Academic literature on the topic 'Cancer immunotherapies'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cancer immunotherapies.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cancer immunotherapies"

1

Bergman, Philip J. "Cancer Immunotherapies." Veterinary Clinics of North America: Small Animal Practice 49, no. 5 (September 2019): 881–902. http://dx.doi.org/10.1016/j.cvsm.2019.04.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

DAVIS, Ian D., and Jonathan S. CEBON. "Developing cancer immunotherapies." Asia-Pacific Journal of Clinical Oncology 7 (March 24, 2011): 9–13. http://dx.doi.org/10.1111/j.1743-7563.2011.01382.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ott, Patrick A. "Intralesional Cancer Immunotherapies." Hematology/Oncology Clinics of North America 33, no. 2 (April 2019): 249–60. http://dx.doi.org/10.1016/j.hoc.2018.12.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

&NA;. "Immunotherapies for cancer reviewed." Inpharma Weekly &NA;, no. 1432-1433 (April 2004): 2. http://dx.doi.org/10.2165/00128413-200414320-00001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gubens, Matthew A. "Immunotherapies for Lung Cancer." Journal of the National Comprehensive Cancer Network 15, no. 5S (May 2017): 692–95. http://dx.doi.org/10.6004/jnccn.2017.0075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fakhrejahani, Farhad, Yusuke Tomita, Agnes Maj-Hes, Jane B. Trepel, Maria De Santis, and Andrea B. Apolo. "Immunotherapies for bladder cancer." Current Opinion in Urology 25, no. 6 (November 2015): 586–96. http://dx.doi.org/10.1097/mou.0000000000000213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Berraondo, Pedro, Sara Labiano, Luna Minute, Iñaki Etxeberria, Marcos Vasquez, Alvaro Sanchez-Arraez, Alvaro Teijeira, and Ignacio Melero. "Cellular immunotherapies for cancer." OncoImmunology 6, no. 5 (May 2, 2017): e1306619. http://dx.doi.org/10.1080/2162402x.2017.1306619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mulé, James J., and Jeffrey S. Weber. "Translation of cancer immunotherapies." Nature Medicine 10, no. 11 (November 2004): 1153. http://dx.doi.org/10.1038/nm1104-1153a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pardoll, Drew, and James Allison. "Translation of cancer immunotherapies." Nature Medicine 10, no. 11 (November 2004): 1153–54. http://dx.doi.org/10.1038/nm1104-1153b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Skipper, Jonathan, Eric W. Hoffman, Jill O'Donnell-Tormey, and Lloyd J. Old. "Translation of cancer immunotherapies." Nature Medicine 10, no. 11 (November 2004): 1154–55. http://dx.doi.org/10.1038/nm1104-1154.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cancer immunotherapies"

