системи управління процесом сушіння капілярно-пористих матеріалів." Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/19587.
Full textThe thesis on Candidate Degree in Technical Sciences: Specialty 05.13. 03 - management systems and processes.– National Technical University "Kharkov Polytechnic Institute", Kharkov 2015. This thesis is devoted to the development and improvement of the synthesis method of a fuzzy regulator which ensures the specified quality to control the drying of the capillary and porous materials in a convection oven of periodic action and allows creating the control systems basing on the expert knowledge. The work describes the improved method of the optimal control sensitivity analysis in a linear system with a quadratic quality criterion which allowed obtaining the control insensitivity conditions to a slightly changed parameters in a closed system. Basing on the performed analysis the thesis shows the necessity to perform a joint research of the optimized functionality sensitivity and the sensitivity of the optimal movementtrajectory. The thesis offers a simple synthesis algorithm of the fuzzy and logical regulator which provides the ability to use a standard format describing the linguistic variables and a minimum set of the operating rules. The regulators built on the basis of fuzzy logic in some cases are capable to provide higher quality rates of the transition processes in comparison with classic regulators. Using the synthesis methods of fuzzy control algorithms, it is possible to optimize the difficult control loops omitting mathematical model specification.
Stol, Remco. "Capillary electrochromatography with porous particles." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2002. http://dare.uva.nl/document/61674.
Full textBandini, Simone <1976>. "La risalita capillare nei materiali da costruzione porosi e processi elettrocinetici." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1780/.
Full textAlvarellos, Jose. "Fundamental Studies of Capillary Forces in Porous Media." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5314.
Full textJoncourt, Laurent. "Réactivité des matériaux carbones vis-à-vis du sodium." Grenoble INPG, 1996. http://www.theses.fr/1996INPG0200.
Full textThis work is related to the interaction of sodium with carbon materials in particular with three graphitizable pitch coke and seven different anthracites. Indeed, these carbons are widely used as cathodic materials in the aluminum electrolysis cells, and there is a general agreement that the penetration of sodium atoms is responsible of the swelling and subsequent destruction of the electrode. At first, we tried to describe the evolution of the microtexture of these materials during heat treatment. Our results (X ray diffraction, Raman spectroscopy and pycnometry) show that the anthracites are highly porous, heterogeneous compounds. They are found to evolue at about 2000-2400°C to become partially graphitizable carbons. Concerning the interaction of sodium with these materials, three phenomena are observed : intercalation, adsorption and capillary condensation. The sodium intercalation is found to be very sensitive to the previous heat treatment temperature : the uptake of intercalated sodium is all the more important the heat treatment temperature is lower. The non-intercalated sodium uptake is correlated to the porous texture of these materials
Zhang, Jin. "Shakedown of porous materials." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I044/document.
Full textThis thesis is devoted to the determination of shakedown limit states of porous ductile materials based on Melan's static theorem by considering the hollow sphere model, analytically and numerically. First of all, we determine the analytical macroscopic shakedown criterion of the considered unit cell with von Mises matrix under alternating and pulsating special loading cases. The proposed macroscopic analytical criterion depends on the first and second macroscopic stresses invariants, the sign of the third one and Poisson's ratio. Then, the procedure is extended to the general cyclically repeated loads by the construction of a more appropriate trial residual stress field allowing analytical computations and the improvement of the previous model simultaneously. Moreover, this approach is applied to porous materials with dilatant Drucker-Prager matrix.The idea relies firstly on the exact solution for the pure hydrostatic loading condition. It turns out that the collapse occurs by fatigue. Next, suitable trial stress fields are built with additional terms to capture the shear effects. The safety domain, defined by the intersection of the shakedown limit domain and the limit analysis domain corresponding to the sudden collapse by development of a mechanism at the first cycle, is fully compared with step-by-step incremental elastic-plastic simulations and simplified direct computations. At last, we provide a direct numerical method to predict the shakedown safety domain of porous materials subjected to multi-varying independent loadings by considering the critical loading path of the load domain instead of the whole history. The shakedown problem is transformed into a large-size optimization problem, which can be solved efficiently by the non-linear optimizer IPOPT to give out not only the limit load factor, but also the corresponding residual stress field for the shakedown state
Gong, Xuehui. "POROUS POLYMERIC FUNCTIONAL MATERIALS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1595256175834586.
