Academic literature on the topic 'Camera recognition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Camera recognition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Camera recognition"
Zhao, Ruiyi, Yangshi Ge, Ye Duan, and Quanhong Jiang. "Large-field Gesture Tracking and Recognition for Augmented Reality Interaction." Journal of Physics: Conference Series 2560, no. 1 (August 1, 2023): 012016. http://dx.doi.org/10.1088/1742-6596/2560/1/012016.
Full textWANG, Chenyu, Yukinori KOBAYASHI, Takanori EMARU, and Ankit RAVANKAR. "1A1-H04 Recognition of 3-D Grid Structure Recognition with Fixed Camera and RGB-D Camera." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2015 (2015): _1A1—H04_1—_1A1—H04_4. http://dx.doi.org/10.1299/jsmermd.2015._1a1-h04_1.
Full textReddy, K. Manideep. "Face Recognition for Criminal Detection." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (June 30, 2022): 2856–60. http://dx.doi.org/10.22214/ijraset.2022.44528.
Full textChen, Zhuo, Hai Bo Wu, and Sheng Ping Xia. "A Cooperative Dual-Camera System for Face Recognition and Video Monitoring." Advanced Materials Research 998-999 (July 2014): 784–88. http://dx.doi.org/10.4028/www.scientific.net/amr.998-999.784.
Full textTseng, Hung Li, Chao Nan Hung, Sun Yen Tan, Chiu Ching Tuan, Chi Ping Lee, and Wen Tzeng Huang. "Single Camera for Multiple Vehicles License Plate Localization and Recognition on Multilane Highway." Applied Mechanics and Materials 418 (September 2013): 120–23. http://dx.doi.org/10.4028/www.scientific.net/amm.418.120.
Full textFrancisca O Nwokoma, Juliet N Odii, Ikechukwu I Ayogu, and James C Ogbonna. "Camera-based OCR scene text detection issues: A review." World Journal of Advanced Research and Reviews 12, no. 3 (December 30, 2021): 484–89. http://dx.doi.org/10.30574/wjarr.2021.12.3.0705.
Full textFan, Zhijie, Zhiwei Cao, Xin Li, Chunmei Wang, Bo Jin, and Qianjin Tang. "Video Surveillance Camera Identity Recognition Method Fused With Multi-Dimensional Static and Dynamic Identification Features." International Journal of Information Security and Privacy 17, no. 1 (March 9, 2023): 1–18. http://dx.doi.org/10.4018/ijisp.319304.
Full textPark, Yeonji, Yoojin Jeong, and Chaebong Sohn. "Suspicious behavior recognition using deep learning." Journal of Advances in Military Studies 4, no. 1 (April 30, 2021): 43–59. http://dx.doi.org/10.37944/jams.v4i1.78.
Full textAke, Kanako, Tadatoshi Ogura, Yayoi Kaneko, and Gregory S. A. Rasmussen. "Automated photogrammetric method to identify individual painted dogs (Lycaon pictus)." Zoology and Ecology 29, no. 2 (July 30, 2019): 103–8. http://dx.doi.org/10.35513/21658005.2019.2.5.
Full textRusydi, Muhammad Ilhamdi, Aulia Novira, Takayuki Nakagome, Joseph Muguro, Rio Nakajima, Waweru Njeri, Kojiro Matsushita, and Minoru Sasaki. "Autonomous Movement Control of Coaxial Mobile Robot based on Aspect Ratio of Human Face for Public Relation Activity Using Stereo Thermal Camera." Journal of Robotics and Control (JRC) 3, no. 3 (May 1, 2022): 361–73. http://dx.doi.org/10.18196/jrc.v3i3.14750.
Full textDissertations / Theses on the topic "Camera recognition"
Johansson, Fredrik. "Recognition of Targets in Camera Networks." Thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-95351.
Full textTadesse, Girmaw Abebe. "Human activity recognition using a wearable camera." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/668914.