1

Murray, Abner A. "Plant Virus Nanoparticle In Situ Cancer Immunotherapies." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1532370850718292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moynihan, Kelly D. (Kelly Dare). "Engineering immunity : enhancing T Cell vaccines and combination immunotherapies for the treatment of cancer." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113960.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 127-140).
Checkpoint blockade with antibodies against CTLA-4 or PD-1 has demonstrated that an endogenous adaptive immune response can be stimulated to elicit durable tumor regressions in metastatic cancer, but these dramatic responses are confined to a minority of patients¹-³. This outcome is likely due in part to the complex network of immunosuppressive pathways present in advanced tumors, which necessitates the development of novel therapeutics and combination immunotherapies to generate a counter-directed network of pro-immunity signals⁴-⁸. In Chapters 2 and 3 of this thesis, we describe methods for enhancing T cell priming against tumor antigens via covalent modification of molecular vaccines to enhance lymphatic drainage, serum stability, or cytosolic access to improve presentation on MHC class I. In Chapter 4, we demonstrate a combination immunotherapy that recruits a diverse set of innate and adaptive effector cells, enabling robust elimination of large tumor burdens that to my knowledge have not previously been curable by treatments relying on endogenous immunity. Maximal anti-tumor efficacy required four components: a tumor antigen targeting antibody, an extended half-life IL-2⁹, anti-ƯPD-1, and a powerful T-cell vaccine¹⁰. This combination elicited durable cures in a majority of animals, formed immunological memory in multiple transplanted tumor models, and induced sustained tumor regression in an autochthonous BRraf[superscript V600E]/Pten[superscript -/-] melanoma model. Finally, in Chapter 5, we show preliminary data on combination immunotherapies used to treat antigenically heterogeneous tumors. Taken together, these data define design criteria for enhancing the immunogenicity of molecular vaccines and elucidate essential characteristics of combination immunotherapies capable of curing a majority of tumors in experimental settings typically viewed as intractable.
"During my doctorate by the John and Fanny Hertz Foundation Fellowship (specifically the Wilson Talley Hertz Fellowship), the NSF Graduate Research Fellowship Program, and the Siebel Scholarship"--Page 141. "This thesis work was supported in part by the Koch Institute Support (core) grant P30-CA14051 from the National Cancer Institute, the US National Institutes of Health (NIH) grant CA174795, the Bridge Project partnership between the Koch Institute for Integrative Cancer Research and the Dana Farber-Harvard Cancer Center (DF-HCC), the V Foundation, the Ragon Institute, and the Howard Hughes Medical Institute"--Page 141.
by Kelly D. Moynihan.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Natarajan, Gayathri. "THE USE OF A TEC KINASE INHIBITOR, IBRUTINIB, FOR THE DEVELOPMENT OF IMMUNOTHERAPIES AGAINST CANCER AND LEISHMANIASIS." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461200133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mustapha, Rami. "Evaluation of novel anti-tumoral strategies using peptide or monoclonal antibody immunotherapies." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10198/document.