Full textPalakurthi, Nikhil Kumar. "Direct Numerical Simulation of Liquid Transport Through Fibrous Porous Media." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1406881191.
Full textJiang, Tong. "Porous tin(IV) sulfide materials." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0007/NQ41557.pdf.
Full textTchang, Cervin Nicholas. "Porous Materials from Cellulose Nanofibrils." Doctoral thesis, KTH, Fiberteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155065.
Full textQC 20141103
Parrouffe, Jean-Michel. "Combined convective and infrared drying of a capillary porous body." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39371.
Full textThe necessity to decrease the heat transfer coefficient for the effect of high mass transfer flux (when convection is combined with I.R. heating) has been demonstrated. Further, the analogy between the transfer of heat and mass expressed in terms of average heat and mass transfer coefficient ratios has been verified to apply when the surface is not contaminated. Experiments have also showed that there is a link between the evaporation temperature and crust formation at the evaporating surface. Moreover, an increase in the heat transfer coefficient was observed when the surface reaches the boiling point and is higher than that of the flowing air. Lastly, it was observed that the critical moisture content is independent of the convective drying parameters, sample thickness and the overall incident heat flux.
A drying front model is also presented and tested with the experimental results in convection drying and for the combined process. The drying time, the bottom temperature evolution, the surface temperature evolution up to the critical point and the overall shape of the drying rate curve were well reproduced by the model. Simulations have also showed that the effect of the diffusion mass flux on the heat and mass transfer coefficients leads to a decrease of the evaporation rate by a maximum of 8% for both the purely convective and combined processes.
Nourdeen, Hasan. "Upscaling immiscible capillary-controlled two-phase flow in porous media." Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/61482.
Full textAker, Eyvind. "A Numerical Study of Capillary and Viscous Drainage in Porous Media." Doctoral thesis, Norwegian University of Science and Technology, Department of Physics, 1999. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1975.
Full textThis work concentrates on the flow properties when one fluid displaces another fluid in a network of pores and throats. We consider the scale where individual pores enter the description and we use a network model to simulate the displacement process. The network model, representing the pores and the throats in the porous media, consists of a square lattice of cylindrical tubes.
Network models together with experimental work on real porous systems, have been successful in describing important properties of the fluid-fluid displacement. In this thesis we study the interplay between the pressure build up in the fluids and the displacement structure during drainage. Drainage is when a nonwetting fluid displaces a wetting fluid in porous media.
We have found that our network model properly describes the burst dynamics and the pressure buildup due to capillary and viscous forces in the displacements. With respect to the local capillary pressures of menisci in the network, we model the tubes as if they were hourglass shaped. This has shown to make the model closer to the dynamics of real displacements in porous media. There is also good correspondence between the simulated temporal evolution of the fluid pressures and earlier results from experiments and simulations in slow drainage.
We have used the network model to study the stabilization mechanisms when a stable front develops. We consider two-dimensional horizontal displacements where the viscous forces stabilize the front and gravity might be neglected. In particular, we have calculated the pressure difference between the fluids, that is the capillary pressure, along the invasion front. We find that the capillary pressure between two points along the front varies almost linearly as function of height separation in the directions of the displacement, This is quite surprising since the viscous force field is expected to be inhomogeneous due to trapping of wetting fluid and to the fractal displacement structure.
We present an alternative view on the displacement process based on the observation that nonwetting fluid flows in separate strands (paths) along the front were wetting fluid is displaced. We show that the strands are loopless because wetting fluid may be trapped in single tubes surrounded by nonwetting fluids. By using the alternative view we, present arguments about the pressure behaviour in the front. The arguments are supported by numerical results, and we also show that they might influence the scaling relation between the front width and the injection rate. As a consequence of our findings, we conclude that earlier suggested theories which do not include the effect of nonwetting fluid flowing in strands, are nor compatible with drainage when strands dominate the displacement process.