Full textLos avances en tecnologías wearables facilitan la comprensión de actividades humanas utilizando cuando se usan videos grabados en primera persona para una amplia gama de aplicaciones. En esta tesis, proponemos características robustas de movimiento para el reconocimiento de actividades humana a partir de videos en primera persona. Las características propuestas codifican características discriminativas estimadas a partir de optical flow como magnitud, dirección y dinámica de movimiento. Además, diseñamos nuevas características de inercia virtual a partir de video, sin usar sensores inerciales, utilizando el movimiento del centroide de intensidad a través de los fotogramas. Los resultados obtenidos en múltiples bases de datos demuestran que las características inerciales basadas en centroides mejoran el rendimiento de reconocimiento en comparación con grid-based características. Además, proponemos un algoritmo multicapa que codifica las relaciones jerárquicas y temporales entre actividades. La primera capa opera en grupos de características que codifican eficazmente las dinámicas del movimiento y las variaciones temporales de características de apariencia entre múltiples fotogramas utilizando una jerarquía. La segunda capa aprovecha el contexto temporal ponderando las salidas de la jerarquía durante el modelado. Además, diseñamos una técnica de postprocesado para filtrar las decisiones utilizando estimaciones pasadas y la confianza de la estimación actual. Validamos el algoritmo propuesto utilizando varios clasificadores. El modelado temporal muestra una mejora del rendimiento en el reconocimiento de actividades. También investigamos el uso de redes profundas (deep networks) para simplificar el diseño manual de características a partir de videos en primera persona. Proponemos apilar espectrogramas para representar movimientos globales a corto plazo. Estos espectrogramas contienen una representación espaciotemporal de múltiples componentes de movimiento. Esto nos permite aplicar convoluciones bidimensionales para aprender funciones de movimiento. Empleamos long short-term memory recurrent networks para codificar la dependencia temporal a largo plazo entre las actividades. Además, aplicamos transferencia de conocimiento entre diferentes dominios (cross-domain knowledge) entre enfoques inerciales y basados en la visión para el reconocimiento de la actividad en primera persona. Proponemos una combinación ponderada de información de diferentes modalidades de movimiento y/o secuencias. Los resultados muestran que el algoritmo propuesto obtiene resultados competitivos en comparación con existentes algoritmos basados en deep learning, a la vez que se reduce la complejidad.
Erhard, Matthew John. "Visual intent recognition in a multiple camera environment /." Online version of thesis, 2006. http://hdl.handle.net/1850/3365.
Full textSoh, Ling Min. "Recognition using tagged objects." Thesis, University of Surrey, 2000. http://epubs.surrey.ac.uk/844110/.
Full textMudduluru, Sravani. "Indian Sign Language Numbers Recognition using Intel RealSense Camera." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1815.
Full textBellando, John Louis. "Modeling and Recognition of Gestures Using a Single Camera." University of Cincinnati / OhioLINK, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=ucin973088031.
Full textBrauer, Henrik Siebo Peter. "Camera based human localization and recognition in smart environments." Thesis, University of the West of Scotland, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.739946.
Full textHannuksela, J. (Jari). "Camera based motion estimation and recognition for human-computer interaction." Doctoral thesis, University of Oulu, 2008. http://urn.fi/urn:isbn:9789514289781.
Full textAkman, Oytun. "Multi-camera Video Surveillance: Detection, Occlusion Handling, Tracking And Event Recognition." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608620/index.pdf.
Full textKurihata, Hiroyuki, Tomokazu Takahashi, Ichiro Ide, Yoshito Mekada, Hiroshi Murase, Yukimasa Tamatsu, and Takayuki Miyahara. "Rainy weather recognition from in-vehicle camera images for driver assistance." IEEE, 2005. http://hdl.handle.net/2237/6798.
Full textBooks on the topic "Camera recognition"
Iwamura, Masakazu, and Faisal Shafait, eds. Camera-Based Document Analysis and Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29364-1.
Full textIwamura, Masakazu, and Faisal Shafait, eds. Camera-Based Document Analysis and Recognition. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05167-3.
Full textJaved, Omar. Automated Multi-Camera Surveillance: Algorithms and Practice. Boston, MA: Springer Science+Business Media, LLC, 2008.