Full text
Abstract:
Le système immunitaire reconnait les cellules tumorales mais il est régulé par plusieurs facteurs tels les cellules T Régulatrices (Tregs). La galectine (Gal)-9 est une lectine aux propriétés immunosuppressives exprimée par les cellules cancéreuses et les cellules immunitaires dont les Tregs. Nous avons cherché à confirmer le rôle fonctionnel de la Gal-9 dans les Tregs. Puis nous avons testé la capacité d’un anticorps anti-Gal-9 (GalNab1) à bloquer les fonctions suppressives de la Gal-9 ou des Tregs et son effet anti-tumorale. Nous avons prouvé que les Tregs expriment et secrètent abondamment la Gal-9. GalNab1 antagonise l’effet de la Gal-9 recombinante (r) sur les PBMCs et inhibe les fonctions suppressives des Tregs. Le blocage de la rGal-9 en culture favorise la croissance des Th1 sans induire de cytotoxicité et bloque les fonctions des exosomesGal-9+ dérivés de Carcinome du Nasopharynx (CNP). In-vivo, dans un modèle de souris SCID humanisé, GalNab1 limite la croissance du CNP. Le CNP est associé au virus d’Epstein-Barr (EBV) dont il exprime plusieurs protéines. L’utilisation d’une stratégie de vaccination peptidique ciblant les lymphocytes TCD4+ Th1 est envisagée. Six peptides dérivés des antigènes de latence II d’EBV et promiscuous pour HLA-II ont été sélectionnés et assemblés en cocktail, dont la capacité à induire une sécrétion d’IFN-γ par les PBMCs a été validé. Des lignées Th1 spécifiques du cocktail présentent une forte capacité cytotoxique vis-à-vis de lignées de CNP tout en résistant aux effets des exosomes tumoraux autologues. In-vivo, le cocktail permet de maîtriser la croissance tumorale, et ex-vivo, de réactiver la réponse T mémoire chez les patients
The immune system can recognize and eliminate cancer cells but is held back by inhibitory factors such as Regulatory T cells (Tregs). Gal-9 is a β-galactoside binding lectin with immunosuppressive capabilities expressed by cancer cells and immune cells including Tregs. NPC is a malignant epithelial cancer which is almost always associated with Epstein Bar Virus (EBV) and expresses several viral proteins. Numerous vaccines targeting different EBV peptides had limited success in clinical trials. First part: we aimed to confirm the role of Gal-9 in human Treg function. Then we tested the capabilities of an anti-human-Gal-9 antibody (mAb) to block Gal-9 suppressive function and its effect on Treg function and the anti-tumoral response. We proved that Gal-9 is expressed and secreted by Tregs at a high level. The mAb antagonized the function of recombinant rGal-9 on PBMCs. Moreover, the mAb inhibited the immuno-suppressive function of Tregs. Gal-9 blocking in PBMC culture promoted a Th1 response without inducing toxicity. We used the mAb to inhibit hNPC derived exosomes. In-vivo, the mAb limited the growth of hNPC tumors in humanized SCID mice. Second part: CD4+ T cell response is essential in managing NPC. The use of a CD4+ T cell response inducing peptide cocktail vaccination strategy was tested here. 6 HLA II promiscuous peptides derived from the 3 EBV latency II antigens were generated. These peptides induced IFNγ secretion by PBMCs. Generated peptide-specific CD4+ T cell lines showed highly cytotoxicity against NPC cell lines and resistance to hNPC exosomes. Invivo, the cocktail restrained tumor growth. Exvivo, it reactivated NPC patients’ memory T cells
APA, Harvard, Vancouver, ISO, and other styles
5

