To see the other types of publications on this topic, follow the link: CALIPSO (satellite de télédétection).

Journal articles on the topic 'CALIPSO (satellite de télédétection)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'CALIPSO (satellite de télédétection).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chiriaco, M., H. Chepfer, P. Minnis, M. Haeffelin, S. Platnick, D. Baumgardner, P. Dubuisson, et al. "Comparison of CALIPSO-Like, LaRC, and MODIS Retrievals of Ice-Cloud Properties over SIRTA in France and Florida during CRYSTAL-FACE." Journal of Applied Meteorology and Climatology 46, no. 3 (March 1, 2007): 249–72. http://dx.doi.org/10.1175/jam2435.1.

Full text
Abstract:
Abstract This study compares cirrus-cloud properties and, in particular, particle effective radius retrieved by a Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)-like method with two similar methods using Moderate-Resolution Imaging Spectroradiometer (MODIS), MODIS Airborne Simulator (MAS), and Geostationary Operational Environmental Satellite imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-, 11.15-, and 12.05-μm bands to infer the microphysical properties of cirrus clouds. The two other methods, using passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (using 20 spectral bands from visible to infrared, referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the Clouds and the Earth’s Radiant Energy System (CERES) team at Langley Research Center (LaRC) in support of CERES algorithms (using 0.65-, 3.75-, 10.8-, and 12.05-μm bands); the two algorithms will be referred to as the MOD06 and LaRC methods, respectively. The three techniques are compared at two different latitudes. The midlatitude ice-clouds study uses 16 days of observations at the Palaiseau ground-based site in France [Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA)], including a ground-based 532-nm lidar and the MODIS overpasses on the Terra platform. The tropical ice-clouds study uses 14 different flight legs of observations collected in Florida during the intensive field experiment known as the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE), including the airborne cloud-physics lidar and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote sensing method (CALIPSO like) for the study of subvisible ice clouds, in both the midlatitudes and Tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds, because of their particular microphysical properties.
APA, Harvard, Vancouver, ISO, and other styles
2

Winker, D. M., J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson, P. R. Colarco, P. Flamant, et al. "The CALIPSO Mission." Bulletin of the American Meteorological Society 91, no. 9 (September 1, 2010): 1211–30. http://dx.doi.org/10.1175/2010bams3009.1.

Full text
Abstract:
Aerosols and clouds have important effects on Earth's climate through their effects on the radiation budget and the cycling of water between the atmosphere and Earth's surface. Limitations in our understanding of the global distribution and properties of aerosols and clouds are partly responsible for the current uncertainties in modeling the global climate system and predicting climate change. The CALIPSO satellite was developed as a joint project between NASA and the French space agency CNES to provide needed capabilities to observe aerosols and clouds from space. CALIPSO carries CALIOP, a two-wavelength, polarization-sensitive lidar, along with two passive sensors operating in the visible and thermal infrared spectral regions. CALIOP is the first lidar to provide long-term atmospheric measurements from Earth's orbit. Its profiling and polarization capabilities offer unique measurement capabilities. Launched together with the CloudSat satellite in April 2006 and now flying in formation with the A-train satellite constellation, CALIPSO is now providing information on the distribution and properties of aerosols and clouds, which is fundamental to advancing our understanding and prediction of climate. This paper provides an overview of the CALIPSO mission and instruments, the data produced, and early results.
APA, Harvard, Vancouver, ISO, and other styles
3

Lacour, Adrien, Helene Chepfer, Matthew D. Shupe, Nathaniel B. Miller, Vincent Noel, Jennifer Kay, David D. Turner, and Rodrigo Guzman. "Greenland Clouds Observed in CALIPSO-GOCCP: Comparison with Ground-Based Summit Observations." Journal of Climate 30, no. 15 (August 2017): 6065–83. http://dx.doi.org/10.1175/jcli-d-16-0552.1.

Full text
Abstract:
Spaceborne lidar observations from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations ( CALIPSO) satellite provide the first-ever observations of cloud vertical structure and phase over the entire Greenland Ice Sheet. This study leverages CALIPSO observations over Greenland to pursue two investigations. First, the GCM-Oriented CALIPSO Cloud Product ( CALIPSO-GOCCP) observations are compared with collocated ground-based radar and lidar observations at Summit, Greenland. The liquid cloud cover agrees well between the spaceborne and ground-based observations. In contrast, ground–satellite differences reach 30% in total cloud cover and 40% in cloud fraction below 2 km above ground level, due to optically very thin ice clouds (IWC < 2.5 × 10−3 g m−3) missed by CALIPSO-GOCCP. Those results are compared with satellite cloud climatologies from the GEWEX cloud assessment. Most passive sensors detect fewer clouds than CALIPSO-GOCCP and the Summit ground observations, due to different detection methods. Second, the distribution of clouds over the Greenland is analyzed using CALIPSO-GOCCP. Central Greenland is the cloudiest area in summer, at +7% and +4% above the Greenland-wide average for total and liquid cloud cover, respectively. Southern Greenland contains free-tropospheric thin ice clouds in all seasons and liquid clouds in summer. In northern Greenland, fewer ice clouds are detected than in other areas, but the liquid cloud cover seasonal cycle in that region drives the total Greenland cloud annual variability with a maximum in summer. In 2010 and 2012, large ice-sheet melting events have a positive liquid cloud cover anomaly (from +1% to +2%). In contrast, fewer clouds (−7%) are observed during low ice-sheet melt years (e.g., 2009).
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, X., K. Bartlett, K. Harmon, and F. Yu. "Comparison of AOD between CALIPSO and MODIS: significant differences over major dust and biomass burning regions." Atmospheric Measurement Techniques Discussions 5, no. 6 (November 16, 2012): 8343–67. http://dx.doi.org/10.5194/amtd-5-8343-2012.

Full text
Abstract:
Abstract. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) provide, for the first time, global vertical profiles of aerosol optical properties, but further research is needed to evaluate the CALIPSO products. In this study, we employed about 6 yr (2006–2011) of CALIPSO level-3 monthly mean gridded aerosol optical depth (AOD) products (daytime and nighttime), for cloud free conditions, to compare with the MODIS Terra/Aqua level-3 monthly mean AOD dataset for the same time period. While the spatial distribution and seasonal variability of CALIPSO AOD is generally consistent with that of MODIS, CALIPSO is overall lower than MODIS as much more of the CALIPSO data is smaller than 0.1, while more of the MODIS data is greater than 0.1. We will focus on four regions that have large systematic differences: two over dust regions (the Sahara and Northwest China) and two over biomass burning regions (South Africa and South America). It is found that CALIPSO AOD is significantly lower than MODIS AOD over dust regions during the whole time period, with a maximum low bias of 0.3 over the Saharan region, and 0.25 over Northwest China. For biomass burning regions, CALIPSO AOD is significantly higher than MODIS AOD over South Africa, with a maximum high bias of 0.25. Additionally CALIPSO AOD is slightly higher than MODIS AOD over South America for most of the time period, with a few exceptions in 2006, 2007, and 2010, when biomass burning is significantly stronger than during other years. The results in this study indicate that systematic biases of CALIPSO relative to MODIS are closely associated with aerosol types, which vary by location and season. Large differences over dust and biomass burning regions may suggest that assumptions made in satellite retrievals, such as the assumed lidar ratios for CALIPSO retrievals over dust and biomass burning regions, or the surface reflectance information and/or the aerosol model utilized by MODIS algorithm, are not appropriate. Further research is needed to narrow down the exact source of bias in order to improve the satellite retrievals.
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, X., K. Bartlett, K. Harmon, and F. Yu. "Comparison of AOD between CALIPSO and MODIS: significant differences over major dust and biomass burning regions." Atmospheric Measurement Techniques 6, no. 9 (September 16, 2013): 2391–401. http://dx.doi.org/10.5194/amt-6-2391-2013.

Full text
Abstract:
Abstract. Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) provide global vertical profiles of aerosol optical properties for the first time. In this study, we employed about 6 yr (2006–2011) of CALIPSO level 3 monthly mean gridded aerosol optical depth (AOD) products (daytime and nighttime) for cloud-free conditions, to compare with the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua level 3 monthly mean AOD dataset for the same time period. While the spatial distribution and seasonal variability of CALIPSO AOD is generally consistent with that of MODIS, CALIPSO is overall lower than MODIS as MODIS has higher frequency than CALIPSO for most bins of AOD. The correlation between MODIS and CALIPSO is better over ocean than over land. We focused on four regions that have large systematic differences: two over dust regions (the Sahara and Northwest China) and two over biomass burning regions (South Africa and South America). It is found that CALIPSO AOD is significantly lower than MODIS AOD over dust regions during the whole time period, with a maximum difference of 0.3 over the Saharan region and 0.25 over Northwest China. For biomass burning regions, CALIPSO AOD is significantly higher than MODIS AOD over South Africa, with a maximum difference of 0.25. Additionally CALIPSO AOD is slightly higher than MODIS AOD over South America for most of the time period, with a few exceptions in 2006, 2007, and 2010, when biomass burning is significantly stronger than during other years. We analyzed the impact of the satellite spatial and temporal sampling issue by using level 2 CALIPSO and MODIS products, and these systematic differences can still be found. The results of this study indicate that systematic differences of CALIPSO relative to MODIS are closely associated with aerosol types, which vary by location and season. Large differences over dust and biomass burning regions may suggest that assumptions made in satellite retrievals, such as the assumed lidar ratios for CALIPSO retrievals over dust and biomass burning regions or the surface reflectance information and/or the aerosol model utilized by the MODIS algorithm, are not appropriate.
APA, Harvard, Vancouver, ISO, and other styles
6

Charbonneau, Lise, Denis Morin, and Richard Brochu. "Détection des unités d’utilisation et de couverture du sol urbain au moyen d’une simulation SPOT." Cahiers de géographie du Québec 29, no. 76 (April 12, 2005): 29–47. http://dx.doi.org/10.7202/021692ar.