VELASQUEZ, MAO ILICH ROMERO. "FLOW OF EMULSIONS IN POROUS MEDIA: EXPERIMENTS AND CAPILLARY NETWORK MODEL." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=15337@1.
Full textObjetivo: Transporte de emulsões num meio poroso é relevante para diversas aplicações em sub-superfície. Muitos processos de recuperação melhorada de petróleo envolvem formação de emulsões. A modelagem do fluxo de emulsões num meio poroso é extremamente desafiante. As descrições disponíveis baseadas na viscosidade efetiva não são validas quando o tamanho das gotas é da mesma ordem de magnitude que o tamanho dos corpos de poros num meio poroso. Neste caso, intercepção e captura de gotas podem bloquear parcialmente a passagem dos poros e um modelo apropriado deve ser capaz de descrever estas mudanças locais de mobilidade. O modelo desenvolvido neste trabalho é baseado na relação vazão e queda de pressão do escoamento de emulsões através de capilares com constri ção. Um modelo de redes de capilares é construído com objetivo de obter parâmetros macroscópicos a partir do comportamento microscópico. Os resultados mostram a variação da permeabilidade com o número de capilaridade e propriedades da emulsão. Para baixas vazões, ou baixos números de capilaridade, as gotas maiores bloqueiam parcialmente os poros pequenos, resultando em uma redução da permeabilidade. Para altas vazões, o gradiente de pressão em cada capilar é alto o suficiente para forçar as gotas fluir através da constrição. Consequentemente, a permeabilidade aumenta com o número de capilaridade. Um programa, escrito na linguagem Fortran, é desenvolvido neste trabalho para simular o escoamento monofásico e bifásico de emulsões através de um meio poroso utilizando o modelo de rede de capilares. Na modelagem monofásica, os resultados apresentam uma boa concordância com as medidas experimentais feitas em mostras de arenito. Na modelagem bifásica, a comparação dos resultados entre a injeção da fase continua da emulsão e a injeção de emulsões (fase continua mais gotas) sobre uma rede inicialmente saturada com óleo mostra um aumento no fator de recuperação de óleo e uma frente de deslocamento mais uniforme no caso de injeçãode emulsão.
Objective: Transport of emulsions in porous media is relevant to several subsurface applications. Many enhanced oil recovery processes involve emulsion formation and their flow in some form. Modeling the flow of emulsion in porous media is extremely challenging. The available descriptions based on effective viscosity are not valid when the drop size is of the same order of magnitude as the pore-throat size. In this case, drop straining and capturing may partially block the pore passage and an accurate model should be able to describe this local changes on mobility. The model developed in this work is based on the flow rate-pressure drop relationship of emulsion flow through constricted capillaries. A capillary network model is constructed in order to obtain macroscopic parameters from upscaling of the microscopic behavior. The results show how the permeability changes with Darcy velocity and emulsion properties. At low flow rates, the large drops partially block the smallest pores, leading to a low permeability. At high flow rates, the pressure gradient in each capillary is strong enough to force the drops to flow through the constrictions. Consequently, the permeability rises with capillary number. A program, written in Fortram language, based on network model is developed in this work to simulate the single phase and two phase flow of emulsion through a porous medium. In the single phase model, the results show good agreement with experimental measurements on samples of sandstone. In the two phase model, the comparison of results between the injection of the continuous phase of emulsion and the injection of emulsions (with drops) on a network initially saturated with oil shows an increase in the oil recovery factor and a more uniform displacement front in the case of emulsion injection.
NOGUEIRA, GIOVANE BARROSO LIMA. "ANALYSIS OF EMULSION FLOW THROUGH POROUS MEDIA USING CAPILLARY NETWORK MODEL." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=18104@1.