La, Rochère Philippe de. "La souris humanisée : modèle d'étude de l'immunothérapie anti-cancer A comprehensive analysis of humanized mouse models for the study of cancer immunotherapies Inhibition of PI3K increases immune infiltrate in muscle invasive bladder cancer." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB068.

Full text
Abstract:
Actuellement l'immunothérapie révolutionne le traitement du cancer, en basculant la stratégie de traitement du ciblage de la tumeur vers le ciblage du système immunitaire. Le blocage des points de contrôle immunitaire avec des anticorps anti-CTLA-4, anti-PD1 et anti-PD-L1 a donné des résultats cliniques impressionnants, mais le taux de réponse reste faible. Il est donc essentiel de mieux comprendre leurs mécanismes d'action, d'identifier les biomarqueurs de réponse et de toxicité, et d'évaluer des combinaisons thérapeutiques. De telles études mécanistiques et précliniques nécessitent d'optimiser des modèles murins adaptés. A ces fins, mon travail de thèse à consisté à mettre en place des modèles de souris humanisées dans lesquels des souris immunodéficientes sont greffées avec des cellules tumorales et immunitaires humaines afin d'étudier des approches d'immunothérapie, en monothérapie ou en combinaison avec d'autres traitements. Nous avons évalué la prise de greffe de lignées cellulaires tumorales et de xénogreffes dérivées de patients (PDX), dans différentes souris receveuses reconstituées, soit avec des cellules souches hématopoïétiques (CSH) de sang de cordon ombilical, soit avec des cellules mononuclées du sang humain (PBMC). Nous avons observé que l'injection de CSHs génère plusieurs sous populations de cellules immunitaires (cellules myéloïdes, lymphocytes T et B, cellules NK), détectables à partir de 4 semaines ; tandis que l'injection de PBMCs génère principalement des lymphocytes T, détectables à partir de 1 semaine. Dans ce dernier modèle, la reconstitution lymphocytaire est associée à un effet anti-tumoral, mais est aussi accompagnée du développement de la maladie du greffon contre l'hôte. Les deux modèles présentent des avantages et des inconvénients pour l'évaluation des immunothérapies du cancer, qui sont discutés dans ma thèse. En utilisant ces modèles, nous avons évalué l'effet thérapeutique d'un anticorps anti-PD1, utilisé en clinique, sur des lignées de cellules tumorales ou sur des PDXs de différents types de tumeurs. Nous avons observé une hétérogénéité dans la réponse au traitement, reflétant l'observation clinique des patients répondeurs et non-répondeurs. Finalement, afin d'évaluer l'intérêt des souris humanisées pour l'étude des combinaisons thérapeutiques, nous avons testé une thérapie anti-PD1 associée avec une thérapie ciblée dans le cancer de la vessie. Nos résultats, identifiant les atouts et les limitations des souris humanisées, démontrent la pertinence de ces nouveaux modèles pour l'évaluation des thérapies en immuno-oncologie et ouvrent des perspectives dans l'étude des combinaisons thérapeutiques
Immunotherapy is revolutionizing cancer treatment by shifting the treatment strategy from targeting the tumor to targeting the immune system. The blockade of immune checkpoints with anti-CTLA-4, anti-PD1 and anti-PD-L1 antibodies shows impressive clinical results. However, the response rate remains low. It is therefore essential to better understand the mechanisms of action of these therapies, to identify biomarkers of response and toxicity, and to evaluate therapeutic combinations. Such mechanistic and preclinical studies require the optimization of adapted murine models. For these purposes, my PhD work has focused on the development of humanized mouse models, in which immunodeficient mice are grafted with human tumor (cell lines or patient derived xenografts) and immune cells to study different immunotherapy approaches. In humanized mouse models, the human immune cell compartment can be reconstituted from either hematopoietic stem cells (HSC) from umbilical cord blood or with mononuclear cells from human blood (PBMC). We have observed that the injection of HSCs generates several subpopulations of immune cells (myeloid cells, T and B lymphocytes, NK cells), detectable from 4 weeks; while the injection of PBMCs mainly generates T lymphocytes, detectable from 1 week. In the latter model, lymphocyte reconstitution is associated with an anti-tumor effect, but is also accompanied by the development of graft-versus-host disease. Both models have advantages and disadvantages for the evaluation of cancer immunotherapies, which are discussed in my thesis. Using these models, we evaluated the therapeutic effect of a clinically used anti-PD1 antibody on tumor cell lines or on patient derived xenografts of different types of tumors. We observed a heterogeneity in the response to treatment, reflecting the clinical observation of responder and non-responder patients. Finally, in order to evaluate the interest of humanized mice for the study of therapeutic combinations, we tested an anti-PD1 therapy associated with a targeted therapy in bladder cancer. Our results, identifying the strengths and limitations of humanized mice, demonstrate the relevance of these new models for the evaluation of immuno-oncology therapies and open perspectives in the study of therapeutic combinations
APA, Harvard, Vancouver, ISO, and other styles
6

Reinhart, Verena [Verfasser], Ernst J. [Akademischer Betreuer] Rummeny, and Vasilis [Akademischer Betreuer] Ntziachristos. "Monitoring of New Immunotherapies for Prostate Cancer with Optical Imaging / Verena Reinhart. Gutachter: Vasilis Ntziachristos ; Ernst J. Rummeny. Betreuer: Ernst J. Rummeny." München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/1047883384/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Coulon, Le Moignic Aline. "Développement d'une stratégie de vaccination thérapeutique antitumorale basée sur l'utilisation de lipopolyplexes à ARN ciblant les cellules dendritiques." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066048/document.