Full text
Abstract:
La méthode utilisée consiste à classifier l'utilisation et la couverture du sol de l'agglomération urbaine de Sherbrooke avec l'aide d'images numériques acquises par un capteur aéroporté. Un survol de simulation du futur satellite SPOT a été effectué sur la région de Sherbrooke à l'aide du balayeur Daedalus multibande (DS1260) du Centre canadien de télédétection. Ce survol nous a permis d'estimer les possibilités du futur satellite SPOT pour la détection des phénomènes urbains. La télédétection des zones urbaines permettra la cartographie de ces unités d'utilisation et de couverture du sol ainsi qu'une remise à jour régulière des documents.
APA, Harvard, Vancouver, ISO, and other styles
7

Zou, Ling, Sabine Griessbach, Lars Hoffmann, Bing Gong, and Lunche Wang. "Revisiting global satellite observations of stratospheric cirrus clouds." Atmospheric Chemistry and Physics 20, no. 16 (August 26, 2020): 9939–59. http://dx.doi.org/10.5194/acp-20-9939-2020.

Full text
Abstract:
Abstract. As knowledge about the cirrus clouds in the lower stratosphere is limited, reliable long-term measurements are needed to assess their characteristics, radiative impact and important role in upper troposphere and lower stratosphere (UTLS) chemistry. We used 6 years (2006–2012) of Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measurements to investigate the global and seasonal distribution of stratospheric cirrus clouds and compared the MIPAS results with results derived from the latest version (V4.x) of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data. For the identification of stratospheric cirrus clouds, precise information on both the cloud top height (CTH) and the tropopause height is crucial. Here, we used lapse rate tropopause heights estimated from the ERA-Interim global reanalysis. Considering the uncertainties of the tropopause heights and the vertical sampling grid, we define CTHs more than 0.5 km above the tropopause as stratospheric for CALIPSO data. For MIPAS data, we took into account the coarser vertical sampling grid and the broad field of view so that we considered cirrus CTHs detected more than 0.75 km above the tropopause as stratospheric. Further sensitivity tests were conducted to rule out sampling artefacts in MIPAS data. The global distribution of stratospheric cirrus clouds was derived from night-time measurements because of the higher detection sensitivity of CALIPSO. In both data sets, MIPAS and CALIPSO, the stratospheric cirrus cloud occurrence frequencies are significantly higher in the tropics than in the extra-tropics. Tropical hotspots of stratospheric cirrus clouds associated with deep convection are located over equatorial Africa, South and Southeast Asia, the western Pacific, and South America. Stratospheric cirrus clouds were more often detected in December–February (15 %) than June–August (8 %) in the tropics (±20∘). At northern and southern middle latitudes (40–60∘), MIPAS observed about twice as many stratospheric cirrus clouds (occurrence frequencies of 4 %–5 % for MIPAS rather than about 2 % for CALIPSO). We attribute more frequent observations of stratospheric cirrus clouds with MIPAS to the higher detection sensitivity of the instrument to optically thin clouds. In contrast to the difference between daytime and night-time occurrence frequencies of stratospheric cirrus clouds by a factor of about 2 in zonal means in the tropics (4 % and 10 %, respectively) and at middle latitudes for CALIPSO data, there is little diurnal cycle in MIPAS data, in which the difference of occurrence frequencies in the tropics is about 1 percentage point in zonal mean and about 0.5 percentage point at middle latitudes. The difference between CALIPSO day and night measurements can also be attributed to their differences in detection sensitivity. Future work should focus on better understanding the origin of the stratospheric cirrus clouds and their impact on radiative forcing and climate.
APA, Harvard, Vancouver, ISO, and other styles
8

Nagovitsyna, Ekaterina S., Sergey K. Dzholumbetov, Alexander A. Karasev, and Vassily A. Poddubny. "A Regional Aerosol Model for the Middle Urals Based on CALIPSO Measurements." Atmosphere 15, no. 1 (December 30, 2023): 48. http://dx.doi.org/10.3390/atmos15010048.

Full text
Abstract:
The present work aims to develop a regional Middle Urals Aerosol model (MUrA model) based on the joint analysis of long-term ground-based photometric measurements of the Aerosol Robotic NETwork (AERONET) and the results of lidar measurements of the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite relying on information on the air trajectories at different altitudes calculated using the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory model) software package. The MUrA model contains parameters of normalized volume size distributions (NVSDs) characterizing the tropospheric aerosol subtypes detected by the CALIPSO satellite. When comparing the MUrA model with the global CALIPSO Aerosol Model (CAMel), we found significant differences in NVSDs for elevated smoke and clean continental aerosol types. NVSDs for dust and polluted continental/smoke aerosol types in the global and regional models differ much less. The total volumes of aerosol particles along the atmospheric column reconstructed from satellite measurements of the attenuation coefficient at a wavelength of 532 nm based on the regional MUrA model and global CAMel are compared with the AERONET inversion data. The mean bias error for the regional model is 0.016 μm3/μm2, and 0.043 μm3/μm2 for the global model.
APA, Harvard, Vancouver, ISO, and other styles
9

Hunt, William H., David M. Winker, Mark A. Vaughan, Kathleen A. Powell, Patricia L. Lucker, and Carl Weimer. "CALIPSO Lidar Description and Performance Assessment." Journal of Atmospheric and Oceanic Technology 26, no. 7 (July 1, 2009): 1214–28. http://dx.doi.org/10.1175/2009jtecha1223.1.

Full text
Abstract:
Abstract This paper provides background material for a collection of Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) algorithm papers that are to be published in the Journal of Atmospheric and Oceanic Technology. It provides a brief description of the design and performance of CALIOP, a three-channel elastic backscatter lidar on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. After more than 2 yr of on-orbit operation, CALIOP performance continues to be excellent in the key areas of laser energy, signal-to-noise ratio, polarization sensitivity, and overall long-term stability, and the instrument continues to produce high-quality data products. There are, however, some areas where performance has been less than ideal. These include short-term changes in the calibration coefficients at both wavelengths as the satellite passes between dark and sunlight, some radiation-induced effects on both the detectors and the laser when passing through the South Atlantic Anomaly, and slow transient recovery on the 532-nm channels. Although these issues require some special treatment in data analysis, they do not seriously detract from the overall quality of the level 2 data products.
APA, Harvard, Vancouver, ISO, and other styles
10

Mona, L., G. Pappalardo, A. Amodeo, G. D'Amico, F. Madonna, A. Boselli, A. Giunta, F. Russo, and V. Cuomo. "One year of CNR-IMAA multi-wavelength Raman lidar measurements in correspondence of CALIPSO overpass: Level 1 products comparison." Atmospheric Chemistry and Physics Discussions 9, no. 2 (March 31, 2009): 8429–68. http://dx.doi.org/10.5194/acpd-9-8429-2009.

Full text
Abstract:
Abstract. At CNR-IMAA, an aerosol lidar system is operative since May 2000 in the framework of EARLINET (European Aerosol Research Lidar Network), the first lidar network for tropospheric aerosol study on continental scale. High quality multi-wavelength measurements make this system a reference point for the validation of data products provided by CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), the first satellite-borne lidar specifically designed for aerosol and cloud study. Since 14 June 2006, devoted measurements are performed at CNR-IMAA in coincidence of CALIPSO overpasses. For the first time, results on 1-year comparisons between ground-based multi-wavelength Raman lidar measurements and corresponding CALIPSO lidar Level 1 profiles are presented. A methodology for the comparison is presented and discussed into details. Cases with the detection of cirrus clouds in CALIPSO data are separately analysed for taking into account eventual multiple scattering effects. For cirrus cloud cases, few cases are available to draw any conclusions. For clear sky conditions, the comparison shows good performances of the CALIPSO on-board lidar: the mean relative difference between the ground-based and CALIPSO Level 1 measurements is always within its standard deviation at all altitudes, with a mean difference in the 3–8 km altitude range of (−2±12)%. At altitude ranges corresponding to the typical PBL height observed at CNR-IMAA, a mean underestimation of (−24±20)% is observed in CALIPSO data, probably due to the difference in the aerosol content at the location of PEARL and CALIPSO ground-track location. Finally, the mean differences are on average lower for the closest overpasses (at about 40 km), with an increment of the differences at all altitude ranges when the 80 km overpasses are considered.
APA, Harvard, Vancouver, ISO, and other styles
11

Mona, L., G. Pappalardo, A. Amodeo, G. D'Amico, F. Madonna, A. Boselli, A. Giunta, F. Russo, and V. Cuomo. "One year of CNR-IMAA multi-wavelength Raman lidar measurements in coincidence with CALIPSO overpasses: Level 1 products comparison." Atmospheric Chemistry and Physics 9, no. 18 (September 29, 2009): 7213–28. http://dx.doi.org/10.5194/acp-9-7213-2009.

Full text
Abstract:
Abstract. At CNR-IMAA, an aerosol lidar system has operated since May 2000 in the framework of EARLINET (European Aerosol Research Lidar Network), the first lidar network for tropospheric aerosol study on a continental scale. High quality multi-wavelength measurements make this system a reference point for the validation of data products provided by CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), the first satellite-borne lidar specifically designed for aerosol and cloud study. Since 14 June 2006, dedicated measurements have been performed at CNR-IMAA in coincidence with CALIPSO overpasses. For the first time, results on 1-year comparisons between ground-based multi-wavelength Raman lidar measurements and corresponding CALIPSO lidar Level 1 profiles are presented. A methodology for the comparison is presented and discussed in detail. Night-time cases are considered to take advantage from Raman capability of the ground based lidar. Cases with the detection of cirrus clouds in CALIPSO data are separately analysed for taking into account multiple scattering effects. For cirrus cloud cases, few cases are available to draw any conclusions. For clear sky conditions, the comparison shows good performances of the CALIPSO on-board lidar: the mean relative difference between the ground-based and CALIPSO Level 1 measurements is always within its standard deviation at all altitudes, with a mean difference in the 3–8 km altitude range of (−2±12)%. At altitude ranges corresponding to the typical PBL height observed at CNR-IMAA, a mean difference of (−24±20)% is observed in CALIPSO data, probably due to the difference in the aerosol content at the location of PEARL and CALIPSO ground-track location. Finally, the mean differences are on average lower at all altitude ranges for the closest overpasses (at about 40 km) respect to the 80-km overpasses.
APA, Harvard, Vancouver, ISO, and other styles
12

Zhang, Ziyue, Miao Zhang, Muhammad Bilal, Bo Su, Chun Zhang, and Liuna Guo. "Comparison of MODIS- and CALIPSO-Derived Temporal Aerosol Optical Depth over Yellow River Basin (China) from 2007 to 2015." Earth Systems and Environment 4, no. 3 (September 2020): 535–50. http://dx.doi.org/10.1007/s41748-020-00181-7.