Full textEmulsões podem ser utilizadas como agentes de controle de mobilidade em diferentes processos de recuperação melhorada de petróleo e armazenamento de carbono em reservatórios porosos. A aplicação desta técnica, com a escolha correta das características das emulsões injetadas e a determinação das condições de operação ótimas, requer um entendimento adequado do escoamento de emulsões em meios porosos. As características macroscópicas do fluxo de emulsões através de meios porosos estão diretamente ligadas ao escoamento bifásico na escala de poros. Modelos de rede de capilares permitem a implementação dos mecanismos de fluxo das gotas nas gargantas de poros e fornecem parâmetros macroscópicos do escoamento. Neste trabalho, o escoamento de emulsões em meios porosos é analisado através de um modelo dinâmico de rede de capilares tridimensional e não-estruturada. A distribuição de pressão nos poros, e consequentemente o fluxo em cada capilar da rede, é determinada pelo balanço de massa em cada poro. O efeito das gotas da fase dispersa no comportamento do escoamento em cada elemento da rede é descrito por um fator de bloqueio de fluxo baseado em resultados experimentais de escoamento de emulsões através de micro capilares com gargantas. O fator de bloqueio descreve a mudança da condutividade de cada elemento e é uma função da geometria da garganta, do tamanho e concentração volumétrica da fase dispersa e do número de capilaridade local. A distribuição de concentração da fase dispersa ao longo da rede é descrita através de uma equação de transporte de massa, permitindo assim o estudo do processo de filtragem de gotas nos poros e o estudo da injeção alternada de água e emulsão. A integração no tempo do modelo dinâmico é feita por um método semi-implícito e o sistema de equações não linear obtido a cada passo de tempo é resolvido através de um método iterativo. Os resultados apresentam a evolução da redução da permeabilidade e concentração de gotas na saída do meio poroso em função do tamanho das gotas, da vazão de injeção, da concentração da emulsão injetada e do volume injetado de emulsão. A análise da injeção alternada de água-emulsão mostra claramente o bloqueio de poros por gotas da emulsão e a alteração no padrão de escoamento após reiniciada a injeção de água.
Emulsions can be used as mobility control agents in different enhanced oil recovery and carbon storage methods in oil reservoirs. The application of this technique, with the correct choice of the injected emulsion characteristics and the determination of optimal operating conditions, requires an adequate understanding of the emulsion flow in porous media. The macroscopic characteristics of the emulsion flow through porous media are directly linked to the two-phase flow at the pore scale. Capillary network models allow the implementation of the drop flow mechanisms in the pore throats and the determination of macroscopic flow parameters. In this work, emulsion flow in porous media is analyzed through an unstructured 3D dynamic network model. The pressure distribution, and consequently the flow rate in each capillary of the network, isdetermined by mass balance equation in each pore. The effects of the drops of dispersed phase in the flow behavior within each element of the network is described by a flow blocking factor based on experimental results on emulsion flow through single microcapillary tubes with throats. The blocking factor describes the changes in the conductivity of each element and it is a function of the throat geometry, the size and volumetric concentration of the dispersed phase and the local capillary number. The concentration distribution of the dispersed phase along the network is described by a mass transport equation, allowing the study of the filtration process of the drops in the pores and the analysis of the alternate injection of water and emulsion.Time integration in the dynamic model is performed by a semi-implicit method and the non-linear system of equations obtained in each time step is solved by an iterative method. The results illustrate the evolution of the permeability reduction and the effluent concentration of drops as a function of the drops size, injection flow rate, concentration of the injected emulsion and injected volume of emulsion. The analysis of the emulsion/water alternate injection clearly shows the pore blockage by the emulsion drops and the change in the flow pattern after the reinjection of water.