Full text
Abstract:
L'élimination des cellules tumorales par le système immunitaire repose sur la capacité des cellules dendritiques à correctement présenter l'antigène aux cellules effectrices. Nous avons donc développé une stratégie de vaccination thérapeutique basée sur des lipopolyplexes à ARNm (LPRs) : l'ARNm codant pour l'antigène est associé à un complexe de polylysine histidylée, et incorporé dans un liposome trimannosylé afin de mieux cibler les cellules dendritiques. En effet, les cellules dendritiques expriment largement les lectines de type C, qui sont des récepteurs reconnaissant principalement des résidus mannose. Dans le travail présenté ici, nous montrons que les LPR trimannosylés sont capables de fixer les cellules dendritiques humaines et murines. De manière très intéressante, nous montrons aussi que les LPR trimannosylés injectés chez la souris induisent le recrutement et l'activation de cellules dendritiques dans le ganglion drainant. De plus, quand les LPR trimannosylés vectorisent un ARNm codant pour l'antigène tumoral E7, ils sont capables d'induire une réponse T spécifique d'E7 au niveau systémique. Enfin, les LPRs trimannosylés permettent une réponse thérapeutique lorsqu'ils sont utilisés dans trois différents modèles de tumeurs : le modèle TC1 de carcinome exprimant E7, le modèle B16 de mélanome exprimant MART1 et le modèle EG7 de lymphome exprimant OVA. Cette stratégie apparaît donc prometteuse comme thérapie innovante anti-cancer
Elimination of cancer cells requires an efficient cytotoxic immune response. In order to obtain such a response, antigens need to be uptaken by dendritic cells (DCs) and correctly presented to effector cells. We developed a strategy based on RNA lipopolyplexes (LPRs): antigenic mRNA is associated with a histidine-polylysine polyplexe and incorporated in a trimannosylated liposome to better target dendritic cells (DCs) in vivo, as DCs express several C-Type lectin receptors that preferentially bind to mannose. Here, we report that trimannosylated LPRs are efficient to target both human and murine DCs. Interestingly, in vivo experiments reveal that trimannosylated LPRs not only target DCs but also induce their recruitment and activation in draining lymph nodes. Furthermore, when combined with mRNA encoding E7 oncoprotein from HPV16, trimannnosylated LPRs trigger specific T-cell response against E7. Finally, when used as therapeutic vaccines in three different tumors models, LPRs promote curative therapeutic responses in E7-expressing TC1 tumor, in OVA-expressing EG7 lymphoma and in MART-1-expressing B16 melanoma, when combined with E7, OVA or MART-1 mRNA, respectively. Altogether, these results comfort us to considerate the use of this strategy for anti-cancer vaccine therapies
APA, Harvard, Vancouver, ISO, and other styles
8

Marabelle, Aurélien. "Targeting Tumor Specific Regulatory T-cells for Cancer Therapy." Thesis, Lyon, École normale supérieure, 2013. http://www.theses.fr/2013ENSL0832.

Full text
Abstract:
L'activation de TLR9 par injection directe de nucléotides CpG non méthylés dans une tumeur peut induire une réponse immunitaire thérapeutique, mais les lymphocytes T régulateurs (Tregs) inhibent ensuite la réponse immunitaire antitumorale et limitent ainsi le pouvoir des stratégies d'immunothérapies contre le cancer.Chez des souris porteuses de tumeurs, nous avons constaté que les Tregs dans la tumeur expriment préférentiellement les marqueurs cellulaires de surface CTLA-4 et OX40. Nous montrons que la co-injection intratumorale d'anti-CTLA-4 et anti-OX40 avec du CpG en intra-tumoral aboutit à l’élimination des Tregs infiltrant la tumeur. Cette immunomodulation in situ, réalisée avec de faibles doses d'anticorps dans une tumeur unique, génère une réponse immunitaire antitumorale systémique capable d’éradiquer la maladie disséminée chez la souris. De plus, cette modalité de traitement est efficace contre des lésions de lymphome du SNC avec métastases leptoméningées, des sites qui sont généralement considérés comme des sanctuaires de cellules tumorales pour les traitements systémiques conventionnels.Ces résultats démontrent que les effecteurs immunitaires anti-tumoraux activés par immunomodulation locale peuventt éradiquer des cellules tumorales siègeant dans des sites éloignés. Nous proposons que, plutôt que d'utiliser des anticorps monoclonaux pour cibler les cellules cancéreuses par voie systémique, des anticorps monoclonaux pourraient être utilisés pour cibler les cellules immunitaires infiltrant la tumeur localement, provoquant ainsi une réponse immunitaire systémique
Activation of TLR9 by direct injection of unmethylated CpG nucleotides into a tumor can induce a therapeutic immune response; however, regulatory T-cells (Tregs) eventually inhibit the antitumor immune response and thereby limit the power of cancer immunotherapies. In tumor-bearing mice, we found that Tregs within the tumor preferentially express the cell surface markers CTLA-4 and OX40. We show that intratumoral coinjection of anti–CTLA-4 and anti-OX40 together with CpG depleted tumor-infiltrating Tregs. This in situ immunomodulation, which was performed with low doses of antibodies in a single tumor, generated a systemic antitumor immune response that eradicated disseminated disease in mice. Further, this treatment modality was effective against established CNS lymphoma with leptomeningeal metastases, sites that are usually considered to be tumor cell sanctuaries in the context of conventional systemic therapy. These results demonstrate that antitumor immune effectors elicited by local immunomodulation can eradicate tumor cells at distant sites. We propose that, rather than using mAbs to target cancer cells systemically, mAbs could be used to target the tumor infiltrative immune cells locally, thereby eliciting a systemic immune response
APA, Harvard, Vancouver, ISO, and other styles
9