Full text
Abstract:
Abstract In this study, Collection 6.1 (C6.1) of different aerosol optical depth (AOD) products of different spatial resolutions were used from the aqua moderate resolution imaging spectroradiometer (MODIS) including dark target (DT), deep blue (DB), deep blue (DB), and DT-DB (DTB). These products were compared with cloud-aerosol lidar, and infrared pathfinder satellite observation (CALIPSO) AOD retrievals over the Yellow River Basin (YERB), China from 2003 to 2017. The YERB was divided into three sub-regions, namely YERB1 (the mountainous terrain in the upper reaches of the YERB), YERB2 (the Loess Plateau region in the middle reaches of the YERB), and YERB3 (the plain region downstream of the YERB). Errors and agreement between MODIS and CALIPSO data were reported using Pearson’s correlation (R) and relative mean bias (RMB). Results showed that the CALIPSO whole layers AOD (AODS) were better matched with MODIS AOD than the CALIPSO lowest layer AOD (AOD1). The time series of AOD shows higher values in spring and summer, and a small difference in AOD products was observed in autumn. The overall average value of CALIPSO AOD and MODIS AOD both fitted the order: YERB3 > YERB2 > YERB1. The CALIPSO AOD retrievals have the best consistency with the DTB10K and the lowest consistency with DT3K. Overall, the regional distributions of the CALIPSO AOD and MODIS AOD are significantly different over the YERB, and the difference is closely related to the season, region, and topography. This study can help researchers understand the difference of aerosol temporal and spatial distribution utilizing different satellite products over YERB, and also can provide data and technical support for the government in atmospheric environmental governance over YERB.
APA, Harvard, Vancouver, ISO, and other styles
13

Mamouri, R. E., V. Amiridis, A. Papayannis, E. Giannakaki, G. Tsaknakis, and D. S. Balis. "Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece." Atmospheric Measurement Techniques 2, no. 2 (September 14, 2009): 513–22. http://dx.doi.org/10.5194/amt-2-513-2009.

Full text
Abstract:
Abstract. We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E). A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA) in the framework of the European Aerosol Research LIdar NETwork (EARLINET), the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60%) which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.
APA, Harvard, Vancouver, ISO, and other styles
14

Georgoulias, Aristeidis K., Eleni Marinou, Alexandra Tsekeri, Emmanouil Proestakis, Dimitris Akritidis, Georgia Alexandri, Prodromos Zanis, et al. "A First Case Study of CCN Concentrations from Spaceborne Lidar Observations." Remote Sensing 12, no. 10 (May 14, 2020): 1557. http://dx.doi.org/10.3390/rs12101557.

Full text
Abstract:
We present here the first cloud condensation nuclei (CCN) concentration profiles derived from measurements with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), for different aerosol types at a supersaturation of 0.15%. CCN concentrations, along with the corresponding uncertainties, were inferred for a nighttime CALIPSO overpass on 9 September 2011, with coincident observations with the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft, within the framework of the Evaluation of CALIPSO’s Aerosol Classification scheme over Eastern Mediterranean (ACEMED) research campaign over Thessaloniki, Greece. The CALIPSO aerosol typing is evaluated, based on data from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis. Backward trajectories and satellite-based fire counts are used to examine the origin of air masses on that day. Our CCN retrievals are evaluated against particle number concentration retrievals at different height levels, based on the ACEMED airborne measurements and compared against CCN-related retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard Terra and Aqua product over Thessaloniki showing that it is feasible to obtain CCN concentrations from CALIPSO, with an uncertainty of a factor of two to three.
APA, Harvard, Vancouver, ISO, and other styles
15

Folger, Kathrin, and Martin Weissmann. "Lidar-Based Height Correction for the Assimilation of Atmospheric Motion Vectors." Journal of Applied Meteorology and Climatology 55, no. 10 (October 2016): 2211–27. http://dx.doi.org/10.1175/jamc-d-15-0260.1.

Full text
Abstract:
AbstractThis study uses lidar observations from the polar-orbiting Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite to correct operational atmospheric motion vector (AMV) pressure heights. This intends to reduce the height assignment error of AMVs for their use in data assimilation. Additionally, AMVs are treated as winds in a vertical layer as proposed by several recent studies. Corrected and uncorrected AMV winds are evaluated using short-term forecasts of the global forecasting system of the German Weather Service. First, a direct lidar-based height reassignment of AMVs with collocated CALIPSO observations is evaluated. Assigning AMV winds from Meteosat-10 to ~120-hPa-deep layers below the lidar cloud top reduces the vector root-mean-square (VRMS) differences of AMVs from Meteosat-10 by 8%–15%. However, such a direct reassignment can only be applied to collocated AMV–CALIPSO observations that compose a comparably small subset of all AMVs. Second, CALIPSO observations are used to derive statistical height bias correction functions for a general height correction of all operational AMVs from Meteosat-10. Such a height bias correction achieves on average about 50% of the reduction of VRMS differences of the direct height reassignment. Results for other satellites are more ambiguous but still encouraging. Given that such a height bias correction can be applied to all AMVs from a geostationary satellite, the method exhibits a promising approach for the assimilation of AMVs in numerical weather prediction models in the future.
APA, Harvard, Vancouver, ISO, and other styles
16

Choudhury, Goutam, and Matthias Tesche. "A first global height-resolved cloud condensation nuclei data set derived from spaceborne lidar measurements." Earth System Science Data 15, no. 8 (August 22, 2023): 3747–60. http://dx.doi.org/10.5194/essd-15-3747-2023.

Full text
Abstract:
Abstract. We present a global multiyear height-resolved data set of aerosol-type-specific cloud condensation nuclei concentrations (nCCN) estimated from the spaceborne lidar aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. For estimating nCCN, we apply the recently introduced Optical Modelling of the CALIPSO Aerosol Microphysics (OMCAM) algorithm to the CALIPSO Level 2 Aerosol Profile product. The estimated nCCN are then gridded into a uniform latitude–longitude grid of 2∘×5∘, a vertical grid of resolution 60 m from the surface to an altitude of 8 km, and a temporal resolution of 1 month. The data span a total of 186 months, from June 2006 to December 2021. In addition, we provide a 3D aerosol-type-specific climatology of nCCN produced using the complete time series. We further highlight some potential applications of the data set in the context of aerosol–cloud interactions. The complete data set can be accessed at https://doi.org/10.1594/PANGAEA.956215 (Choudhury and Tesche, 2023).
APA, Harvard, Vancouver, ISO, and other styles
17

Rodier, S., Y. Hu, and M. Vaughan. "Sea ice detection with space-based LIDAR." Cryosphere Discussions 7, no. 5 (September 13, 2013): 4681–701. http://dx.doi.org/10.5194/tcd-7-4681-2013.

Full text
Abstract:
Abstract. Monitoring long-term climate change in the Polar Regions relies on accurate, detailed and repeatable measurements of geophysical processes and states. These regions are among the Earth's most vulnerable ecosystems, and measurements there have shown rapid changes in the seasonality and the extent of snow and sea ice coverage. The authors have recently developed a promising new technique that uses lidar surface measurements from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission to infer ocean surface ice-water phase. CALIPSO's 532 nm depolarization ratio measurements of the ocean surface are uniquely capable of providing information about the ever-changing sea surface state within the Polar Regions. With the finer resolution of the CALIPSO footprint (90 m diameter, spaced 335 m apart) and its ability to acquire measurements during both daytime and nighttime orbit segments and in the presence of clouds, the CALIPSO sea ice product provides fine-scale information on mixed phase scenes and can be used to assess/validate the estimates of sea-ice concentration currently provided by passive sensors. This paper describes the fundamentals of the CALIPSO sea-ice detection and classification technique. We present retrieval results from a six-year study, which are compared to existing data sets obtained by satellite-based passive remote sensors.
APA, Harvard, Vancouver, ISO, and other styles
18

Yang, B. Y., J. Liu, and X. Jia. "CORRECTION FOR THE CIRRUS CLOUD TOP HEIGHT OF MODIS BASED ON CALIPSO IN BEIJING-TIANJIN-HEBEI REGION." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W9 (October 25, 2019): 203–10. http://dx.doi.org/10.5194/isprs-archives-xlii-3-w9-203-2019.

Full text
Abstract:
Abstract. Cirrus plays an important role in atmospheric radiation. It affects weather system and climate change. Satellite remote sensing is an important kind of observation for cloud. As a passive remote sensing instrument, large bias was found for thin cirrus cloud top height retrieval from MODIS (Moderate Resolution Imaging Spectroradiometer). Comparatively, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) aboard CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation) which is an active remote sensing instrument can acquire more accurate characteristics of thin cirrus cloud. In this study, CALIPSO cirrus cloud top height data was used to correct MODIS cirrus cloud top height. The data analysis area was selected in Beijing-Tianjin-Hebei region and data came from 2013 to 2017. Linear fitting method was selected based on cross-validation method between MODIS and CALIPSO data. The results shows that the difference between MODIS and CALIPSO changes from −3~2 km to −2.0~2.5 km, and the maximum difference changes from about −0.8 km to about 0.2 km. In the context of different vertical levels and cloud optical depth, MODIS cirrus cloud top height is improved after correcting, which is more obvious at lower cloud top height and optical thinner cirrus.
APA, Harvard, Vancouver, ISO, and other styles
19

Lopes, F. J. S., E. Landulfo, and M. A. Vaughan. "Evaluating CALIPSO's 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil." Atmospheric Measurement Techniques 6, no. 11 (November 28, 2013): 3281–99. http://dx.doi.org/10.5194/amt-6-3281-2013.

