Academic literature on the topic 'Calcule time-Scales'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Calcule time-Scales.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Calcule time-Scales"
Sahir, M. J. S. "Объединение классических и динамических неравенств, возникающих при анализе временных масштабов." Вестник КРАУНЦ. Физико-математические науки, no. 4 (December 29, 2020): 26–36. http://dx.doi.org/10.26117/2079-6641-2020-33-4-26-36.
Full textLe-Anh, Duy, Ashit Rao, Amy Stetten, Subhash Ayirala, Mohammed Alotaibi, Michel Duits, Han Gardeniers, Ali AlYousef, and Frieder Mugele. "Oil Displacement in Calcite-Coated Microfluidic Chips via Waterflooding at Elevated Temperatures and Long Times." Micromachines 13, no. 8 (August 14, 2022): 1316. http://dx.doi.org/10.3390/mi13081316.
Full textVan Rampelbergh, M., S. Verheyden, M. Allan, Y. Quinif, E. Keppens, and P. Claeys. "Seasonal variations recorded in cave monitoring results and a 10 year monthly resolved speleothem δ<sup>18</sup>O and δ<sup>13</sup>C record from the Han-sur-Lesse cave, Belgium." Climate of the Past Discussions 10, no. 2 (April 22, 2014): 1821–56. http://dx.doi.org/10.5194/cpd-10-1821-2014.
Full textPutranto, W. A., Y. Umardhani, Sulistyo, Yurianto, and A. P. Bayuseno. "Analysis of calcium carbonate polymorphs deposited in water piping system and the effect of tartaric acid additive." MATEC Web of Conferences 159 (2018): 01054. http://dx.doi.org/10.1051/matecconf/201815901054.
Full textKhan, Hares, Alo Laas, Rafael Marcé, Margot Sepp, and Biel Obrador. "Eutrophication and Geochemistry Drive Pelagic Calcite Precipitation in Lakes." Water 13, no. 5 (February 25, 2021): 597. http://dx.doi.org/10.3390/w13050597.
Full textBlain, Gabriel C., and Monica C. Meschiatti. "Inadequacy of the gamma distribution to calculate the Standardized Precipitation Index." Revista Brasileira de Engenharia Agrícola e Ambiental 19, no. 12 (December 2015): 1129–35. http://dx.doi.org/10.1590/1807-1929/agriambi.v19n12p1129-1135.
Full textCaley, T., and D. M. Roche. "δ<sup>18</sup>O water isotope in the <i>i</i>LOVECLIM model (version 1.0) – Part 3: A palaeo-perspective based on present-day data–model comparison for oxygen stable isotopes in carbonates." Geoscientific Model Development 6, no. 5 (September 12, 2013): 1505–16. http://dx.doi.org/10.5194/gmd-6-1505-2013.
Full textCaley, T., and D. M. Roche. "δ<sup>18</sup>O water isotope in the <i>i</i>LOVECLIM model (version 1.0) – Part 3: A paleoperspective based on present-day data-model comparison for oxygen stable isotopes in carbonates." Geoscientific Model Development Discussions 6, no. 1 (March 4, 2013): 1527–58. http://dx.doi.org/10.5194/gmdd-6-1527-2013.
Full textClaes, Steven, Fadi H. Nader, and Souhail Youssef. "Coupled experimental/numerical workflow for assessing quantitative diagenesis and dynamic porosity/permeability evolution in calcite-cemented sandstone reservoir rocks." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 73 (2018): 36. http://dx.doi.org/10.2516/ogst/2018027.
Full textde Wet, Carol B., Andrew P. de Wet, Linda Godfrey, Elizabeth Driscoll, Samuel Patzkowsky, Chi Xu, Sophia Gigliotti, and Melina Feitl. "Pliocene short-term climate changes preserved in continental shallow lacustrine-palustrine carbonates: Western Opache Formation, Atacama Desert, Chile." GSA Bulletin 132, no. 9-10 (December 23, 2019): 1795–816. http://dx.doi.org/10.1130/b35227.1.
Full textDissertations / Theses on the topic "Calcule time-Scales"
Hariz, Belgacem Khader. "Higher-order Embedding Formalism, Noether’s Theorem on Time Scales and Eringen’s Nonlocal Elastica." Electronic Thesis or Diss., Pau, 2022. https://theses.hal.science/tel-03981833.