Mall, Sabine [Verfasser], Angela [Akademischer Betreuer] [Gutachter] Krackhardt, and Iris [Gutachter] Antes. "In vivo monitoring of cancer specific TCR-engineered human T cells by Immuno-PET to analyze pharmacokinetics of T-cell based immunotherapies / Sabine Mall ; Gutachter: Angela Krackhardt, Iris Antes ; Betreuer: Angela Krackhardt." München : Universitätsbibliothek der TU München, 2016. http://d-nb.info/1121206778/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Swanson, Anna May. "Novel immunotherapies for EBV-associated cancers." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/2683.

Full text
Abstract:
Epstein-Barr virus (EBV) is a gamma herpes virus persistently infecting over 90% of the adult population worldwide. It has been aetiologically linked to a number of human malignancies, including more than 90% of post transplant lymphoproliferative disease (PTLD), 50% of Hodgkin’s lymphoma (HL), virtually all undifferentiated nasopharyngeal carcinoma (NPC), and approximately 10% of gastric carcinoma (GC). As EBV infection in healthy individuals is mainly controlled by virus specific cytotoxic T lymphocytes (CTLs), we hypothesise that engineering T cells with chimeric T cell receptors (cTCRs) specific for EBV latent membrane proteins (LMPs) will confer on these cells the ability to target and kill the malignant cells of cancers associated with Epstein-Barr virus. Thus, the aim of this project was generate these engineered T cells and to set up a severe combined immunodeficient (SCID) mouse model in which to test their effectiveness. Three EBV-infected cell lines derived from HL, NPC and GC gave rise to tumours in 11 of 12 (92%), 12 of 12 (100%) and 10 of 10 (100%) SCID mice respectively, when 1x107 cells were injected subcutaneously. Immunohistochemical analysis showed that the HL SCID tumours were CD4-, CD15-, CD20+, CD30+, consistent with a HL Reed-Sternberg cell phenotype, and NPC and GC SCID tumours expressed the epithelial cell marker cytokeratin. Furthermore, all tumours expressed EBVencoded RNAs (EBERs) and LMP1. This was identical to parent cell line expression patterns, and hence growth in vivo did not affect cell phenotype. T cells were successfully transduced with a retroviral vector encoding a CD19-specific cTCR (CD19- cTCR) with a mean transduction rate of 13%±6%. Transduced cells were cytotoxic for HL-derived L591 cells in vitro, with specific lysis of 24%±11% at an effector to target ratio of 20:1. This was significantly higher than specific lysis seen in mock transduced cells (p>0.05). At a tumour inoculation dose of 5x106, in vivo sc transfer of 5x107 CD19-cTCR transduced cells was able to prevent HL tumour development in 6 of 6 (100%) test mice, whereas 17 of 22 (77%) control mice and 2 of 3 (66%) mice treated with unmodified EBV-specific CTLs developed tumours. Moreover, iv transfer of 5x107 CD19-cTCR transduced cells mediated complete regression of HL SCID tumours in 3 out of 6 (50%) mice. Phage display selection experiments to isolate a single chain antibody fragment (scFv) specific for viral LMPs for incorporation in a cTCR were performed. Linear, biotinylated and cyclised biotinylated peptides derived from the external reverse turn loops of LMP2 were used as target antigens. Despite extensive testing, no reactive clones specific for the peptides were identified. The ability of CD19-cTCR transduced cells to specifically lyse HL cells in vitro, and clear tumour burden in vivo, supports a future role for engineered T cells in the treatment of HL. Despite the lack of success in isolating a scFv for LMP2, the use of viral antigen specific, cTCR redirected T cells remains in principle a valuable therapeutic alternative for EBV-associated malignancies. The SCID models for HL, NPC and GC will provide a useful preclinical tool for investigation of their efficacy in vivo.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cancer immunotherapies"