Full text
Abstract:
Abstract. Since the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite first began probing the Earth's atmosphere on 13 June 2006, several research groups dedicated to investigating the atmosphere's optical properties have conducted measurement campaigns to validate the CALIPSO data products. Recently, in order to address the lack of CALIPSO validation studies in the Southern Hemisphere, and especially the South American continent, the Lasers Environmental Applications Research Group at Brazil's Nuclear and Energy Research Institute (IPEN) initiated efforts to assess CALIPSO's aerosol lidar ratio estimates using the AERONET sun photometers installed at five different locations in Brazil. In this study we develop a validation methodology to evaluate the accuracy of the modeled values of the lidar ratios used by the CALIPSO extinction algorithms. We recognize that the quality of any comparisons between satellite and ground-based measurements depends on the degree to which the instruments are collocated, and that even selecting the best spatial and temporal matches does not provide an unequivocal guarantee that both instruments are measuring the same air mass. The validation methodology presented in this study therefore applies backward and forward air mass trajectories in order to obtain the best possible match between the air masses sampled by the satellite and the ground-based instruments, and thus reduces the uncertainties associated with aerosol air mass variations. Quantitative comparisons of lidar ratios determined from the combination of AERONET optical depth measurements and CALIOP integrated attenuated backscatter measurements show good agreement with the model values assigned by the CALIOP algorithm. These comparisons yield a mean percentage difference of −1.5% ± 24%. This result confirms the accuracy in the lidar ratio estimates provided by the CALIOP algorithms over Brazil to within an uncertainty range of no more than 30%.
APA, Harvard, Vancouver, ISO, and other styles
20

Brunke, M. A., S. P. de Szoeke, P. Zuidema, and X. Zeng. "A comparison of ship and satellite measurements of cloud properties in the southeast Pacific stratus deck." Atmospheric Chemistry and Physics Discussions 10, no. 2 (February 8, 2010): 3301–18. http://dx.doi.org/10.5194/acpd-10-3301-2010.

Full text
Abstract:
Abstract. Here, liquid water path (LWP), cloud fraction, cloud top height, and cloud base height are retrieved by a suite of satellite instruments (the CPR aboard CloudSat, CALIOP aboard CALIPSO, and MODIS aboard Aqua) and compared to ship observations from research cruises made in 2001 and 2003–2007 into the stratus/stratocumulus deck over the southeast Pacific Ocean. It is found that CloudSat LWP is generally too high over this region and the CloudSat/CALIPSO cloud bases are too low which is to be expected from the increased sensitivity to precipitation by both the radar and lidar. This results in a relationship (LWP~h9) between CloudSat LWP and CALIPSO cloud thickness (h) that is very different from the adiabatic relationship (LWP~h2) from in situ observations. Furthermore, comparing results from a global model (CAM3.1) to ship observations reveals that, while the simulated LWP is quite reasonable, the model cloud is too thick and too low, allowing the model to have LWPs that are almost independent of h. Such differences may be reduced in future versions of both the satellite data and the model.
APA, Harvard, Vancouver, ISO, and other styles
21

Balmes, Kelly, and Qiang Fu. "An Investigation of Optically Very Thin Ice Clouds from Ground-Based ARM Raman Lidars." Atmosphere 9, no. 11 (November 14, 2018): 445. http://dx.doi.org/10.3390/atmos9110445.

Full text
Abstract:
Optically very thin ice clouds from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and ground-based Raman lidars (RL) at the atmospheric radiation measurement (ARM) sites of the Southern Great Plains (SGP) and Tropical Western Pacific (TWP) are analyzed. The optically very thin ice clouds, with ice cloud column optical depths below 0.01, are about 23% of the transparent ice-cloudy profiles from the RL, compared to 4–7% from CALIPSO. The majority (66–76%) of optically very thin ice clouds from the RLs are found to be adjacent to ice clouds with ice cloud column optical depths greater than 0.01. The temporal structure of RL-observed optically very thin ice clouds indicates a clear sky–cloud continuum. Global cloudiness estimates from CALIPSO observations leveraged with high-sensitivity RL observations suggest that CALIPSO may underestimate the global cloud fraction when considering optically very thin ice clouds.
APA, Harvard, Vancouver, ISO, and other styles
22

Nam, Christine C. W., and Johannes Quaas. "Evaluation of Clouds and Precipitation in the ECHAM5 General Circulation Model Using CALIPSO and CloudSat Satellite Data." Journal of Climate 25, no. 14 (July 15, 2012): 4975–92. http://dx.doi.org/10.1175/jcli-d-11-00347.1.

Full text
Abstract:
Abstract Observations from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat satellites are used to evaluate clouds and precipitation in the ECHAM5 general circulation model. Active lidar and radar instruments on board CALIPSO and CloudSat allow the vertical distribution of clouds and their optical properties to be studied on a global scale. To evaluate the clouds modeled by ECHAM5 with CALIPSO and CloudSat, the lidar and radar satellite simulators of the Cloud Feedback Model Intercomparison Project’s Observation Simulator Package are used. Comparison of ECHAM5 with CALIPSO and CloudSat found large-scale features resolved by the model, such as the Hadley circulation, are captured well. The lidar simulator demonstrated ECHAM5 overestimates the amount of high-level clouds, particularly optically thin clouds. High-altitude clouds in ECHAM5 consistently produced greater lidar scattering ratios compared with CALIPSO. Consequently, the lidar signal in ECHAM5 frequently attenuated high in the atmosphere. The large scattering ratios were due to an underestimation of effective ice crystal radii in ECHAM5. Doubling the effective ice crystal radii improved the scattering ratios and frequency of attenuation. Additionally, doubling the effective ice crystal radii improved the detection of ECHAM5’s highest-level clouds by the radar simulator, in better agreement with CloudSat. ECHAM5 was also shown to significantly underestimate midlevel clouds and (sub)tropical low-level clouds. The low-level clouds produced were consistently perceived by the lidar simulator as too optically thick. The radar simulator demonstrated ECHAM5 overestimates the frequency of precipitation, yet underestimates its intensity compared with CloudSat observations. These findings imply compensating mechanisms in ECHAM5 balance out the radiative imbalance caused by incorrect optical properties of clouds and consistently large hydrometeors in the atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
23

Lopes, F. J. S., E. Landulfo, and M. A. Vaughan. "Assessment of the CALIPSO Lidar 532 nm version 3 lidar ratio models using a ground-based lidar and AERONET sun photometers in Brazil." Atmospheric Measurement Techniques Discussions 6, no. 1 (February 1, 2013): 1143–99. http://dx.doi.org/10.5194/amtd-6-1143-2013.

Full text
Abstract:
Abstract. Since the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite first began probing the Earth's atmosphere on 13 June 2006, several research groups dedicated to investigating the atmosphere's optical properties have conducted measurement campaigns to validate the CALIPSO data products. Recently, in order to address the lack of CALIPSO validation studies in the Southern Hemisphere, and especially the South American continent, the Lasers Environmental Applications Research Group at Brazil's Nuclear and Energy Research Institute (IPEN) initiated efforts to assess CALIPSO's aerosol lidar ratio estimates using two ground-based remote sensing instruments: a single elastic backscatter lidar system and the AERONET sun photometers installed at five different locations in Brazil. In this study we develop a validation methodology to assess the accuracy of the modeled values of the lidar ratios used by the CALIPSO extinction algorithms. We recognize that the quality of any comparisons between satellite and ground-based measurements depends on the degree to which the instruments are collocated, and that even selecting the best spatial and temporal matches does not provide an unequivocal guarantee that both instruments are measuring the same air mass. The validation methodology presented in this study therefore applies backward and forward air mass trajectories in order to obtain the best possible match between the air masses sampled by the satellite and the ground-based instruments, and thus reduces the uncertainties associated with aerosol air mass variations. Quantitative comparisons of lidar ratio values determined from the combination of AERONET optical depth measurements and CALIOP integrated attenuated backscatter show good agreement with the model values assigned by the CALIOP algorithm. These comparisons yield a mean percentage difference of −2% ± 26%. Similarly, lidar ratio values retrieved by the elastic backscatter lidar system at IPEN show a mean percentage difference of −2% ± 15% when compared with CALIOP's lidar ratio. These results confirm the accuracy in the lidar ratio estimates provided by the CALIOP algorithms to within an uncertainty range of no more than 30%.
APA, Harvard, Vancouver, ISO, and other styles
24

Papagiannopoulos, N., L. Mona, L. Alados-Arboledas, V. Amiridis, H. Baars, I. Binietoglou, D. Bortoli, et al. "CALIPSO climatological products: evaluation and suggestions from EARLINET." Atmospheric Chemistry and Physics Discussions 15, no. 21 (November 6, 2015): 31197–246. http://dx.doi.org/10.5194/acpd-15-31197-2015.

Full text
Abstract:
Abstract. The CALIPSO Level 3 (CL3) product, available since December 2011, is the most recent data set produced by the observations of the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud–Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) space platform. The European Aerosol Research Lidar Network (EARLINET), based mainly on multi-wavelength Raman lidar systems, is the most appropriate ground-based reference for CALIPSO calibration/validation studies on a continental scale. In this work, CALIPSO data are compared against EARLINET monthly averaged profiles obtained by measurements performed during CALIPSO overpasess. In order to mitigate uncertainties due to spatial and temporal differences, we reproduce a modified version of CL3 data starting from CALIPSO Level 2 (CL2) data. The spatial resolution is finer and nearly 2° × 2° (latitude × longitude) and only simultaneous measurements are used for ease of comparison. The CALIPSO monthly mean profiles following this approach are called CALIPSO Level 3*, CL3*. We find good agreement on the aerosol extinction coefficient, yet in most of the cases a small CALIPSO underestimation is observed with an average bias of 0.02 km−1 up to 4 km and 0.003 km−1 higher above. In contrast to CL3 standard product, CL3* data set offers the possibility to assess the CALIPSO performance also in terms of the particle backscatter coefficient keeping the same quality assurance criteria applied to extinction profiles. The mean relative difference in the comparison improved from 26.1 % for extinction to 13.7 % for backscatter, showing better performances of CALIPSO backscatter retrievals. Additionally, the aerosol typing comparison yielded a robust identification of Dust and Polluted Dust. Moreover, the CALIPSO aerosol-type-dependent lidar ratio selection is assessed by means of EARLINET observations, so as to investigate the performance of the extinction retrievals. The aerosol types of Dust, Polluted Dust, and Clean Continental showed noticeable discrepancy. Finally, the potential improvements of the lidar ratio assignment have been examined by adjusting it according to EARLINET derived values.
APA, Harvard, Vancouver, ISO, and other styles
25

Papagiannopoulos, Nikolaos, Lucia Mona, Lucas Alados-Arboledas, Vassilis Amiridis, Holger Baars, Ioannis Binietoglou, Daniele Bortoli, et al. "CALIPSO climatological products: evaluation and suggestions from EARLINET." Atmospheric Chemistry and Physics 16, no. 4 (February 29, 2016): 2341–57. http://dx.doi.org/10.5194/acp-16-2341-2016.