Full textThe aim of this thesis is to deal with the connection between continuous and discrete versions of a given object. This connection can be studied in two different directions: one going from a continuous setting to a discrete analogue, and in a symmetric way, from a discrete setting to a continuous one. The first procedure is typically used in numerical analysis in order to construct numerical integrators and the second one is typical of continuous modeling for the study of micro-structured materials.In this manuscript, we focus our attention on three distinct problems. In the first part, we propose a general framework precising different ways to derive a discrete version of a differential equation called discrete embedding formalism.More precisely, we exhibit three main discrete associate: the differential, integral or variational structure in both classical and high-order approximations.The second part focuses on the preservation of symmetries for discrete versions of Lagrangian and Hamiltonian systems, i.e., the discrete analogue of Noether's theorem.Finally, the third part applies these results in mechanics, i.e., the problem studied by N. Challamel, Kocsis and Wang called Eringen's nonlocal elastica equation which can beobtained by the continualization method. Precisely, we construct a discrete version of Eringen's nonlocal elastica then we study the difference with Challamel's proposal
Ferreira, Rui Alexandre Cardoso. "Calculus of variations on time scales and discrete fractional calculus." Doctoral thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/2921.
Full textEstudamos problemas do cálculo das variações e controlo óptimo no contexto das escalas temporais. Especificamente, obtemos condições necessárias de optimalidade do tipo de Euler–Lagrange tanto para lagrangianos dependendo de derivadas delta de ordem superior como para problemas isoperimétricos. Desenvolvemos também alguns métodos directos que permitem resolver determinadas classes de problemas variacionais através de desigualdades em escalas temporais. No último capítulo apresentamos operadores de diferença fraccionários e propomos um novo cálculo das variações fraccionário em tempo discreto. Obtemos as correspondentes condições necessárias de Euler– Lagrange e Legendre, ilustrando depois a teoria com alguns exemplos.
We study problems of the calculus of variations and optimal control within the framework of time scales. Specifically, we obtain Euler–Lagrange type equations for both Lagrangians depending on higher order delta derivatives and isoperimetric problems. We also develop some direct methods to solve certain classes of variational problems via dynamic inequalities. In the last chapter we introduce fractional difference operators and propose a new discrete-time fractional calculus of variations. Corresponding Euler–Lagrange and Legendre necessary optimality conditions are derived and some illustrative examples provided.
Dryl, Monika. "Calculus of variations on time scales and applications to economics." Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/12869.
Full textWe consider some problems of the calculus of variations on time scales. On the beginning our attention is paid on two inverse extremal problems on arbitrary time scales. Firstly, using the Euler-Lagrange equation and the strengthened Legendre condition, we derive a general form for a variation functional that attains a local minimum at a given point of the vector space. Furthermore, we prove a necessary condition for a dynamic integro-differential equation to be an Euler-Lagrange equation. New and interesting results for the discrete and quantum calculus are obtained as particular cases. Afterwards, we prove Euler-Lagrange type equations and transversality conditions for generalized infinite horizon problems. Next we investigate the composition of a certain scalar function with delta and nabla integrals of a vector valued field. Euler-Lagrange equations in integral form, transversality conditions, and necessary optimality conditions for isoperimetric problems, on an arbitrary time scale, are proved. In the end, two main issues of application of time scales in economic, with interesting results, are presented. In the former case we consider a firm that wants to program its production and investment policies to reach a given production rate and to maximize its future market competitiveness. The model which describes firm activities is studied in two different ways: using classical discretizations; and applying discrete versions of our result on time scales. In the end we compare the cost functional values obtained from those two approaches. The latter problem is more complex and relates to rate of inflation, p, and rate of unemployment, u, which inflict a social loss. Using known relations between p, u, and the expected rate of inflation π, we rewrite the social loss function as a function of π. We present this model in the time scale framework and find an optimal path π that minimizes the total social loss over a given time interval.
Consideramos alguns problemas do cálculo das variações em escalas temporais. Primeiramente, demonstramos equações do tipo de Euler-Lagrange e condições de transversalidade para problemas de horizonte infinito generalizados. De seguida, consideramos a composição de uma certa função escalar com os integrais delta e nabla de um campo vetorial. Presta-se atenção a problemas extremais inversos para funcionais variacionais em escalas de tempo arbitrárias. Começamos por demonstrar uma condição necessária para uma equação dinâmica integro-diferencial ser uma equação de Euler-Lagrange. Resultados novos e interessantes para o cálculo discreto e quantum são obtidos como casos particulares. Além disso, usando a equação de Euler-Lagrange e a condição de Legendre fortalecida, obtemos uma forma geral para uma funcional variacional atingir um mínimo local, num determinado ponto do espaço vetorial. No final, duas aplicações interessantes em termos económicos são apresentadas. No primeiro caso, consideramos uma empresa que quer programar as suas políticas de produção e de investimento para alcançar uma determinada taxa de produção e maximizar a sua competitividade no mercado futuro. O outro problema é mais complexo e relaciona a inflação e o desemprego, que inflige uma perda social. A perda social é escrita como uma função da taxa de inflação p e a taxa de desemprego u, com diferentes pesos. Em seguida, usando as relações conhecidas entre p, u, e a taxa de inflação esperada π, reescrevemos a função de perda social como uma função de π. A resposta é obtida através da aplicação do cálculo das variações, a fim de encontrar a curva ótima π que minimiza a perda social total ao longo de um determinado intervalo de tempo.
Bastos, Nuno Rafael de Oliveira. "Fractional calculus on time scales - Cálculo fraccional em escalas temporais." Doctoral thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/8566.
Full textIntroduzimos um cálculo das variações fraccional nas escalas temporais ℤ e (hℤ)!. Estabelecemos a primeira e a segunda condição necessária de optimalidade. São dados alguns exemplos numéricos que ilustram o uso quer da nova condição de Euler–Lagrange quer da nova condição do tipo de Legendre. Introduzimos também novas definições de derivada fraccional e de integral fraccional numa escala temporal com recurso à transformada inversa generalizada de Laplace.
We introduce a discrete-time fractional calculus of variations on the time scales ℤ and (ℎℤ)!. First and second order necessary optimality conditions are established. Some numerical examples illustrating the use of the new Euler— Lagrange and Legendre type conditions are given. We also give new definitions of fractional derivatives and integrals on time scales via the inverse generalized Laplace transform.
McMahon, Chris. "Calculus of Variations on Time Scales and Its Applications to Economics." TopSCHOLAR®, 2008. http://digitalcommons.wku.edu/theses/370.
Full textArslan, Aykut. "Discrete Fractional Hermite-Hadamard Inequality." TopSCHOLAR®, 2017. http://digitalcommons.wku.edu/theses/1940.
Full textKisela, Tomáš. "Basics of Qualitative Theory of Linear Fractional Difference Equations." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-234025.
Full textBooks on the topic "Calcule time-Scales"
Variational Calculus on Time Scales. Nova Science Publishers, Incorporated, 2018.
Find full textGeorgiev, Svetlin G. Variational Calculus on Time Scales. Nova Science Publishers, Incorporated, 2018.
Find full textBohner, Martin, and Svetlin G. Georgiev. Multivariable Dynamic Calculus on Time Scales. Springer, 2017.
Find full textBohner, Martin, and Svetlin G. Georgiev. Multivariable Dynamic Calculus on Time Scales. Springer, 2017.
Find full textBohner, Martin, and Svetlin G. Georgiev. Multivariable Dynamic Calculus on Time Scales. Springer, 2018.
Find full textHardy Type Inequalities on Time Scales. Springer, 2016.
Find full textO'Regan, Donal, Ravi P. Agarwal, and Samir H. Saker. Hardy Type Inequalities on Time Scales. Springer, 2016.
Find full textO'Regan, Donal, Ravi P. Agarwal, and Samir H. Saker. Hardy Type Inequalities on Time Scales. Springer, 2018.
Find full textR, Anderson Douglas, and Svetlin G. Georgiev. Conformable Dynamic Equations on Time Scales. Taylor & Francis Group, 2020.
Find full textR, Anderson Douglas, and Svetlin G. Georgiev. Conformable Dynamic Equations on Time Scales. Taylor & Francis Group, 2020.
Find full textBook chapters on the topic "Calcule time-Scales"
Bohner, Martin, and Svetlin G. Georgiev. "Time Scales." In Multivariable Dynamic Calculus on Time Scales, 1–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9_1.
Full textSeiffertt, John, and Donald C. Wunsch. "The Time Scales Calculus." In Evolutionary Learning and Optimization, 49–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03180-9_4.
Full textGeorgiev, Svetlin G. "Calculus on Time Scales." In Functional Dynamic Equations on Time Scales, 1–36. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15420-2_1.
Full textBohner, Martin, and Allan Peterson. "The Time Scales Calculus." In Dynamic Equations on Time Scales, 1–50. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0201-1_1.
Full textGoodrich, Christopher, and Allan C. Peterson. "Calculus on Mixed Time Scales." In Discrete Fractional Calculus, 353–414. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25562-0_5.
Full textGeorgiev, Svetlin G. "Elements of the Time Scale Calculus." In Integral Equations on Time Scales, 1–75. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-228-1_1.
Full textBohner, Martin, and Svetlin G. Georgiev. "Partial Differentiation on Time Scales." In Multivariable Dynamic Calculus on Time Scales, 303–447. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9_6.
Full textBohner, Martin, and Svetlin G. Georgiev. "Multiple Integration on Time Scales." In Multivariable Dynamic Calculus on Time Scales, 449–515. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9_7.
Full textGeorgiev, Svetlin G. "Convolution on Time Scales." In Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales, 157–215. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73954-0_3.
Full textBohner, Martin, Gusein Guseinov, and Allan Peterson. "Introduction to the Time Scales Calculus." In Advances in Dynamic Equations on Time Scales, 1–15. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-0-8176-8230-9_1.
Full textConference papers on the topic "Calcule time-Scales"
Kapcak, Sinan, and Ünal Ufuktepe. "Multivariable Calculus on Time Scales." In 2011 International Conference on Computational Science and Its Applications (ICCSA). IEEE, 2011. http://dx.doi.org/10.1109/iccsa.2011.28.
Full textGirejko, Ewa, Agnieszka B. Malinowska, and Delfim F. M. Torres. "A unified approach to the calculus of variations on time scales." In 2010 Chinese Control and Decision Conference (CCDC). IEEE, 2010. http://dx.doi.org/10.1109/ccdc.2010.5498972.
Full textLigocka, Agnieszka, and Wojciech Bandurski. "Using Multiple Scales Method to calculate threshold crossing time for the ramp response for high inductance VLSI interconnects." In 2008 IEEE Workshop on Signal Propagation on Interconnects (SPI). IEEE, 2008. http://dx.doi.org/10.1109/spi.2008.4558391.
Full textHuang, Jianliang, Weidong Zhu, and Shuhui Chen. "An Incremental Harmonic Balance Method With Two Time Scales for Quasi-Periodic Motion of Nonlinear Systems With Cubic Nonlinearity." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97582.
Full textDai, Chong, Zhaoyi Dai, Samiridhdi Paudyal, Saebom Ko, Yue Zhao, Xin Wang, Xuanzhu Yao, Amy Kan, and Mason Tomson. "New Kinetic Turbidity Test Method and Prediction Model for Calcite Inhibition." In SPE International Conference on Oilfield Chemistry. SPE, 2021. http://dx.doi.org/10.2118/204398-ms.
Full textJalali, Ali, and C. Nataraj. "Prediction of Occurrence of Periventricular Leukomalacia in Neonates After Heart Surgery Using a Decision Tree Algorithm." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71301.
Full textCamp, T. R., and H. W. Shin. "Turbulence Intensity and Length Scale Measurements in Multistage Compressors." In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-004.
Full textZheng, Yuan, and Jay P. Gore. "Time and Space Series Analysis of Spectral Radiation Intensities for a Partially Premixed Turbulent Flame." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47579.
Full textRoss, Molly, John Matulis, and Hitesh Bindra. "A Statistical Approach to Quantify Taylor Microscale for Turbulent Flow Surrogate Model." In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-91452.
Full textGopalan, Balaji, Edwin Malkiel, and Joseph Katz. "Diffusion of Slightly Buoyant Droplets in Isotropic Turbulence." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98530.
Full text