Find full textFaisal, Shafait, and SpringerLink (Online service), eds. Camera-Based Document Analysis and Recognition: 4th International Workshop, CBDAR 2011, Beijing, China, September 22, 2011, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textWang, Jiang, Zicheng Liu, and Ying Wu. Human Action Recognition with Depth Cameras. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04561-0.
Full textUnited States. National Aeronautics and Space Administration., ed. A model-based approach for detection of runways and other objects in image sequences acquired using an on-board camera: Final technical report for NASA grant NAG-1-1371, "analysis of image sequences from sensors for restricted visibility operations", period of the grant January 24, 1992 to May 31, 1994. [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textUnited States. National Aeronautics and Space Administration., ed. A model-based approach for detection of runways and other objects in image sequences acquired using an on-board camera: Final technical report for NASA grant NAG-1-1371, "analysis of image sequences from sensors for restricted visibility operations", period of the grant January 24, 1992 to May 31, 1994. [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textUnited States. National Aeronautics and Space Administration., ed. A model-based approach for detection of runways and other objects in image sequences acquired using an on-board camera: Final technical report for NASA grant NAG-1-1371, "analysis of image sequences from sensors for restricted visibility operations", period of the grant January 24, 1992 to May 31, 1994. [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textHooper, John R. The illustrated Camaro recognition guide. Westminster, MD: J & D Publications, 1992.
Find full textRemondino, Fabio. TOF Range-Imaging Cameras. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textBook chapters on the topic "Camera recognition"
Zhang, Shu, Guangqi Hou, and Zhenan Sun. "Eyelash Removal Using Light Field Camera for Iris Recognition." In Biometric Recognition, 319–27. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12484-1_36.
Full textFischer, Stephan, Ivica Rimac, and Ralf Steinmetz. "Automatic Recognition of Camera Zooms." In Visual Information and Information Systems, 253–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48762-x_32.
Full textSrivastava, Gaurav, Johnny Park, Avinash C. Kak, Birgi Tamersoy, and J. K. Aggarwal. "Multi-camera Human Action Recognition." In Computer Vision, 501–11. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-0-387-31439-6_776.
Full textXompero, Alessio, and Andrea Cavallaro. "Cross-Camera View-Overlap Recognition." In Lecture Notes in Computer Science, 253–69. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25075-0_19.
Full textXie, Xiaohua, Yan Gao, Wei-Shi Zheng, Jianhuang Lai, and Junyong Zhu. "One-Snapshot Face Anti-spoofing Using a Light Field Camera." In Biometric Recognition, 108–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69923-3_12.
Full textLiu, Yanqiong, Gang Shi, Qing Cui, Yuhong Sheng, and Guoqun Liu. "A Method of Personnel Location Based on Monocular Camera in Complex Terrain." In Biometric Recognition, 175–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97909-0_19.
Full textKasar, Thotreingam, and Angarai G. Ramakrishnan. "Multi-script and Multi-oriented Text Localization from Scene Images." In Camera-Based Document Analysis and Recognition, 1–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29364-1_1.
Full textBukhari, Syed Saqib, Faisal Shafait, and Thomas M. Breuel. "Border Noise Removal of Camera-Captured Document Images Using Page Frame Detection." In Camera-Based Document Analysis and Recognition, 126–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29364-1_10.
Full textBukhari, Syed Saqib, Faisal Shafait, and Thomas M. Breuel. "An Image Based Performance Evaluation Method for Page Dewarping Algorithms Using SIFT Features." In Camera-Based Document Analysis and Recognition, 138–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29364-1_11.
Full textNagy, Robert, Anders Dicker, and Klaus Meyer-Wegener. "NEOCR: A Configurable Dataset for Natural Image Text Recognition." In Camera-Based Document Analysis and Recognition, 150–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29364-1_12.
Full textConference papers on the topic "Camera recognition"
Rajaraman, Srinivasan, Danielle M. Caruccio, Nicholas C. Fung, and Cory J. Hayes. "Fully automatic, unified stereo camera and LiDAR-camera calibration." In Automatic Target Recognition XXXI, edited by Timothy L. Overman, Riad I. Hammoud, and Abhijit Mahalanobis. SPIE, 2021. http://dx.doi.org/10.1117/12.2587806.