Full text
Abstract:
Abstract. The CALIPSO Level 3 (CL3) product is the most recent data set produced by the observations of the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud–Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) space platform. The European Aerosol Research Lidar Network (EARLINET), based mainly on multi-wavelength Raman lidar systems, is the most appropriate ground-based reference for CALIPSO calibration/validation studies on a continental scale. In this work, CALIPSO data are compared against EARLINET monthly averaged profiles obtained by measurements performed during CALIPSO overpasses. In order to mitigate uncertainties due to spatial and temporal differences, we reproduce a modified version of CL3 data starting from CALIPSO Level 2 (CL2) data. The spatial resolution is finer and nearly 2° × 2° (latitude × longitude) and only simultaneous measurements are used for ease of comparison. The CALIPSO monthly mean profiles following this approach are called CALIPSO Level 3*, CL3*. We find good agreement on the aerosol extinction coefficient, yet in most of the cases a small CALIPSO underestimation is observed with an average bias of 0.02 km−1 up to 4 km and 0.003 km−1 higher above. In contrast to CL3 standard product, the CL3* data set offers the possibility to assess the CALIPSO performance also in terms of the particle backscatter coefficient keeping the same quality assurance criteria applied to extinction profiles. The mean relative difference in the comparison improved from 25 % for extinction to 18 % for backscatter, showing better performances of CALIPSO backscatter retrievals. Additionally, the aerosol typing comparison yielded a robust identification of dust and polluted dust. Moreover, the CALIPSO aerosol-type-dependent lidar ratio selection is assessed by means of EARLINET observations, so as to investigate the performance of the extinction retrievals. The aerosol types of dust, polluted dust, and clean continental showed noticeable discrepancy. Finally, the potential improvements of the lidar ratio assignment have been examined by adjusting it according to EARLINET-derived values.
APA, Harvard, Vancouver, ISO, and other styles
26

Blanchard, Yann, Jacques Pelon, Edwin W. Eloranta, Kenneth P. Moran, Julien Delanoë, and Geneviève Sèze. "A Synergistic Analysis of Cloud Cover and Vertical Distribution from A-Train and Ground-Based Sensors over the High Arctic Station Eureka from 2006 to 2010." Journal of Applied Meteorology and Climatology 53, no. 11 (November 2014): 2553–70. http://dx.doi.org/10.1175/jamc-d-14-0021.1.

Full text
Abstract:
AbstractActive remote sensing instruments such as lidar and radar allow one to accurately detect the presence of clouds and give information on their vertical structure and phase. To better address cloud radiative impact over the Arctic area, a combined analysis based on lidar and radar ground-based and A-Train satellite measurements was carried out to evaluate the efficiency of cloud detection, as well as cloud type and vertical distribution, over the Eureka station (80°N, 86°W) between June 2006 and May 2010. Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat data were first compared with independent ground-based cloud measurements. Seasonal and monthly trends from independent observations were found to be similar among all datasets except when compared with the weather station observations because of the large reported fraction of ice crystals suspended in the lower troposphere in winter. Further investigations focused on satellite observations that are collocated in space and time with ground-based data. Cloud fraction occurrences from ground-based instruments correlated well with both CALIPSO operational products and combined CALIPSO–CloudSat retrievals, with a hit rate of 85%. The hit rate was only 77% for CloudSat products. The misdetections were mainly attributed to 1) undetected low-level clouds as a result of sensitivity loss and 2) missed clouds because of the distance between the satellite track and the station. The spaceborne lidar–radar synergy was found to be essential to have a complete picture of the cloud vertical profile down to 2 km. Errors are quantified and discussed.
APA, Harvard, Vancouver, ISO, and other styles
27

Khalesifard, Hamid R., and Farizeh Bayat. "Calipso recordings and monitoring dust storms over the open seas in south of the iran plateau." EPJ Web of Conferences 176 (2018): 05027. http://dx.doi.org/10.1051/epjconf/201817605027.

Full text
Abstract:
Open seas in the south of the Iran plateau are under the influence of heavy dust storms which are originating either from the Tigris and Euphrates basin, the Arabian Peninsula or Hamoun lake. We have used the recordings of the CALIPSO satellite to investigate the seasonal variations as well as the origins of the dust storms over the region. CALIPSO data set shows dust activities are frequent during May to September in the interested region and the Hamoun lake has considerable impacts on it.
APA, Harvard, Vancouver, ISO, and other styles
28

Jin, Hongchun, and Shaima L. Nasiri. "Evaluation of AIRS Cloud-Thermodynamic-Phase Determination with CALIPSO." Journal of Applied Meteorology and Climatology 53, no. 4 (April 2014): 1012–27. http://dx.doi.org/10.1175/jamc-d-13-0137.1.

Full text
Abstract:
AbstractAtmospheric Infrared Sounder (AIRS) infrared-based cloud-thermodynamic-phase retrievals are evaluated using the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) cloud thermodynamic phase. The AIRS cloud phase is derived from spectral information contained within the 8–12-μm window, and CALIPSO provides coincident pixel-scale observations of cloud phase using the depolarization capability of the 532-nm channel. Comparisons are performed between the AIRS and CALIPSO cloud-phase observations for single-layer (48.5% of all clouds), heterogeneous-layer (45.9%), and multilayered (5.6%) clouds. The AIRS ice phase is in agreement with CALIPSO for more than 90% of coincident observations globally, with the largest discrepancies found in high latitudes and multilayered clouds. AIRS water phase generally follows CALIPSO spatial patterns, but the frequency is lower by about a factor of 2. The ice and water phases of AIRS both show misclassifications about 1% of the time when compared with CALIPSO. Not all clouds demonstrate strong phase signatures in the AIRS spectrum, which leads AIRS to classify unknown phase to around 10% of CALIPSO’s ice clouds and 60% of CALIPSO’s water clouds. This study shows that the algorithm is capable of detecting ice clouds within the AIRS field of view and can be used as the first step in further retrievals of ice-cloud optical thickness and effective particle size.
APA, Harvard, Vancouver, ISO, and other styles
29

Delanoë, Julien, Alain Protat, Olivier Jourdan, Jacques Pelon, Mathieu Papazzoni, Régis Dupuy, Jean-Francois Gayet, and Caroline Jouan. "Comparison of Airborne In Situ, Airborne Radar–Lidar, and Spaceborne Radar–Lidar Retrievals of Polar Ice Cloud Properties Sampled during the POLARCAT Campaign." Journal of Atmospheric and Oceanic Technology 30, no. 1 (January 1, 2013): 57–73. http://dx.doi.org/10.1175/jtech-d-11-00200.1.

Full text
Abstract:
Abstract This study illustrates the high potential of RALI, the French airborne radar–lidar instrument, for studying cloud processes and evaluating satellite products when satellite overpasses are available. For an Arctic nimbostratus ice cloud collected on 1 April 2008 during the Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport (POLARCAT) campaign, the capability of this synergistic instrument to retrieve cloud properties and to characterize the cloud phase at scales smaller than a kilometer, which is crucial for cloud process analysis, is demonstrated. A variational approach, which combines radar and lidar, is used to retrieve the ice-water content (IWC), extinction, and effective radius. The combination of radar and lidar is shown to provide better retrievals than do stand-alone methods and, in general, the radar overestimates and the lidar underestimates IWC. As the sampled ice cloud was simultaneously observed by CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellites, a new way to assess satellite cloud products by combining in situ and active remote sensing measurements is identified. It was then possible to compare RALI to three satellite ice cloud products: CloudSat, CALIPSO, and the Cloud-Aerosol-Water-Radiation Interactions (ICARE) center’s radar–lidar project (DARDAR).
APA, Harvard, Vancouver, ISO, and other styles
30

Liu, Boming, Yingying Ma, Jiqiao Liu, Wei Gong, Wei Wang, and Ming Zhang. "Graphics algorithm for deriving atmospheric boundary layer heights from CALIPSO data." Atmospheric Measurement Techniques 11, no. 9 (September 7, 2018): 5075–85. http://dx.doi.org/10.5194/amt-11-5075-2018.

Full text
Abstract:
Abstract. The atmospheric boundary layer is an important atmospheric feature that affects environmental health and weather forecasting. In this study, we proposed a graphics algorithm for the derivation of atmospheric boundary layer height (BLH) from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data. Owing to the differences in scattering intensity between molecular and aerosol particles, the total attenuated backscatter coefficient 532 and attenuated backscatter coefficient 1064 were used simultaneously for BLH detection. The proposed algorithm transformed the gradient solution into graphics distribution solution to overcome the effects of large noise and improve the horizontal resolution. This method was then tested with real signals under different horizontal smoothing numbers (1, 3, 15 and 30). Finally, the results of BLH obtained by CALIPSO data were compared with the results retrieved by the ground-based lidar measurements. Under the horizontal smoothing number of 15, 12 and 9, the correlation coefficients between the BLH derived by the proposed algorithm and ground-based lidar were both 0.72. Under the horizontal smoothing number of 6, 3 and 1, the correlation coefficients between the BLH derived by graphics distribution method (GDM) algorithm and ground-based lidar were 0.47, 0.14 and 0.12, respectively. When the horizontal smoothing number was large (15, 12 and 9), the CALIPSO BLH derived by the proposed method demonstrated a good correlation with ground-based lidar. The algorithm provided a reliable result when the horizontal smoothing number was greater than 9. This finding indicated that the proposed algorithm can be applied to the CALIPSO satellite data with 3 and 5 km horizontal resolution.
APA, Harvard, Vancouver, ISO, and other styles
31

Richardson, Mark, Jussi Leinonen, Heather Q. Cronk, James McDuffie, Matthew D. Lebsock, and Graeme L. Stephens. "Marine liquid cloud geometric thickness retrieved from OCO-2's oxygen A-band spectrometer." Atmospheric Measurement Techniques 12, no. 3 (March 18, 2019): 1717–37. http://dx.doi.org/10.5194/amt-12-1717-2019.

Full text
Abstract:
Abstract. This paper introduces the OCO2CLD-LIDAR-AUX product, which uses the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar and the Orbiting Carbon Observatory-2 (OCO-2) hyperspectral A-band spectrometer. CALIPSO provides a prior cloud top pressure (Ptop) for an OCO-2-based retrieval of cloud optical depth, Ptop and cloud geometric thickness expressed in hPa. Measurements are of single-layer liquid clouds over oceans from September 2014 to December 2016 when collocated data are available. Retrieval performance is best for solar zenith angles <45∘ and when the cloud phase classification, which also uses OCO-2's weak CO2 band, is more confident. The highest quality optical depth retrievals agree with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) with discrepancies smaller than the MODIS-reported uncertainty. Retrieved thicknesses are consistent with a substantially subadiabatic structure over marine stratocumulus regions, in which extinction is weighted towards the cloud top. Cloud top pressure in these clouds shows a 4 hPa bias compared with CALIPSO which we attribute mainly to the assumed vertical structure of cloud extinction after showing little sensitivity to the presence of CALIPSO-identified aerosol layers or assumed cloud droplet effective radius. This is the first case of success in obtaining internal cloud structure from hyperspectral A-band measurements and exploits otherwise unused OCO-2 data. This retrieval approach should provide additional constraints on satellite-based estimates of cloud droplet number concentration from visible imagery, which rely on parameterization of the cloud thickness.
APA, Harvard, Vancouver, ISO, and other styles
32

Hu, Y., K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, et al. "Sea surface wind speed estimation from space-based lidar measurements." Atmospheric Chemistry and Physics Discussions 8, no. 1 (February 12, 2008): 2771–93. http://dx.doi.org/10.5194/acpd-8-2771-2008.

Full text
Abstract:
Abstract. Global satellite observations of lidar backscatter measurements acquired by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission and collocated sea surface wind speed data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), are used to investigate the relation between wind driven wave slope variance and sea surface wind speed. The new slope variance – wind speed relation established from this study is similar to the linear relation from Cox-Munk (1954) and the log-linear relation from Wu (1972, 1990) for wind speed larger than 7 m/s and 13.3 m/s, respectively. For wind speed less than 7 m/s, the slope variance is proportional to the square root of the wind speed, assuming a two dimensional isotropic Gaussian wave slope distribution. This slope variance – wind speed relation becomes linear if a one dimensional Gaussian wave slope distribution is assumed. Contributions from whitecaps and subsurface backscattering are effectively removed by using 532 nm lidar depolarization measurements. This new slope variance – wind speed relation is used to derive sea surface wind speed from CALIPSO single shot lidar measurements (70 m spot size), after correcting for atmospheric attenuation. The CALIPSO wind speed result agrees with the collocated AMSR-E wind speed, with 1.2 m/s rms error.
APA, Harvard, Vancouver, ISO, and other styles
33

Choudhury, Goutam, and Matthias Tesche. "Estimating cloud condensation nuclei concentrations from CALIPSO lidar measurements." Atmospheric Measurement Techniques 15, no. 3 (February 8, 2022): 639–54. http://dx.doi.org/10.5194/amt-15-639-2022.

Full text
Abstract:
Abstract. We present a novel methodology to estimate cloud condensation nuclei (CCN) concentrations from spaceborne CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar measurements. The algorithm utilizes (i) the CALIPSO-derived backscatter and extinction coefficient, depolarization ratio, and aerosol subtype information; (ii) the normalized volume size distributions and refractive indices from the CALIPSO aerosol model; and (iii) the MOPSMAP (modelled optical properties of ensembles of aerosol particles) optical modelling package. For each CALIPSO height bin, we first select the aerosol-type specific size distribution and then adjust it to reproduce the extinction coefficient derived from the CALIPSO retrieval. The scaled size distribution is integrated to estimate the aerosol number concentration, which is then used in the CCN parameterizations to calculate CCN concentrations at different supersaturations. To account for the hygroscopicity of continental and marine aerosols, we use the kappa parameterization and correct the size distributions before the scaling step. The sensitivity of the derived CCN concentrations to variations in the initial size distributions is also examined. It is found that the uncertainty associated with the algorithm can range between a factor of 2 and 3. Our results are comparable to results obtained using the POLIPHON (Polarization Lidar Photometer Networking) method for extinction coefficients larger than 0.05 km−1. An initial application to a case with coincident airborne in situ measurements for independent validation shows promising results and illustrates the potential of CALIPSO for constructing a global height-resolved CCN climatology.
APA, Harvard, Vancouver, ISO, and other styles
34

Mamouri, R. E., V. Amiridis, A. Papayannis, E. Giannakaki, G. Tsaknakis, and D. S. Balis. "Validation of CALIPSO space-borne-derived aerosol vertical structures using a ground-based lidar in Athens, Greece." Atmospheric Measurement Techniques Discussions 2, no. 1 (February 26, 2009): 561–87. http://dx.doi.org/10.5194/amtd-2-561-2009.

Full text
Abstract:
Abstract. We present initial aerosol validation results of the space-borne lidar CALIOP retrievals -onboard the CALIPSO satellite-, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E). A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA) in the framework of the European Aerosol Research LIdar NETwork (EARLINET), the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The duration of the ground-based lidar measurements was approximately two hours, centred on the satellite overpass time. From the statistical analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60%) which is attributed to the decrease of the CALIOP signal-to-noise ratio, as well as to the incomplete overlap height region of the ground based lidar and finally to the distance between the two instruments, resulting to the observation of possibly different air masses. In cases of aerosols layers underlying cirrus clouds, comparison results for aerosol tropospheric profiles become worst, illustrating the limitations of space-borne downward-looking lidar measurements due to strong signal attenuations.
APA, Harvard, Vancouver, ISO, and other styles
35

Liu, Yinghui, Steven A. Ackerman, Brent C. Maddux, Jeffrey R. Key, and Richard A. Frey. "Errors in Cloud Detection over the Arctic Using a Satellite Imager and Implications for Observing Feedback Mechanisms." Journal of Climate 23, no. 7 (April 1, 2010): 1894–907. http://dx.doi.org/10.1175/2009jcli3386.1.

Full text
Abstract:
Abstract Arctic sea ice extent has decreased dramatically over the last 30 years, and this trend is expected to continue through the twenty-first century. Changes in sea ice extent impact cloud cover, which in turn influences the surface energy budget. Understanding cloud feedback mechanisms requires an accurate determination of cloud cover over the polar regions, which must be obtained from satellite-based measurements. The accuracy of cloud detection using observations from space varies with surface type, complicating any assessment of climate trends as well as the understanding of ice–albedo and cloud–radiative feedback mechanisms. To explore the implications of this dependence on measurement capability, cloud amounts from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared with those from the CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder (CALIPSO) satellites in both daytime and nighttime during the time period from July 2006 to December 2008. MODIS is an imager that makes observations in the solar and infrared spectrum. The active sensors of CloudSat and CALIPSO, a radar and lidar, respectively, provide vertical cloud structures along a narrow curtain. Results clearly indicate that MODIS cloud mask products perform better over open water than over ice. Regional changes in cloud amount from CloudSat/CALIPSO and MODIS are categorized as a function of independent measurements of sea ice concentration (SIC) from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). As SIC increases from 10% to 90%, the mean cloud amounts from MODIS and CloudSat–CALIPSO both decrease; water that is more open is associated with increased cloud amount. However, this dependency on SIC is much stronger for MODIS than for CloudSat–CALIPSO, and is likely due to a low bias in MODIS cloud amount. The implications of this on the surface radiative energy budget using historical satellite measurements are discussed. The quantified ice–water difference in MODIS cloud detection can be used to adjust estimated trends in cloud amount in the presence of changing sea ice cover from an independent dataset. It was found that cloud amount trends in the Arctic might be in error by up to 2.7% per decade. The impact of these errors on the surface net cloud radiative effect (“forcing”) of the Arctic can be significant, as high as 8.5%.
APA, Harvard, Vancouver, ISO, and other styles
36

Viollier, Michel, Jacques Dupont, and J. Y. Balois. "Télédétection par satellite du matériel particulaire en suspension en Manche orientale." Hommes et Terres du Nord 3, no. 1 (1985): 230–33. http://dx.doi.org/10.3406/htn.1985.2004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pitts, M. C., L. R. Poole, and L. W. Thomason. "CALIPSO polar stratospheric cloud observations: second-generation detection algorithm and composition discrimination." Atmospheric Chemistry and Physics Discussions 9, no. 2 (March 27, 2009): 8121–57. http://dx.doi.org/10.5194/acpd-9-8121-2009.