1

Hays, Priya, ed. Cancer Immunotherapies. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96376-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ascierto, Paolo A., David F. Stroncek, and Ena Wang, eds. Developments in T Cell Based Cancer Immunotherapies. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21167-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martin, Gore, and Riches Pamela, eds. Immunotherapy in cancer. Chichester: Wiley, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1918-, Yamamura Yūichi, and Azuma Ichiro, eds. Molecular and cellular networks for cancer therapy: From the International Symposium on Molecular and Cellular Networks for Cancer Therapy, May 20, 1988, Osaka, Japan. Amsterdam: Excerpta Medica, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

T, Lotze Michael, Finn Olivera J, and Cetus Corporation, eds. Cellular immunity and the immunotherapy of cancer: Proceedings of a Cetus, Immunex, and Triton Biosciences-UCLA Symposia Colloquium held at Park City, Utah, January 27-February 3, 1990. New York: Wiley-Liss, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ramakrishnan, S. Cytotoxic conjugates. Austin: R.G. Landes Co., 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

C, Srivastava Suresh, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Radiolabeled monoclonal antibodies for imaging and therapy. New York: Plenum Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fantini, Massimo, and Roberto Bei, eds. Engineered Targeted Cancer Immunotherapies. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88976-669-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ascierto, Paolo A., David F. Stroncek, and Ena Wang. Developments in T Cell Based Cancer Immunotherapies. Humana Press, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ascierto, Paolo A., David F. Stroncek, and Ena Wang. Developments in T Cell Based Cancer Immunotherapies. Humana, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cancer immunotherapies"

1

Aroldi, Francesca, Reem Saleh, Insiya Jafferji, Carmelia Barreto, Chantal Saberian, and Mark R. Middleton. "Lag3: From Bench to Bedside." In Cancer Immunotherapies, 185–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96376-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Molvi, Zaki, and Richard J. O’Reilly. "Allogeneic Tumor Antigen-Specific T Cells for Broadly Applicable Adoptive Cell Therapy of Cancer." In Cancer Immunotherapies, 131–59. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96376-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brown, Michael. "Engaging Pattern Recognition Receptors in Solid Tumors to Generate Systemic Antitumor Immunity." In Cancer Immunotherapies, 91–129. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96376-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Navani, Vishal, Moira C. Graves, Hiren Mandaliya, Martin Hong, Andre van der Westhuizen, Jennifer Martin, and Nikola A. Bowden. "Melanoma: An immunotherapy journey from bench to bedside." In Cancer Immunotherapies, 49–89. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96376-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lu, Kevin, Kun-Yuan Chiu, and Chen-Li Cheng. "Immunotherapy in Genitourinary Malignancy: Evolution in Revolution or Revolution in Evolution." In Cancer Immunotherapies, 201–23. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96376-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hays, Priya. "Clinical Development and Therapeutic Applications of Bispecific Antibodies for Hematologic Malignancies." In Cancer Immunotherapies, 287–315. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96376-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cao, Handi, and Ryohichi Sugimura. "Off-the-Shelf Chimeric Antigen Receptor Immune Cells from Human Pluripotent Stem Cells." In Cancer Immunotherapies, 255–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96376-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Perna, Fabiana, Manuel R. Espinoza-Gutarra, Giuseppe Bombaci, Sherif S. Farag, and Jennifer E. Schwartz. "Immune-Based Therapeutic Interventions for Acute Myeloid Leukemia." In Cancer Immunotherapies, 225–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96376-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Verma, Amitesh, and Sarwish Rafiq. "Chimeric Antigen Receptor (CAR) T Cell Therapy for Glioblastoma." In Cancer Immunotherapies, 161–84. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96376-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