Full textWu, Haoyu, Shaomin Xiong, and Toshiki Hirano. "A Real-Time Human Recognition and Tracking System With a Dual-Camera Setup." In ASME 2019 28th Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/isps2019-7469.
Full textPerez-Yus, A., G. Lopez-Nicolas, and J. J. Guerrero. "A novel hybrid camera system with depth and fisheye cameras." In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7900058.
Full textSumida, Hiroaki, Fuji Ren, Shun Nishide, and Xin Kang. "Environment Recognition Using Robot Camera." In 2020 5th IEEE International Conference on Big Data Analytics (ICBDA). IEEE, 2020. http://dx.doi.org/10.1109/icbda49040.2020.9101205.
Full textCastells-Rufas, David, and Jordi Carrabina. "Camera-based Digit Recognition System." In 2006 13th IEEE International Conference on Electronics, Circuits and Systems. IEEE, 2006. http://dx.doi.org/10.1109/icecs.2006.379899.
Full textKessler, Viktor, Patrick Thiam, Mohammadreza Amirian, and Friedhelm Schwenker. "Pain recognition with camera photoplethysmography." In 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2017. http://dx.doi.org/10.1109/ipta.2017.8310110.
Full textHiew, B. Y., Andrew B. J. Teoh, and Y. H. Pang. "Digital camera based fingerprint recognition." In 2007 IEEE International Conference on Telecommunications and Malaysia International Conference on Communications. IEEE, 2007. http://dx.doi.org/10.1109/ictmicc.2007.4448572.
Full textShahreza, Hatef Otroshi, Alexandre Veuthey, and Sébastien Marcel. "Face Recognition Using Lensless Camera." In ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024. http://dx.doi.org/10.1109/icassp48485.2024.10446710.
Full textYao, Yi, Chung-Hao Chen, Besma Abidi, David Page, Andreas Koschan, and Mongi Abidi. "Sensor planning for PTZ cameras using the probability of camera overload." In 2008 19th International Conference on Pattern Recognition (ICPR). IEEE, 2008. http://dx.doi.org/10.1109/icpr.2008.4761040.
Full textLei, Bangjun, Shuifa Sun, and Sheng Zheng. "Passive geometric camera calibration for arbitrary camera configuration." In Sixth International Symposium on Multispectral Image Processing and Pattern Recognition, edited by Mingyue Ding, Bir Bhanu, Friedrich M. Wahl, and Jonathan Roberts. SPIE, 2009. http://dx.doi.org/10.1117/12.832609.
Full textReports on the topic "Camera recognition"
Steves, Michelle, Brian Stanton, Mary Theofanos, Dana Chisnell, and Hannah Wald. Camera Recognition. National Institute of Standards and Technology, March 2013. http://dx.doi.org/10.6028/nist.ir.7921.
Full textShapovalov, Viktor B., Yevhenii B. Shapovalov, Zhanna I. Bilyk, Anna P. Megalinska, and Ivan O. Muzyka. The Google Lens analyzing quality: an analysis of the possibility to use in the educational process. [б. в.], February 2020. http://dx.doi.org/10.31812/123456789/3754.
Full textTao, Yang, Amos Mizrach, Victor Alchanatis, Nachshon Shamir, and Tom Porter. Automated imaging broiler chicksexing for gender-specific and efficient production. United States Department of Agriculture, December 2014. http://dx.doi.org/10.32747/2014.7594391.bard.
Full textYan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.
Full textHall, Mark, and Neil Price. Medieval Scotland: A Future for its Past. Society of Antiquaries of Scotland, September 2012. http://dx.doi.org/10.9750/scarf.09.2012.165.
Full textDalglish, Chris, and Sarah Tarlow, eds. Modern Scotland: Archaeology, the Modern past and the Modern present. Society of Antiquaries of Scotland, September 2012. http://dx.doi.org/10.9750/scarf.09.2012.163.
Full text