Full text
Abstract:
Abstract. This paper focuses on polar stratospheric cloud (PSC) measurements by the CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) lidar system onboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spacecraft, which has been operating since June 2006. We describe a second-generation PSC detection algorithm that utilizes both the CALIOP 532-nm scattering ratio (ratio of total-to-molecular backscatter coefficients) and 532-nm perpendicular backscatter coefficient measurements for cloud detection. The inclusion of the perpendicular backscatter measurements enhances the detection of tenuous PSC mixtures containing low number densities of solid particles and leads to about a 15% increase in PSC areal coverage compared with our original algorithm. In addition, the new algorithm allows discrimination of PSCs by composition in terms of their ensemble backscatter and depolarization in a manner analogous to that used in previous ground-based and airborne lidar PSC studies. Based on theoretical optical calculations, we define four CALIPSO-based composition classes which we call supercooled ternary solution (STS), ice, and Mix1 and Mix2, denoting mixtures of STS with nitric acid trihydrate (NAT) particles in lower or higher number densities/volumes, respectively. We examine the evolution of PSCs for three Antarctic and two Arctic seasons and illustrate the unique attributes of the CALIPSO PSC database. These analyses show substantial interannual variability in PSC areal coverage and also the well-known contrast between the Antarctic and Arctic. The CALIPSO data also reveal seasonal and altitudinal variations in Antarctic PSC composition, which are related to changes in HNO3 and H2O observed by the Microwave Limb Sounder on the Aura satellite.
APA, Harvard, Vancouver, ISO, and other styles
38

Pitts, M. C., L. W. Thomason, L. R. Poole, and D. M. Winker. "Characterization of Polar Stratospheric Clouds with Space-Borne Lidar: CALIPSO and the 2006 Antarctic Season." Atmospheric Chemistry and Physics Discussions 7, no. 3 (June 5, 2007): 7933–85. http://dx.doi.org/10.5194/acpd-7-7933-2007.

Full text
Abstract:
Abstract. The role of polar stratospheric clouds in polar ozone loss has been well documented. The CALIPSO satellite mission offers a new opportunity to characterize PSCs on spatial and temporal scales previously impossible. A PSC detection algorithm based on a single wavelength threshold approach has been developed for CALIPSO. The method appears to accurately detect PSCs of all opacities, including tenuous clouds, with a very low rate of false positives and few missed clouds. We applied the algorithm to CALIOP data acquired during the 2006 Antarctic winter season from 13 June through 31 October. The spatial and temporal distribution of CALIPSO PSC observations is illustrated with weekly maps of PSC occurrence. The evolution of the 2006 PSC season is depicted by time series of daily PSC frequency as a function of altitude. Comparisons with "virtual" solar occultation data indicate that CALIPSO provides a different view of the PSC season than attained with previous solar occultation satellites. Measurement-based time series of PSC areal coverage and vertically-integrated PSC volume are computed from the CALIOP data. The observed area covered with PSCs is significantly smaller than would be inferred from the commonly used temperature-based proxy TNAT but is similar in magnitude to that inferred from TSTS . The potential of CALIOP measurements for investigating PSC composition is illustrated using combinations of lidar backscatter and volume depolarization for two CALIPSO PSC scenes.
APA, Harvard, Vancouver, ISO, and other styles
39

Pitts, M. C., L. W. Thomason, L. R. Poole, and D. M. Winker. "Characterization of Polar Stratospheric Clouds with spaceborne lidar: CALIPSO and the 2006 Antarctic season." Atmospheric Chemistry and Physics 7, no. 19 (October 10, 2007): 5207–28. http://dx.doi.org/10.5194/acp-7-5207-2007.

Full text
Abstract:
Abstract. The role of polar stratospheric clouds in polar ozone loss has been well documented. The CALIPSO satellite mission offers a new opportunity to characterize PSCs on spatial and temporal scales previously impossible. A PSC detection algorithm based on a single wavelength threshold approach has been developed for CALIPSO. The method appears to accurately detect PSCs of all opacities, including tenuous clouds, with a very low rate of false positives and few missed clouds. We applied the algorithm to CALIOP data acquired during the 2006 Antarctic winter season from 13 June through 31 October. The spatial and temporal distribution of CALIPSO PSC observations is illustrated with weekly maps of PSC occurrence. The evolution of the 2006 PSC season is depicted by time series of daily PSC frequency as a function of altitude. Comparisons with "virtual" solar occultation data indicate that CALIPSO provides a different view of the PSC season than attained with previous solar occultation satellites. Measurement-based time series of PSC areal coverage and vertically-integrated PSC volume are computed from the CALIOP data. The observed area covered with PSCs is significantly smaller than would be inferred from the commonly used temperature-based proxy TNAT but is similar in magnitude to that inferred from TSTS. The potential of CALIOP measurements for investigating PSC composition is illustrated using combinations of lidar backscatter and volume depolarization for two CALIPSO PSC scenes.
APA, Harvard, Vancouver, ISO, and other styles
40

Matsaguim Nguimdo, Cédric Aurélien, and Emmanuel D. Tiomo. "FORET D'ARBRES ALEATOIRES ET CLASSIFICATION D'IMAGES SATELLITES : RELATION ENTRE LA PRECISION DU MODELE D'ENTRAINEMENT ET LA PRECISION GLOBALE DE LA CLASSIFICATION." Revue Française de Photogrammétrie et de Télédétection, no. 222 (November 26, 2020): 3–14. http://dx.doi.org/10.52638/rfpt.2020.477.

Full text
Abstract:
Résumé: En télédétection, il existe un grand nombre d'algorithmes permettant de classifier une image satellite. Parmi ces algorithmes de classification, la Forêt d'Arbres Aléatoires apparait comme particulièrement performant. Cette étude a pour objectifs d'évaluer (1) l'importance de la sélection des images pour le niveau de précision du modèle d'entrainement et (2) la nature de la relation qui existe entre le niveau de précision du modèle et celui de la précision globale de la carte thématique résultant de la classification de l'image satellite avec cet algorithme de classification. A partir d'une image Landsat 8 OLI prise au-dessus d'une zone de montagne tropicale : la région de l'Ouest Cameroun, 35 modèles ont été construits et testés. Les résultats montrent que le niveau de la précision globale des résultats de la Forêts d'Arbres Aléatoires est étroitement dépendant d'une part de la précision du modèle d'entrainement utilisé pour classifier l'image satellite, et d'autre part du choix des images utilisées pour entrainer ce modèle. De plus, la sélection de ces images est elle-même dépendante de la qualité des zones d'entrainement qui serviront à la construction du modèle. Il est donc important de mettre en accent particulier sur la qualité des données d'entrée afin de garantir des résultats satisfaisants avec cet algorithme. Mots clés : Forêt d’Arbres Aléatoires ; précision ; modèle d’entrainement ; télédétection ; Cameroun
APA, Harvard, Vancouver, ISO, and other styles
41

Hu, Yongxiang, David Winker, Mark Vaughan, Bing Lin, Ali Omar, Charles Trepte, David Flittner, et al. "CALIPSO/CALIOP Cloud Phase Discrimination Algorithm." Journal of Atmospheric and Oceanic Technology 26, no. 11 (November 1, 2009): 2293–309. http://dx.doi.org/10.1175/2009jtecha1280.1.

Full text
Abstract:
Abstract The current cloud thermodynamic phase discrimination by Cloud-Aerosol Lidar Pathfinder Satellite Observations (CALIPSO) is based on the depolarization of backscattered light measured by its lidar [Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)]. It assumes that backscattered light from ice crystals is depolarizing, whereas water clouds, being spherical, result in minimal depolarization. However, because of the relationship between the CALIOP field of view (FOV) and the large distance between the satellite and clouds and because of the frequent presence of oriented ice crystals, there is often a weak correlation between measured depolarization and phase, which thereby creates significant uncertainties in the current CALIOP phase retrieval. For water clouds, the CALIOP-measured depolarization can be large because of multiple scattering, whereas horizontally oriented ice particles depolarize only weakly and behave similarly to water clouds. Because of the nonunique depolarization–cloud phase relationship, more constraints are necessary to uniquely determine cloud phase. Based on theoretical and modeling studies, an improved cloud phase determination algorithm has been developed. Instead of depending primarily on layer-integrated depolarization ratios, this algorithm differentiates cloud phases by using the spatial correlation of layer-integrated attenuated backscatter and layer-integrated particulate depolarization ratio. This approach includes a two-step process: 1) use of a simple two-dimensional threshold method to provide a preliminary identification of ice clouds containing randomly oriented particles, ice clouds with horizontally oriented particles, and possible water clouds and 2) application of a spatial coherence analysis technique to separate water clouds from ice clouds containing horizontally oriented ice particles. Other information, such as temperature, color ratio, and vertical variation of depolarization ratio, is also considered. The algorithm works well for both the 0.3° and 3° off-nadir lidar pointing geometry. When the lidar is pointed at 0.3° off nadir, half of the opaque ice clouds and about one-third of all ice clouds have a significant lidar backscatter contribution from specular reflections from horizontally oriented particles. At 3° off nadir, the lidar backscatter signals for roughly 30% of opaque ice clouds and 20% of all observed ice clouds are contaminated by horizontally oriented crystals.
APA, Harvard, Vancouver, ISO, and other styles
42

Liu, Yinghui. "Impacts of active satellite sensors' low-level cloud detection limitations on cloud radiative forcing in the Arctic." Atmospheric Chemistry and Physics 22, no. 12 (June 23, 2022): 8151–73. http://dx.doi.org/10.5194/acp-22-8151-2022.

Full text
Abstract:
Abstract. Previous studies revealed that satellites sensors with the best detection capability identify 25 %–40 % and 0 %–25 % fewer clouds below 0.5 and between 0.5–1.0 km, respectively, over the Arctic. Quantifying the impacts of cloud detection limitations on the radiation flux are critical especially over the Arctic Ocean considering the dramatic changes in Arctic sea ice. In this study, the proxies of the space-based radar, CloudSat, and lidar, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), cloud masks are derived based on simulated radar reflectivity with QuickBeam and cloud optical thickness using retrieved cloud properties from surface-based radar and lidar during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. Limitations in low-level cloud detection by the space-based active sensors, and the impact of these limitations on the radiation fluxes at the surface and the top of the atmosphere (TOA), are estimated with radiative transfer model Streamer. The results show that the combined CloudSat and CALIPSO product generally detects all clouds above 1 km, while detecting 25 % (9 %) fewer in absolute values below 600 m (600 m to 1 km) than surface observations. These detection limitations lead to uncertainties in the monthly mean cloud radiative forcing (CRF), with maximum absolute monthly mean values of 2.5 and 3.4 Wm−2 at the surface and TOA, respectively. Cloud information from only CALIPSO or CloudSat lead to larger cloud detection differences compared to the surface observations and larger CRF uncertainties with absolute monthly means larger than 10.0 Wm−2 at the surface and TOA. The uncertainties for individual cases are larger – up to 30 Wm−2. These uncertainties need to be considered when radiation flux products from CloudSat and CALIPSO are used in climate and weather studies.
APA, Harvard, Vancouver, ISO, and other styles
43

Carn, S. A., N. A. Krotkov, K. Yang, R. M. Hoff, A. J. Prata, A. J. Krueger, S. C. Loughlin, and P. F. Levelt. "Extended observations of volcanic SO<sub>2</sub> and sulfate aerosol in the stratosphere." Atmospheric Chemistry and Physics Discussions 7, no. 1 (February 23, 2007): 2857–71. http://dx.doi.org/10.5194/acpd-7-2857-2007.