DeLucia, Diana C., and John K. Lee. "Development of Cancer Immunotherapies." In Cancer Immunotherapies, 1–48. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96376-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cancer immunotherapies"

1

Zhou, Hanbei. "Compare among Three Immunotherapies Against Cancer." In BIBE2020: The Fourth International Conference on Biological Information and Biomedical Engineering. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3403782.3403786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leiva Suero, Lizette Elena, Luis Fabián Salazar Garcés, Lizette Elena Leiva Suero, and Graciela de las Mercedes Quishpe Jara. "Development of immunotherapies in breast cancer." In 1er Congreso Universal de las Ciencias y la Investigación Medwave 2022;. Medwave Estudios Limitada, 2022. http://dx.doi.org/10.5867/medwave.2022.s2.uta043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Xinlan. "Immunotherapies For Cancer, a Promising Cure?" In ISAIMS 2020: 2020 International Symposium on Artificial Intelligence in Medical Sciences. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3429889.3429942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Peng, Songming, Jesse Zaretsky, Michael Bethune, Alice Hsu, John E. Heath, Won Jun Noh, Shannon Esswein, Antoni Ribas, David Baltimore, and James R. Heath. "Abstract IA17: Technologies for personalizing cancer immunotherapies." In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 20-23, 2016; Boston, MA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/2326-6074.tumimm16-ia17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Heath, James R., Songming Peng, Alice Hsu, Shannon Esswein, John Heath, Won Jun Noh, Jesse Zaretsky, and Toni Ribas. "Abstract IA30: Technologies for personalizing cancer immunotherapies." In Abstracts: Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 25-28, 2016; New York, NY. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/2326-6066.imm2016-ia30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ruan, Shasha, Ming Lin, Yongshun Chen, Elaine Hurt, Alfred E. Chang, Max S. Wicha, and Qiao Li. "Abstract 375: Integrin β4-targeted cancer immunotherapies." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ruan, Shasha, Ming Lin, Yongshun Chen, Elaine Hurt, Alfred E. Chang, Max S. Wicha, and Qiao Li. "Abstract 375: Integrin β4-targeted cancer immunotherapies." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cascante-Estepa, N., S. Mayrhofer, and H. Enzmann. "P04.03 Cancer immunotherapies, companion diagnostics and precision medicine." In iTOC9 – 9th Immunotherapy of Cancer Conference, September 22–24, 2022 – Munich, Germany. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-itoc9.39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Smyth, Mark J. "Abstract SY07-01: New targets in combination cancer immunotherapies." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-sy07-01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blank, Christian. "Abstract PL02-03: Combination with/of immunotherapies." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; November 5-9, 2015; Boston, MA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1535-7163.targ-15-pl02-03.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cancer immunotherapies"

1

Cooper, Laurence. T-Cell Immunotherapies for Treating Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada554845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krishnamurthy, Janani. Immunotherapies for Targeting Ancient Retrovirus during Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, March 2014. http://dx.doi.org/10.21236/ada599067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lalani, Aly-Khan, and Bradley A. McGregor. The evolution of metastatic kidney cancer treatment: from interferons to the novel immunotherapies. BJUI Knowledge, November 2021. http://dx.doi.org/10.18591/bjuik.0744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Räber, Miro E., Dilara Sahin, Ufuk Karakus, and Onur Boyman. A systematic review of interleukin-2-based immunotherapies in clinical trials for cancer and autoimmune diseases. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2022. http://dx.doi.org/10.37766/inplasy2022.11.0086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

The evolution of metastatic kidney cancer treatment: from interferons to the novel immunotherapies. BJUI Knowledge, October 2017. http://dx.doi.org/10.18591/bjuik.0107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography