Academic literature on the topic 'Cancer cachexia, metabolism, pyruvate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cancer cachexia, metabolism, pyruvate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cancer cachexia, metabolism, pyruvate"
Khamoui, Andy V., Dorota Tokmina-Roszyk, Harry B. Rossiter, Gregg B. Fields, and Nishant P. Visavadiya. "Hepatic proteome analysis reveals altered mitochondrial metabolism and suppressed acyl-CoA synthetase-1 in colon-26 tumor-induced cachexia." Physiological Genomics 52, no. 5 (May 1, 2020): 203–16. http://dx.doi.org/10.1152/physiolgenomics.00124.2019.
Full textMannelli, Michele, Tania Gamberi, Francesca Magherini, and Tania Fiaschi. "A Metabolic Change towards Fermentation Drives Cancer Cachexia in Myotubes." Biomedicines 9, no. 6 (June 20, 2021): 698. http://dx.doi.org/10.3390/biomedicines9060698.
Full textArchid, Solass, Tempfer, Königsrainer, Adolph, Reymond, and Wilson. "Cachexia Anorexia Syndrome and Associated Metabolic Dysfunction in Peritoneal Metastasis." International Journal of Molecular Sciences 20, no. 21 (October 31, 2019): 5444. http://dx.doi.org/10.3390/ijms20215444.
Full textMichalak, Krzysztof Piotr, Agnieszka Maćkowska-Kędziora, Bogusław Sobolewski, and Piotr Woźniak. "Key Roles of Glutamine Pathways in Reprogramming the Cancer Metabolism." Oxidative Medicine and Cellular Longevity 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/964321.
Full textSharma, Raj Kumar, Santosh Kumar Bharti, Balaji Krishnamachary, Yelena Mironchik, Paul Winnard, Marie-France Penet, and Zaver M. Bhujwalla. "Abstract 6353: Metabolic changes in the spleen and pancreas induced by PDAC xenografts with or without glutamine transporter downregulation." Cancer Research 82, no. 12_Supplement (June 15, 2022): 6353. http://dx.doi.org/10.1158/1538-7445.am2022-6353.
Full textMuranaka, Hayato, Natalie Moshayedi, Andrew Eugene Hendifar, Arsen Osipov, Veronica Placencio-Hickok, Aleksandr Stotland, Sarah Parker, Jennifer Van Eyk, Neil Bhowmick, and Jun Gong. "Plasma metabolomics to predict chemotherapy (CTX) response in advanced pancreatic cancer (PC) patients (pts) on enteral feeding for cachexia." Journal of Clinical Oncology 40, no. 4_suppl (February 1, 2022): 600. http://dx.doi.org/10.1200/jco.2022.40.4_suppl.600.
Full textDalal, Shalini. "Lipid metabolism in cancer cachexia." Annals of Palliative Medicine 8, no. 1 (January 2019): 13–23. http://dx.doi.org/10.21037/apm.2018.10.01.
Full textMulligan, HD, SA Beck, and MJ Tisdale. "Lipid metabolism in cancer cachexia." British Journal of Cancer 66, no. 1 (July 1992): 57–61. http://dx.doi.org/10.1038/bjc.1992.216.
Full textPenna, Fabio, Riccardo Ballarò, Marc Beltrá, Serena De Lucia, and Paola Costelli. "Modulating Metabolism to Improve Cancer-Induced Muscle Wasting." Oxidative Medicine and Cellular Longevity 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/7153610.
Full textDave, Dhwani T., and Bhoomika M. Patel. "Mitochondrial Metabolism in Cancer Cachexia: Novel Drug Target." Current Drug Metabolism 20, no. 14 (February 25, 2020): 1141–53. http://dx.doi.org/10.2174/1389200220666190816162658.
Full textDissertations / Theses on the topic "Cancer cachexia, metabolism, pyruvate"
Michele, Mannelli. "A metabolic change towards fermentation drives cancer cachexia in myotubes." Doctoral thesis, Università di Siena, 2022. http://hdl.handle.net/11365/1211634.