Full text
Abstract:
Abstract. Sulfate aerosol produced after injection of sulfur dioxide (SO2) into the stratosphere by volcanic eruptions can trigger climate change. We present new satellite data from the Ozone Monitoring Instrument (OMI) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) missions that reveal the composition, structure and longevity of a stratospheric SO2 cloud and derived sulfate layer following a modest eruption (0.2 Tg total SO2) of Soufriere Hills volcano, Montserrat on 20 May 2006. The SO2 cloud alone was tracked for over 3 weeks and a distance of over 20 000 km; unprecedented for an eruption of this size. Derived sulfate aerosol at an altitude of ~20 km had circled the globe by 22 June and remained visible in CALIPSO data until at least 6 July. These synergistic NASA A-Train observations permit a new appreciation of the potential effects of frequent, small-to-moderate volcanic eruptions on stratospheric composition and climate.
APA, Harvard, Vancouver, ISO, and other styles
44

Biondi, R., W. J. Randel, S. P. Ho, T. Neubert, and S. Syndergaard. "Thermal structure of intense convective clouds derived from GPS radio occultations." Atmospheric Chemistry and Physics Discussions 11, no. 10 (October 27, 2011): 29093–116. http://dx.doi.org/10.5194/acpd-11-29093-2011.

Full text
Abstract:
Abstract. Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS occultations with CALIPSO profiles over deep convection. Results show a sharp spike in GPS bending angle highly correlated to the top of the clouds, corresponding to anomalously cold temperatures within the clouds. Above the clouds the temperatures return to background conditions, and there is a strong inversion at cloud top. For cloud tops below 14 km, the temperature lapse rate within the cloud often approaches a moist adiabat, consistent with rapid undiluted ascent within the convective systems.
APA, Harvard, Vancouver, ISO, and other styles
45

Biondi, R., W. J. Randel, S. P. Ho, T. Neubert, and S. Syndergaard. "Thermal structure of intense convective clouds derived from GPS radio occultations." Atmospheric Chemistry and Physics 12, no. 12 (June 18, 2012): 5309–18. http://dx.doi.org/10.5194/acp-12-5309-2012.

Full text
Abstract:
Abstract. Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS occultations with CALIPSO profiles over deep convection. Results show a sharp spike in GPS bending angle highly correlated to the top of the clouds, corresponding to anomalously cold temperatures within the clouds. Above the clouds the temperatures return to background conditions, and there is a strong inversion at cloud top. For cloud tops below 14 km, the temperature lapse rate within the cloud often approaches a moist adiabat, consistent with rapid undiluted ascent within the convective systems.
APA, Harvard, Vancouver, ISO, and other styles
46

Sekiyama, T. T., T. Y. Tanaka, A. Shimizu, and T. Miyoshi. "Data assimilation of CALIPSO aerosol observations." Atmospheric Chemistry and Physics Discussions 9, no. 2 (March 4, 2009): 5785–808. http://dx.doi.org/10.5194/acpd-9-5785-2009.

Full text
Abstract:
Abstract. We have developed an advanced data assimilation system for a global aerosol model with a four-dimensional ensemble Kalman filter in which the Level 1B data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were successfully assimilated for the first time, to the best of the authors' knowledge. A one-month data assimilation cycle experiment for dust, sulfate, and sea-salt aerosols was performed in May 2007. The results were validated via two independent observations: 1) the ground-based lidar network in East Asia, managed by the National Institute for Environmental Studies of Japan, and 2) weather reports of aeolian dust events in Japan. Detailed four-dimensional structures of aerosol outflows from source regions over oceans and continents for various particle types and sizes were well reproduced. The intensity of dust emission at each grid point was also globally corrected. These results are valuable for the comprehensive analysis of aerosol behavior as well as aerosol forecasting.
APA, Harvard, Vancouver, ISO, and other styles
47

Sekiyama, T. T., T. Y. Tanaka, A. Shimizu, and T. Miyoshi. "Data assimilation of CALIPSO aerosol observations." Atmospheric Chemistry and Physics 10, no. 1 (January 5, 2010): 39–49. http://dx.doi.org/10.5194/acp-10-39-2010.

Full text
Abstract:
Abstract. We have developed an advanced data assimilation system for a global aerosol model with a four-dimensional ensemble Kalman filter in which the Level 1B data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were successfully assimilated for the first time, to the best of the authors' knowledge. A one-month data assimilation cycle experiment for dust, sulfate, and sea-salt aerosols was performed in May 2007. The results were validated via two independent observations: 1) the ground-based lidar network in East Asia, managed by the National Institute for Environmental Studies of Japan, and 2) weather reports of aeolian dust events in Japan. Detailed four-dimensional structures of aerosol outflows from source regions over oceans and continents for various particle types and sizes were well reproduced. The intensity of dust emission at each grid point was also corrected by this data assimilation system. These results are valuable for the comprehensive analysis of aerosol behavior as well as aerosol forecasting.
APA, Harvard, Vancouver, ISO, and other styles
48

Alexandru, Dandocsi, Sapartoc Georgiana, Preda Liliana, Stan Cristina, and Radu Cristian. "Aerosol characterization from active and passive ground measurements and satellite data." EPJ Web of Conferences 176 (2018): 08014. http://dx.doi.org/10.1051/epjconf/201817608014.

Full text
Abstract:
One year records of AErosolROboticNEtwork (AERONET) sun photometer measurements were analyzed to investigate the seasonal and daily variations of columnar aerosol optical depth. Some irregularities of this time series are associated with aerosol intrusions. The aerosol layers indicated by these irregularities are identified and characterized using the extensive optical data from coincident CALIPSO satellite observations and ground based LIDAR.
APA, Harvard, Vancouver, ISO, and other styles
49

Tesche, Matthias, Peggy Achtert, and Michael C. Pitts. "On the best locations for ground-based polar stratospheric cloud (PSC) observations." Atmospheric Chemistry and Physics 21, no. 1 (January 15, 2021): 505–16. http://dx.doi.org/10.5194/acp-21-505-2021.

Full text
Abstract:
Abstract. Spaceborne observations of polar stratospheric clouds (PSCs) with the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite provide a comprehensive picture of the occurrence of Arctic and Antarctic PSCs as well as their microphysical properties. However, advances in understanding PSC microphysics also require measurements with ground-based instruments, which are often superior to CALIOP in terms of, for example, time resolution, measured parameters, and signal-to-noise ratio. This advantage is balanced by the location of ground-based PSC observations and their dependence on tropospheric cloudiness. CALIPSO observations during the boreal winters from December 2006 to February 2018 and the austral winters 2012 and 2015 are used to assess the effect of tropospheric cloudiness and other measurement-inhibiting factors on the representativeness of ground-based PSC observations with lidar in the Arctic and Antarctic, respectively. Information on tropospheric and stratospheric clouds from the CALIPSO Cloud Profile product (05kmCPro version 4.10) and the CALIPSO polar stratospheric cloud mask version 2, respectively, is combined on a profile-by-profile basis to identify conditions under which a ground-based lidar is likely to perform useful measurements for the analysis of PSC occurrence. It is found that the location of a ground-based measurement together with the related tropospheric cloudiness can have a profound impact on the derived PSC statistics and that these findings are rarely in agreement with polewide results from CALIOP observations. Considering the current polar research infrastructure, it is concluded that the most suitable sites for the expansion of capabilities for ground-based lidar observations of PSCs are Summit and Villum in the Arctic and Mawson, Troll, and Vostok in the Antarctic.
APA, Harvard, Vancouver, ISO, and other styles
50

Pitts, M. C., L. R. Poole, and L. W. Thomason. "CALIPSO polar stratospheric cloud observations: second-generation detection algorithm and composition discrimination." Atmospheric Chemistry and Physics 9, no. 19 (October 12, 2009): 7577–89. http://dx.doi.org/10.5194/acp-9-7577-2009.

Full text
Abstract:
Abstract. This paper focuses on polar stratospheric cloud (PSC) measurements by the CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) lidar system onboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spacecraft, which has been operating since June 2006. We describe a second-generation PSC detection algorithm that utilizes both the CALIOP 532-nm scattering ratio (ratio of total-to-molecular backscatter coefficients) and 532-nm perpendicular backscatter coefficient measurements for cloud detection. The inclusion of the perpendicular backscatter measurements enhances the detection of tenuous PSC mixtures containing low number densities of solid (likely nitric acid trihydrate, NAT) particles and leads to about a 15% increase in PSC areal coverage compared with our original algorithm. Although these low number density NAT mixtures would have a minimal impact on chlorine activation due to their relatively small particle surface area, these particles may play a significant role in denitrification and therefore are an important component of our PSC detection. In addition, the new algorithm allows discrimination of PSCs by composition in terms of their ensemble backscatter and depolarization in a manner analogous to that used in previous ground-based and airborne lidar PSC studies. Based on theoretical optical calculations, we define four CALIPSO-based composition classes which we call supercooled ternary solution (STS), ice, and Mix1 and Mix2, denoting mixtures of STS with NAT particles in lower or higher number densities/volumes, respectively. We examine the evolution of PSCs for three Antarctic and two Arctic seasons and illustrate the unique attributes of the CALIPSO PSC database. These analyses show substantial interannual variability in PSC areal coverage and also the well-known contrast between the Antarctic and Arctic. The CALIPSO data also reveal seasonal and altitudinal variations in Antarctic PSC composition, which are related to changes in HNO3 and H2O observed by the Microwave Limb Sounder on the Aura satellite.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography