Contents
Academic literature on the topic 'Calottes glaciaires – Groenland'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Calottes glaciaires – Groenland.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Calottes glaciaires – Groenland"
Fabre, Adeline. "Modélisation 3D de l'écoulement des calottes glaciaires : application à la calotte du Groenland et aux calottes de l'hémisphère nord au dernier maximum glaciaire." Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10014.
Full textLacour, Adrien. "Les nuages du Groenland observés par CALIPSO." Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066460.
Full textOver 80% of Greenland is covered by ice. Melting of this ice contributes to the sea level rise. By modulating the radiation reaching the surface, clouds can accelerate or slow down the melting. Through this thesis, we use CALIPSO satellite measurements (GOCCP product) to document clouds over Greenland, including their vertical structure, and understand their role in surface melting.We compare these observations with radar and lidar measurement taken from the Summit ground station in the middle of Greenland. The comparison shows that GOCCP does not include optically thin ice clouds (τ < 0.3). Extending this analysis over all Greenland shows that cloudiness follows different cloud annual cycles in North and South regions, and that Summit is one of the cloudiest regions of the Greenland especially for the liquid cloud cover.To understand the atmospheric conditions favorable to cloud formation, we follow two weather regime classification approaches. We do not find a clear relationship between cloud variability and atmospheric circulation. These results show the complexity of the interactions between clouds and synoptic circulation and highlight the need to accumulate more data over long time periods.Finally, we evaluate cloud representation over Greenland in simulated lidar profiles over output from CMIP5 climate models. We identify several biases that lead to models being unable to simulate surface melting. Models underestimate the surface temperature and the cloud cover. Also when clouds are simulated they are either too opaque or too thin to affect surface melting
Sicard, Marie. "Modéliser les évolutions du climat de l'Arctique et de la calotte groenlandaise pendant le dernier interglaciaire pour en comprendre les mécanismes." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASJ017.
Full textThe Last Interglacial (129 -116 ka BP) is one of the warmest periods in the last 800 ka at many locations. This period is characterized by a strong orbital forcing leading to a different seasonal and latitudinal distribution of insolation compared to today. These changes in insolation result in a temperature increase in the high latitudes of the Northern Hemisphere and a rise in sea level of 6 to 9 m above present. Therefore, the Last Interglacial represents a good case study given the risks of melting ice sheets under the influence of current and future warming. It is also an opportunity to identify and quantify the mechanisms causing polar amplification in a warmer climate than today.Within the framework of the CMIP6-PMIP4 model intercomparison project, I analyzed the lig127k snapshot run with the IPSL-CM6A-LR climate model. In the Arctic region (60-90°N), the insolation variations induce an annual warming of 0.9°C compared to the pre-industrial period (1850) reaching up to 4.0°C in autumn. Investigate changes in the Arctic energy budget relative to the pre-industrial period highlights the crucial roles of changes in the sea ice cover, ocean heat storage and clouds optical properties in the Last Interglacial Arctic warming.As a result of climate change over the Last Interglacial, the GRISLI ice sheet model simulates a Greenland ice loss of 10.7-57.1%, corresponding to a sea level rise of 0.83-4.35 m and a 0.2°C additional warming in the Arctic region. These estimates illustrate the crucial role of polar ice sheets in the climate system. To better assess ice sheet-climate feedbacks in the Arctic, I have therefore carried out a preliminary study using the ICOLMDZOR model that includes the new dynamical core DYNAMICO developed at the IPSL. This study shows that the use of high-resolution atmospheric fields improves the calculation of the surface mass balance in Greenland.Finally, the comparison between past and future Arctic energy budget reveals that the processes causing Arctic warming during the Last Interglacial and the near future are similar
Lacour, Adrien. "Les nuages du Groenland observés par CALIPSO." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066460/document.
Full textOver 80% of Greenland is covered by ice. Melting of this ice contributes to the sea level rise. By modulating the radiation reaching the surface, clouds can accelerate or slow down the melting. Through this thesis, we use CALIPSO satellite measurements (GOCCP product) to document clouds over Greenland, including their vertical structure, and understand their role in surface melting.We compare these observations with radar and lidar measurement taken from the Summit ground station in the middle of Greenland. The comparison shows that GOCCP does not include optically thin ice clouds (τ < 0.3). Extending this analysis over all Greenland shows that cloudiness follows different cloud annual cycles in North and South regions, and that Summit is one of the cloudiest regions of the Greenland especially for the liquid cloud cover.To understand the atmospheric conditions favorable to cloud formation, we follow two weather regime classification approaches. We do not find a clear relationship between cloud variability and atmospheric circulation. These results show the complexity of the interactions between clouds and synoptic circulation and highlight the need to accumulate more data over long time periods.Finally, we evaluate cloud representation over Greenland in simulated lidar profiles over output from CMIP5 climate models. We identify several biases that lead to models being unable to simulate surface melting. Models underestimate the surface temperature and the cloud cover. Also when clouds are simulated they are either too opaque or too thin to affect surface melting
Janssens, Laurent. "Les propriétés des glaces basales révélatrices des interactions calotte glaciaire-substratum au Groenland." Doctoral thesis, Universite Libre de Bruxelles, 1996. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212393.
Full textQuiquet, Aurélien. "Reconstruction de la calotte polaire du Groenland au cours du dernier cycle glaciaire-interglaciaire à partir de l'association de la modélisation numérique 3D et des enregistrements des carottages glaciaires profonds." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENU006/document.
Full textThe Greenland ice sheet represents a potential sea level rise contribution of 7.3 meters. When drastic changes are recently observed, multi-centennal futur projections are urgently needed. 3D numerical modelling is one of the tools to realize these projections. This work intensively incorporates the use of Greenland deep ice core drillings, which represent an important amount of information of past states of the ice sheet. The validity of the reconstructions are thus assured by constant back and forth between observations and simulations. Robustness of these reconstructions and of future projections are largely questionned through wide sensitivity experiments. The ice sheet model calibration is performed during the last deglaciation considering the numerous constraints during this period. Given that, scenarios of ice sheet states during the whole last climatic cycle, in particular during the last interglacial, the Eemian, potential analogue for a future climate
Quiquet, Aurelien. "Reconstruction de la calotte polaire du Groenland au cours du dernier cycle glaciaire-interglaciaire à partir de l'association de la modélisation numérique 3D et des enregistrements des carottages glaciaires profonds." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00704253.
Full textKrinner, Gerhard. "Simulations du climat des calottes de glace." Phd thesis, Université Joseph Fourier (Grenoble), 1997. http://tel.archives-ouvertes.fr/tel-00716408.
Full textFabre, Adeline. "Modélisation 3D de l'écoulement des calottes glaciaires : application à la calotte du Groenland et aux calottes de l'hémishère nord au dernier maximum glaciaire." Phd thesis, 1997. http://tel.archives-ouvertes.fr/tel-00766870.
Full text