BARTOLOMEU, LUCAS SALES PEREIRA. "CAPILLARY NETWORK MODEL OF POLYMERIC SOLUTION FLOW IN A POROUS MEDIA." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=30921@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
A injeção de soluções poliméricas tem sido utilizada em muitas aplicações para aumentar a viscosidade da fase aquosa e, por conseguinte, reduzir a elevada razão de mobilidade durante o deslocamento de óleo num meio poroso. Evidências experimentais mostraram também que o comportamento viscoelástico de algumas soluções poliméricas pode contribuir para um melhor deslocamento do óleo na escala de poros, reduzindo assim, a saturação de óleo residual. Este comportamento na escala de poros não é claramente compreendido já que a modelagem de um fluxo viscoelástico de uma solução polimérica em meios porosos é extremamente desafiadora. O comportamento do escoamento em escala macroscópica está diretamente associado com o fluxo extensional dominante através das gargantas e poros que formam o meio poroso. Muitos modelos têm sido desenvolvidos com o objetivo de descrever o efeito extensional observados no fluxo de soluções poliméricas de elevado peso molecular. O modelo desenvolvido neste trabalho baseia-se na relação entre a vazão e a queda de pressão do escoamento de soluções poliméricas através de capilares com garganta que servem como um modelo simples da geometria das gargantas de poro. Um modelo de rede de capilares bidimensional foi desenvolvido para obter os parâmetros macroscópicos do escoamento a partir do entendimento do comportamento microscópico. No modelo monofásico, os resultados apresentam efeitos de diferentes parâmetros reológicos no comportamento macroscópico do escoamento. Para estudar o escoamento bifásico, um modelo de rede dinâmico foi desenvolvido. Os resultados obtidos fornecem uma descrição mais detalhada do processo de deslocamento de óleo pela fase aquosa.
Injection of a polymer solution is used in many applications to increase the viscosity of the water phase and therefore reduce the high mobility ratio during oil displacement in porous media. Experimental evidence has shown that the viscoelastic behavior of some polymer solutions may contribute to a better oil displacement at the pore-level, reducing the residual oil saturation. This pore-level behavior is not clearly understood. Modeling viscoelastic flow of polymeric solutions in porous media is extremely challenging. The macroscopic flow behavior is directly associated with the extensional dominant flow through pore throats that form the porous media. Accurate models should be able to describe the extensional thickening effect observed in the flow of dilute high molecular weight polymer solutions. The model developed in this work is based on the flow rate-pressure drop relationship of polymer solution flow through constricted capillaries that serves as a simple model of the geometry of pore throats. A two-dimensional capillary network model is constructed in order to obtain macroscopic parameters from upscaling of the microscopic behavior. In single-phase flow, results show the effect of different rheological parameters on the macroscopic flow behavior. To study a two-phase flow, a dynamic network model was developed. The results obtained provide a more detailed description of the oil displacement by the water phase.
Alsayednoor, Jafar. "Modelling and characterisation of porous materials." Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4808/.
Full textJacobs, Tia. "Self-assembly of new porous materials." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/3970.
Full textENGLISH ABSTRACT: The primary objective of the work was to prepare and investigate new porous materials using the principles of crystal engineering. Both organic and metal-organic systems were studied and the work can best be divided into two separate sections: 1. The crystal engineering of Dianin’s Compound, a well-known organic host. 2. The design and synthesis of a series of related porous coordination compounds consisting of discrete, dinuclear metallocycles. The first section discusses the synthetic modification of Dianin’s compound in order to engineer a new clathrate host with an altered aperture size. Although this study ultimately failed to isolate the host material in its porous guest-free form, the work led to the discovery of a chiral host framework that aligns guest molecules in a polar fashion, and consequently displays non-linear optical properties. These findings are unprecedented in the long history of crystal engineering of Dianin’s compound and its analogues. This section also describes desorption studies of the new inclusion compound, as well as the known thiol analogue of Dianin’s compound. Systematic characterisation of these desorbed phases has raised interesting fundamental questions about desolvation processes in general. The second section constitutes the major portion of the work. A series of related isostructural coordination metallocycles were synthesised and their structure-property relationships were investigated using a variety of complementary techniques. These metallocyclic compounds all crystallise as solvates in their as-synthesised forms, and different results are obtained upon desolvation of the materials. In each case, desolvation occurs as a single-crystal to single-crystal transformation and three new “seemingly nonporous” porous materials were obtained. A single-crystal diffraction study under various pressures of acetylene and carbon dioxide was conducted for one of the porous metallocycles. This enabled the systematic study of the host deformation with increasing equilibrium pressure (i.e. with increasing guest occupancy). The observed differences in the sorption behaviour for acetylene and carbon dioxide are discussed and rationalised. Gravimetric gas sorption isotherms were also recorded for the three different porous materials and the diffusion of bulkier molecules through the host was also investigated structurally. Finally, a possible gas transport mechanism is postulated for this type of porous material (i.e. seemingly nonporous), and this is supported by thermodynamic and kinetic studies, as well as molecular mechanics and statistical mechanics simulations.
AFRIKAANSE OPSOMMING: Die primêre doel van die werk was om nuwe poreuse materiale te berei en deur die toepassing van beginsels van kristalmanipulasie (E. crystal engineering) te ondersoek. Beide organiese- en metaal-organiese sisteme is bestudeer en die werk kan in twee kategorieë verdeel word: 1. Die kristalmanipulasie van Dianin se verbinding, ’n bekende organiese gasheer. 2. Die ontwerp en sintese van ’n reeks verwante poreuse koördinasieverbindings wat uit diskrete, binukleêre metallosiklieseverbindings bestaan. Die eerste deel handel oor die sintetiese verandering van Dianin se verbinding om ’n nuwe klatraatgasheer met ’n veranderde spleetgrootte te vorm. Alhoewel hierdie studie nie daarin geslaag het om die gasheer in sy poreuse “gas(E. guest)-vrye” vorm te isoleer nie, het die werk ’n nuwe chirale gasheerraamwerk aan die lig gebring. Die chirale gasheerraamwerk rig gas(E. guest)molekules in eendimensionele kolomme op ’n polêre wyse en gevolglik vertoon die materiaal nie-linieêre optiese eienskappe. Hierdie resultaat is ongekend in die lang geskiedenis van kristalmanipulasie van Dianin se verbindings en sy analoë. Hierdie afdeling beskryf ook die desorpsiestudies van die nuwe gasheer, en die tiol-afgeleide van Dianin se verbinding. Die sistematiese karakterisering van hierdie fases na desorpsie het fundamentale vrae na vore gebring oor desorpsieprosesse oor die algmeen. Die tweede afdeling maak die grootste gedeelte van die werk uit. ’n Reeks verwante isostrukturele ringvormige koördinasieverbindings is gesintetiseer en hul struktuureienskap verhoudings is deur ’n verskeidenheid komplementêre tegnieke ondersoek. Hierdie metallosiklieseverbindings kristalliseer almal in gesolveerde toestand vanaf sintese en verskillende resultate word verkry wanneer die verbinding desorpsie ondergaan. In alle gevalle vind gas(E. guest)desorpsie as enkel-kristal na enkel-kristal omsettings plaas en drie nuwe ‘oënskynlik nie-poreuse’ poreuse materiale is bekom. ’n Enkelkristal diffraksiestudie onder verskeie gasdrukke is met asetileen en koolstofdioksied uitgevoer vir een van die poreuse metallosiklieseverbindings. Dit het die geleentheid geskep om die mate waartoe die gasheer as gevolg van verhoogde ewewigsdruk vervorm (en dus toename in gasheerbesetting), sistematies te bestudeer. Die waargenome verskille in sorpsie-optrede vir asetileen en koolstofdioksied word bespreek en verklaar. Gravimetriese gassorpsie isoterme is ook vir die drie poreuse materiale verkry en die diffusie van groter molekules deur die gasheer is struktureel ondersoek. Laastens word ’n moontlike gasoordragmeganisme vir hierdie tipe poreuse (i.e. oënskynlik nie-poreuse) materiale gepostuleer. Hierdie bespreking word deur termodinamiese en kinetiese studies aangevul, sowel as molekulêre-meganika en statisties-meganiese studies.
Acartürk, Ayhan. "Simulation of charged hydrated porous materials." Essen VGE, 2009. http://d-nb.info/998591939/04.
Full textThompson, Benjamin Robert. "Hierarchically structured composites and porous materials." Thesis, University of Hull, 2017. http://hydra.hull.ac.uk/resources/hull:16570.
Full textHaubensak, Frederick G. (Frederick George). "Microstructure design of porous brittle materials." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/26876.
Full textIncludes bibliographical references (leaves 214-223).
by Frederick George Haubensak.
Ph.D.
McMonagle, Charles James. "Effect of pressure on porous materials." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31504.
Full textEder, Grace M. "Dye Molecule-Based Porous Organic Materials." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1530012900215452.
Full textFarghaly, Ahmed A. "Fabrication of Multifunctional Nanostructured Porous Materials." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4189.
Full textRichards, Emma. "Immobilisation of polyazamacrocycles into porous materials." Thesis, University of Liverpool, 2012. http://livrepository.liverpool.ac.uk/8513/.
Full textCooper, Emma. "Renewable routes to porous aluminosilicate materials." Thesis, University of York, 2012. http://etheses.whiterose.ac.uk/3936/.
Full textChow, Hon-nin. "Computer aided modelling of porous structures." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B39848929.
Full textJiran, Eva. "Capillary instabilities in thin, solid films." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/14000.
Full textHarter, Thomas. "Unconditional and conditional simulation of flow and transport in heterogeneous, variably saturated porous media." Diss., The University of Arizona, 1994. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1994_36_sip1_w.pdf&type=application/pdf.
Full textThatiparti, Deepthi Sharan. "Capillary pressure Measurement in Glass bead porous media and Gas diffusion layers." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1281450979.
Full textKou, Shuting, and 寇舒婷. "Porous structure modeling with computers." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206700.
Full textpublished_or_final_version
Mechanical Engineering
Master
Master of Philosophy
HAMDAN, MOHAMMAD OMAR. "LOOP HEAT PIPE (LHP) MODELING AND DEVELOPMENT BY UTILIZING COHERENT POROUS SILICION (CPS) WICKS." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1049987207.
Full textMohamed, Rozita. "Preparation of nano-structured macro-porous materials." Thesis, University of Newcastle upon Tyne, 2011. http://hdl.handle.net/10443/1317.
Full textRidgway, Catherine Jean. "Modelling pore-level properties of porous materials." Thesis, University of Plymouth, 1995. http://hdl.handle.net/10026.1/1707.
Full textPanella, Barbara. "Hydrogen storage by physisorption on porous materials." [S.l. : s.n.], 2006. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-29012.
Full textWilcox, O. T. "Porous materials for the uptake of ammonia." Thesis, University of Liverpool, 2017. http://livrepository.liverpool.ac.uk/3007235/.
Full textLittlefield, Benjamin T. R. "Solvothermal synthesis of porous beryllate containing materials." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/359297/.
Full textKunjir, Shrikant. "Study of new porous materials by NMR." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC211/document.
Full textThe zeolites are ‘molecular sieves’ known for their numerous applications in adsorption, ion exchange, and catalysis. In this thesis, we focused on the study of some questions related to zeolite synthesis and post-synthesis, which are not yet resolved by other techniques. NMR was the primary tool in this work, as it gives access to local structural information on nanocrystals even when diffraction techniques found their limits. NMR can also be used to study porosity using probe molecules adsorption, and in particular, xenon is known as a good molecule for this purpose. Indeed, the isotope 129Xe can be hyperpolarized to increase the detection sensitivity, and interestingly it presents a wide chemical shift range depending on its confinement and thus the porosity of studied material. Two studies are reported in this manuscript: (i) In the first study, the initial steps during the crystallization of nano-faujasite (FAU) type materials were investigated using classical NMR (mainly by 29Si and 23Na MAS NMR) and advanced NMR (129Xe HP NMR). It was shown that crystallization starts at much earlier synthesis stages than those observed by other classical techniques (XRD, SEM, N2 adsorption…). The first SBU seems to be the hexagonal prisms, prior to the sodalite cages, which rapidly form confined environment and then supercages. Moreover, it has been proved by 129Xe HP NMR and 2D EXSY that nano-faujasite zeolite presents opened sodalite cages and a more flexible structure than in micro-faujasite zeolite. (ii) The second study is an investigation on the recrystallization phenomena occurring during hierarchization process of zeolite and which could explain the homogenous distribution of the mesopore sizes. As a remarkable result, it has been shown in this work that during the hierarchization of beta zeolite with TPAOH, the recrystallization lead to the formation of tiny MFI particles, formed at the surface of the mesopores (1H MAS NMR, 129Xe HP NMR and 2D EXSY)
Cervin, Nicholas. "Porous Cellulose Materials from Nano Fibrillated Cellulose." Licentiate thesis, KTH, Fiberteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104196.
Full textQC 20121107