Full textWinter, Aaron. "Protein metabolism and insulin resistance in non-small cell lung cancer cachexia." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97084.
Full textLa perte de poids et la résistance à l'insuline caractérisent la cachexie due au cancer. Un anabolisme protéique amoindri a été démontré dans des conditions d'insulino-résistance. Cette étude a évalué si l'hyperaminoacidemie et l'hyperinsulinemie résultent en un défaut de l'anabolisme protéique corporel dans la cachexie due au cancer du poumon « non à petites cellules » (NSCLC). La cinétique des protéines ([13C]leucine) et du [3H]glucose corporels ont été évalués chez 8 patients avec NSCLC et 10 hommes en santé, d'âge et de poids similaires, à l'aide du clamp hyperinsulinique, euglycémique, isoaminoacidémique (Iso-AA), suivi d'une hyperaminoacidémie (Hyper-AA). L'utilisation du glucose a augmenté entre Iso-AA et Hyper-AA, mais il était plus bas chez les patients NSCLC. Pendant Iso-AA, la dégradation des protéines a diminué et la synthèse n'a pas changé, résultant en une balance positive moindre chez les NSCLC. En Hyper-AA, la synthèse a augmenté, mais la dégradation n'a pas changé, ce qui a augmenté davantage la balance positive, dans les deux groupes. En résumé, les patients NSCLC perdant du poids ont démontré une résistance du métabolisme glucidique et protéique à l'insuline. L'hyperaminoacidémie a normalisé leur réponse anabolique à celle des contrôles sans affecter la sensibilité du glucose à l'insuline.
Tian, Min. "Dys-regulated Metabolism and Cardiac Dysfunction in A Mouse Model of Cancer Cachexia." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1297196325.
Full textKooshan, Zeinab. "Nanoparticle assisted small molecule delivery to target prostate cancer metabolism." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/228736/1/Zeinab_Kooshan_Thesis.pdf.
Full textMarco-Rius, Irene. "Preserving hyperpolarised nuclear spin order to study cancer metabolism." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/245345.
Full textSchäfer, Michaela [Verfasser], and Stephan [Akademischer Betreuer] Herzig. "Tumor-borne mediators trigger heart atrophy and alter cardiac metabolism in cancer cachexia / Michaela Schäfer ; Betreuer: Stephan Herzig." Heidelberg : Universitätsbibliothek Heidelberg, 2015. http://d-nb.info/1180607945/34.
Full textMehrfar, Parisa. "Biological markers of weight loss and muscle protein metabolism in early non-small cell lung cancer." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116069.
Full textWojtkowiak, Jonathan W., Heather C. Cornnell, Shingo Matsumoto, Keita Saito, Yoichi Takakusagi, Prasanta Dutta, Munju Kim, et al. "Pyruvate sensitizes pancreatic tumors to hypoxia-activated prodrug TH-302." BioMed Central, 2016. http://hdl.handle.net/10150/610264.
Full textMartin, Agnès. "Role of the glucocorticoid pathway in skeletal muscle wasting and hepatic metabolism rewiring during cancer cachexia in ApcMin/+ mice – Functional implication of myostatin gene invalidation." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSES034.
Full textCachexia affects about half of cancer patients and is characterized by a progressive body mass loss mainly resulting from skeletal muscle depletion. This loss of skeletal muscle mass together with a decrease in muscle force strongly contribute to reduce cancer patient quality of life, treatment efficiency and ultimately patient survival. Many factors are known to be involved in the regulation of skeletal muscle homeostasis. Among them, glucocorticoids are steroid hormones secreted under the control of the hypothalamic-pituitary axis that have been well described to promote skeletal muscle atrophy but also to exert systemic actions through activation or repression of gene expression in many tissues. We hypothesized that the glucocorticoid pathway could be activated during cancer cachexia in ApcMin/+ mice, a mouse model of intestinal cancer. Here, we reported that activation of skeletal muscle catabolism was associated with a complete reprogramming of liver metabolism. Moreover, we showed an activation of the hypothalamus-pituitary axis that was associated with an increase in the level of corticosterone (the main glucocorticoid in rodent) in serum, quadriceps muscle and liver of advanced cancer cachectic mice. The transcriptional signature in quadriceps muscle and liver of advanced cancer cachectic mice significantly mirrored that observed in mice treated with dexamethasone, an analog glucocorticoid. Importantly, the inhibition of cancer cachexia by myostatin gene invalidation in ApcMin/+ mice restored corticosterone levels and abolished skeletal muscle and liver gene reprogramming. Together, these data indicate that glucocorticoids drive a transcriptional program to coordinately regulate skeletal muscle mass loss and hepatic metabolism rewiring. The inhibition of this response by myostatin gene invalidation highlights the existence of a molecular dialog between skeletal muscle and liver
Subramaniam, Sugarniya. "Expression, function, and regulation of two key genes involved in prostate cancer metabolism." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/200151/1/Sugarniya_Subramaniam_Thesis.pdf.
Full textBooks on the topic "Cancer cachexia, metabolism, pyruvate"
Pisters, Peter W. T., and Murray F. Brennan. Protein and Amino Acid Metabolism in Cancer Cachexia. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-22346-8.
Full textT, Pisters Peter W., and Brennan Murray F, eds. Protein and amino acid metabolism in cancer cachexia. New York: Springer, 1996.
Find full textPisters, Peter W. T., 1960- and Brennan Murray F, eds. Protein and amino acid metabolism in cancer cachexia. New York: Chapman & Hall, 1996.
Find full textF, Bozzetti, Dionigi R, Moore Francis D. 1913-, and Fürst P, eds. Nutrition in cancer and trauma sepsis: Proceedings of the 6th Congress of the European Society of Parenteral and Enteral Nutrition (ESPEN), Milan, October 1-3, 1984. Basel ; New York: Karger, 1985.
Find full textPisters, Peter W. T., and Murray F. Brennan. Protein and Amino Acid Metabolism in Cancer Cachexia. Springer London, Limited, 2013.
Find full textPisters, Peter W. T. Protein and Amino Acid Metabolism in Cancer Cachexia. Springer, 2013.
Find full textPisters, Peter W. T., and Murray F. Brennan. Protein and Amino Acid Metabolism in Cancer Cachexia (Medical Intelligence Unit). Landes Bioscience, 1995.
Find full textBook chapters on the topic "Cancer cachexia, metabolism, pyruvate"
Bode, Barrie P., Craig Fischer, Steven Abcouwer, Masafumi Wasa, and Wiley W. Souba. "Glutamine and Cancer Cachexia." In Protein and Amino Acid Metabolism in Cancer Cachexia, 139–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-22346-8_11.
Full textBillingsley, Kevin G., and H. Richard Alexander. "Cytokines in Cancer Cachexia." In Protein and Amino Acid Metabolism in Cancer Cachexia, 51–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-22346-8_4.
Full textHarrison, Lawrence E. "Animal Models of Cancer Cachexia." In Protein and Amino Acid Metabolism in Cancer Cachexia, 1–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-22346-8_1.
Full textHochwald, Steven, and Martin Heslin. "Plasma Amino Acid Concentrations in Cancer Cachexia." In Protein and Amino Acid Metabolism in Cancer Cachexia, 73–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-22346-8_5.
Full textNewman, Elliot, and Steven Hochwald. "Regional Amino Acid Studies in Cancer Cachexia." In Protein and Amino Acid Metabolism in Cancer Cachexia, 93–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-22346-8_7.
Full textPisters, Peter W. T., and Murray F. Brennan. "Enteral Nutrition in Cancer." In Protein and Amino Acid Metabolism in Cancer Cachexia, 133–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-22346-8_10.
Full textPisters, Peter W. T., and Murray F. Brennan. "Total Parenteral Nutrition in Cancer." In Protein and Amino Acid Metabolism in Cancer Cachexia, 123–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-22346-8_9.
Full textBerman, Russell S. "Whole Body Amino Acid Studies in Cancer Cachexia." In Protein and Amino Acid Metabolism in Cancer Cachexia, 113–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-22346-8_8.
Full textGomes-Marcondes, Maria Cristina Cintra, and Emilianne Miguel Salomão. "Combining Exercise with Glutamine Supplementation in Cancer-Cachexia Metabolism." In Glutamine in Clinical Nutrition, 487–98. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1932-1_37.
Full textHeslin, Martin J. "Insulin to Impact on Protein and Amino Acid Metabolism." In Protein and Amino Acid Metabolism in Cancer Cachexia, 187–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-22346-8_13.
Full textConference papers on the topic "Cancer cachexia, metabolism, pyruvate"
Sharma, Raj Kumar, Santosh K. Bharti, Paul T. Winnard, Marie-France Penet, and Zaver M. Bhujwalla. "Abstract 1625: Lung and kidney metabolism altered by cancer-induced cachexia." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-1625.
Full textBankson, James A., Christopher M. Walker, Yunyun Chen, Stephen Y. Lai, and John D. Hazle. "Abstract B51: Metabolic imaging with hyperpolarized [1-13C]-pyruvate and DCE-MRI." In Abstracts: AACR Special Conference: Metabolism and Cancer; June 7-10, 2015; Bellevue, WA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.metca15-b51.
Full textChung, Tae-Wook, Taro Hitosugi, Jun Fan, Xu Wang, Ting-Lei Gu, Johannes L. Roesel, Titus Boggon, et al. "Abstract 1257: Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-1257.
Full textPrakasam, Gopinath, and Rameshwar N. K. Bamezai. "Abstract B19: LKB1-AMPK axis regulates the switch of Pyruvate Kinase M isoforms to tolerate nutritional stress." In Abstracts: AACR Special Conference: Metabolism and Cancer; June 7-10, 2015; Bellevue, WA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.metca15-b19.
Full textCerniglia, George, Souvik Dey, Shannon M. Gallagher-Colombo, Natalie Daurio, Stephen Tuttle, Theresa M. Busch, Alexander Lin, et al. "Abstract B05: PI3K/mTOR pathway-dependent regulation of oxygen metabolism via pyruvate dehydrogenase (PDH)-E1alpha phosphorylation." In Abstracts: AACR Special Conference: Targeting the PI3K-mTOR Network in Cancer; September 14-17, 2014; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-8514.pi3k14-b05.
Full textKimura, Tetsuo, Priya Bhardwaj, Domenick J. Falcone, Andrew J. Dannenberg, and Kotha Subbaramaiah. "Abstract B36: Pyruvate kinase M2 regulates adipocyte differentiation and the expression of enzymes involved in glucose metabolism." In Abstracts: Thirteenth Annual AACR International Conference on Frontiers in Cancer Prevention Research; September 27 - October 1, 2014; New Orleans, LA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1940-6215.prev-14-b36.
Full textChen, Jing, Taro Hitosugi, Jun Fan, Sumin Kang, Ting-Lei Gu, and Titus Boggon. "Abstract 997: Oncogenic tyrosine kinases are localized to mitochondria and regulate cancer metabolism by phosphorylating key components of pyruvate dehydrogenase kinase complex." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-997.
Full textGuda, Maheedhara R., Swapna Asuthkar, Soumen Das, Sudipta Seal, Andrew J. Tsung, and Kiran K. Velpula. "Abstract 1920: miR-211 directly targets pyruvate dehydrogenase kinase 4 to inhibit cellular growth and glucose metabolism in triple negative breast cancer." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-1920.
Full textMoore, Jonathan, Anna Staniszewska, Terence Shaw, Jalanie D'Alessandro, Ben Davis, Alan Surgenor, Lisa Baker, et al. "Abstract B155: VER-246608, a novel pan-isoform ATP competitive inhibitor of pyruvate dehydrogenase kinase, disrupts Warburg metabolism and demonstrates context-dependent cytotoxicity to cancer cells." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-b155.
Full textAngelotti, Austin, Rachel Cole, Amy Webb, Maciej Pietrzak, and Martha Belury. "Diet-induced Gene Expression Changes of Cachectic Muscle, Adipose, and Liver." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/gvbe2596.
Full text