Journal articles on the topic 'Cadmium selenide'

To see the other types of publications on this topic, follow the link: Cadmium selenide.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cadmium selenide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhang, Ya Hui, Xi Cheng, and Qing Wang. "The Synthesis of Cadmium Sulfide and Cadmium Selenide Nanostructures." Applied Mechanics and Materials 423-426 (September 2013): 467–70. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.467.

Full text
Abstract:
Cadmium sulfide and cadmium selenide have been the subject of considerable interest because of their potentialapplications in many fields. In this paper, the synthesis of cadmium sulfide and cadmium selenide nanostructures is described. The Morphologies of as prepared cadmium sulfide and cadmium selenide nanostructures are summarized. And the applications and prospects of cadmium sulfide and cadmium selenide in this field also are analyzed.
APA, Harvard, Vancouver, ISO, and other styles
2

Pfaff, Gerhard. "Cadmium sulfide / selenide pigments." Physical Sciences Reviews 6, no. 6 (February 16, 2021): 211–16. http://dx.doi.org/10.1515/psr-2020-0151.

Full text
Abstract:
Abstract Cadmium sulfide and selenide pigments (cadmium pigments) belong to the inorganic yellow, orange and red pigments. Cadmium sulfide pigments are based on the wurtzite lattice, where cadmium can be partially substituted by zinc or mercury and sulfide by selenide. Cadmium pigments are characterized by excellent optical and application characteristics in particular regarding brightness of shade, hiding power, tinting strength, and weather fastness. The declining use of cadmium-containing materials in the last decades is a result of the environmental discussion and the development of less problematic substitute products, especially of bismuth vanadate and high-value organic, temperature-stable yellow and red pigments.
APA, Harvard, Vancouver, ISO, and other styles
3

Антипов, В. В., С. А. Кукушкин, А. В. Осипов, and В. П. Рубец. "Эпитаксиальный рост пленок селенида кадмия на кремнии с буферным слоем карбида кремния." Физика твердого тела 60, no. 3 (2018): 499. http://dx.doi.org/10.21883/ftt.2018.03.45552.275.

Full text
Abstract:
AbstractAn epitaxial cubic 350-nm-thick cadmium selenide has been grown on silicon for the first time by the method of evaporation and condensation in a quasi-closed volume. It is revealed that, in this method, the optimum substrate temperature is 590°C, the evaporator temperature is 660°C, and the growth time is 2 s. To avoid silicon etching by selenium with formation of amorphous SiSe_2, a high-quality ~100-nm-thick buffer silicon carbide layer has been synthesized on the silicon surface by substituting atoms. The powder diffraction pattern and the Raman spectrum unambiguously correspond to cubic cadmium selenide crystal. The ellipsometric, Raman, and electron diffraction analyses demonstrate high structural perfection of the cadmium selenide layer and the absence of a polycrystalline phase.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Ya Hui, Xi Cheng, and Qing Wang. "The Synthesis and Properties of Cadmium Selenide Nanostructures." Advanced Materials Research 531 (June 2012): 63–66. http://dx.doi.org/10.4028/www.scientific.net/amr.531.63.

Full text
Abstract:
Cadmium selenide has been the subject of considerable interest because of its potential applications in many fields. In this paper, the synthesis of cadmium selenide nanostructures is described. The Morphologies of as prepared cadmium selenide nanostructures are summarized. And the applications and prospects of Cadmium selenide in this field also are analyzed.
APA, Harvard, Vancouver, ISO, and other styles
5

Pozdin, Andrey V., Daria D. Smirnova, Larisa N. Maskaeva, Gennady L. Rusinov, and Vyacheslav F. Markov. "Chemical bath synthesis of metal chalcogenide films. Part 41. Hydrochemical deposition of thin films of cadmium selenide by sodium selenosulfate." Butlerov Communications 59, no. 9 (September 30, 2019): 29–39. http://dx.doi.org/10.37952/roi-jbc-01/19-59-9-29.

Full text
Abstract:
The group II-VI semiconductor materials including Cadmium Selenide (CdSe) thin films are widely used in many fields of science and technology, in particular in optoelectronics, nanoelectronics and solar energy. Chemical bath deposition (CBD) represents the simplest and the most available technique for deposition of semiconducting layers. CBD is characterized by deletion of toxic gaseous precursors, operation at low temperature and using of inexpensive equipment. The ionic equilibriums in reaction mixture «CdCl2 – L − Na2SeSO3» (L− NH4OH or Na3C6H5¬O7 or mixture of NH4OH and Na3C6H5¬O7 ) were calculated in present work. The prevailing cadmium complex compounds were determined in appropriate for CBD of cadmium selenide films pH range. The main complex compounds inhibiting fast formation of cadmium selenide are Cd(OH)Cit^(2-) complex (in citrat- and ammonia-citrat mixtures) and 〖Cd(NH_3)〗_5^(2+) complex (in ammonia mixture). Also the boundary conditions of forming CdSe and Cd(OH)2 in reaction mixture were determined by thermodynamic calculation based on crystallization factor to estimate the formation conditions of main (CdSe) and impurity (Cd(OH)2) phases. The results of the calculations show that the solid phase of cadmium selenide is possible to form in pH range from 10 to 14. CdSe films were grown by chemical bath deposition on glass substrates at a temperature of 353 K. The thickness of films ranges from 100 to 220 nm. The grain size of films is about 30 nm which was determined by electron microscopic investigations. The elemental composition of cadmium selenide was defined by energy dispersive analysis; the ratio of cadmium and selenium is 1.03 : 1.16. The conductivity of n-type was determined by the sign of thermoelectromotive force.
APA, Harvard, Vancouver, ISO, and other styles
6

Kowalik, Remigiusz, Honorata Kazimierczak, and Piotr Żabiński. "Electrodeposition of cadmium selenide." Materials Science in Semiconductor Processing 50 (August 2016): 43–48. http://dx.doi.org/10.1016/j.mssp.2016.04.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ospina, Rogelio, Sergio A. Rincón-Ortiz, and Jhonatan Rodriguez-Pereira. "Cadmium selenide by XPS." Surface Science Spectra 27, no. 1 (June 2020): 014021. http://dx.doi.org/10.1116/6.0000162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Türe, I. E., M. Claybourn, A. W. Brinkman, and J. Woods. "Defects in cadmium selenide." Journal of Crystal Growth 72, no. 1-2 (July 1985): 189–93. http://dx.doi.org/10.1016/0022-0248(85)90142-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Ya Hui, Xi Cheng, and Qing Wang. "The New Progress on Synthesis of Cadmium Selenide and Lead Selenide Nanostructures." Applied Mechanics and Materials 723 (January 2015): 536–39. http://dx.doi.org/10.4028/www.scientific.net/amm.723.536.

Full text
Abstract:
Cadmium Selenide and Lead Selenide have been the subject of considerable interest because of its potential applications in many fields. In this paper, the synthesis of Cadmium Selenide and Lead Selenide nanostructures is described. The Morphologies of as prepared metal selenide nanostructures are summarized. And the applications and prospects of metal selenide in this field also are analyzed.
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, Yukun, and PG Yin. "Synthesis of cubic CdSe nanocrystals and their spectral properties." Nanomaterials and Nanotechnology 7 (January 1, 2017): 184798041770174. http://dx.doi.org/10.1177/1847980417701747.

Full text
Abstract:
The cadmium selenide nanocrystals are prepared by colloidal chemistry under mild conditions. X-ray diffraction and high-resolution transmission electron microscopy measurements indicate that as-prepared cadmium selenide nanocrystals are zinc blende cubic structure. We carry out an analysis of quantum size effect in the Raman spectra of cadmium selenide nanocrystals performed by utilizing the chemical bond theory of Raman peak shift developed recently. It is revealed that the shifts of Raman peaks in cadmium selenide nanocrystals result from the overlapping of the quantum effect shifts and surface effect shifts. The sizes of the as-prepared cadmium selenide nanocrystals obtained by employing the Raman peak shift theory are in good agreement with the nanocrystal sizes determined by high-resolution transmission electron microscopy.
APA, Harvard, Vancouver, ISO, and other styles
11

Balakrishnan, Lakshmi Shree, Selva Priya Subramanian, Therasa Ranjani Perchamy, and Madanagurusamy Sridharan. "Studies on cadmium telluride–cadmium selenide bilayer." Nanomaterials and Energy 4, no. 2 (December 2015): 97–104. http://dx.doi.org/10.1680/jnaen.15.00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lakshmi Shree, B., P. Therasa Ranjani, S. Selva Priya, and M. Sridharan. "Studies on cadmium telluride–cadmium selenide bilayer." Nanomaterials and Energy 4, July–December (July 1, 2015): 1–24. http://dx.doi.org/10.1680/nme.15.00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wagh, B. G., Anuradha B. Bhalerao, R. N. Bulakhe, and C. D. Lokhande. "Cadmium indium selenide semiconducting nanofibers by single step electrochemical route." Modern Physics Letters B 29, no. 06n07 (March 20, 2015): 1540024. http://dx.doi.org/10.1142/s0217984915400242.

Full text
Abstract:
The growth of ternary semiconductor thin films of cadmium indium selenide nanofibers has been carried out from aqueous solution of cadmium sulphate, indium trichloride, and selenium dioxide by electrochemical route. These thin films have been further optimized using photoelectrochemical cell (PEC). Optimized thin film has been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).
APA, Harvard, Vancouver, ISO, and other styles
14

Liu, Di, and Prashant V. Kamat. "Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films." Journal of Physical Chemistry 97, no. 41 (October 1993): 10769–73. http://dx.doi.org/10.1021/j100143a041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Thanikaikarasan, S., T. Mahalingam, K. Sundaram, Tae Kyu Kim, Yong Deak Kim, and Subramaniam Velumani. "Electrochemical Deposition and Characterization of Cd-Fe-Se Thin Films." Advanced Materials Research 68 (April 2009): 69–76. http://dx.doi.org/10.4028/www.scientific.net/amr.68.69.

Full text
Abstract:
Cadmium iron selenide (Cd-Fe-Se) thin films were deposited onto tin oxide (SnO2) coated conducting glass substrates from an aqueous electrolytic bath containing CdSO4, FeSO4 and SeO2 by potentiostatic electrodeposition. The deposition potentials of Cadmium (Cd), Iron (Fe), Selenium (Se) and Cadmium-Iron-Selenide (Cd-Fe-Se) were determined from linear cathodic polarization curves. The deposited films were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by x-rays (EDX) and optical absorption techniques, respectively. X-ray diffraction patterns shows that the deposited films are found to be hexagonal structure with preferential orientation along (100) plane. The effect of FeSO4 concentration on structural, morphological, compositional and optical properties of the films are studied and discussed in detail.
APA, Harvard, Vancouver, ISO, and other styles
16

Wang, Z. Y., X. S. Fang, Q. F. Lu, C. H. Ye, and L. D. Zhang. "Hollow cadmium selenide semiconductor tetrapods." Applied Physics Letters 88, no. 8 (February 20, 2006): 083102. http://dx.doi.org/10.1063/1.2178413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Nasar, A., and M. Shamsuddin. "Thermodynamic properties of cadmium selenide." Journal of the Less Common Metals 158, no. 1 (February 1990): 131–35. http://dx.doi.org/10.1016/0022-5088(90)90439-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Parbrook, P. J., A. Kamata, and T. Uemoto. "The growth and characterization of cadmium selenide and cadmium zinc selenide epilayers by MOVPE." Journal of Crystal Growth 128, no. 1-4 (March 1993): 639–45. http://dx.doi.org/10.1016/s0022-0248(07)80015-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chenault, David B., and Russell A. Chipman. "Infrared birefringence spectra for cadmium sulfide and cadmium selenide." Applied Optics 32, no. 22 (August 1, 1993): 4223. http://dx.doi.org/10.1364/ao.32.004223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Khojiev, Sh T., V. M. Rotshtein, P. X. Ashurov, and B. B. Gaibnazarov. "Raman spectra of cadmium selenide films." ACADEMICIA: An International Multidisciplinary Research Journal 10, no. 6 (2020): 1005. http://dx.doi.org/10.5958/2249-7137.2020.00681.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Erenturk, Burcin, Serkan Gurbuz, Rachel E. Corbett, Sarah-Ann M. Claiborne, Jason Krizan, Dhandapani Venkataraman, and Kenneth R. Carter. "Formation of Crystalline Cadmium Selenide Nanowires." Chemistry of Materials 23, no. 14 (July 26, 2011): 3371–76. http://dx.doi.org/10.1021/cm201384p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Zhen, Ai Jun Du, Qiao Sun, Muhsen Aljada, Li Na Cheng, Mark J. Riley, Zhong Hua Zhu, et al. "Cobalt-doped cadmium selenide colloidal nanowires." Chemical Communications 47, no. 43 (2011): 11894. http://dx.doi.org/10.1039/c1cc13467a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ayvazian, Talin, Wytze E. van der Veer, Wendong Xing, Wenbo Yan, and Reginald M. Penner. "Electroluminescent, Polycrystalline Cadmium Selenide Nanowire Arrays." ACS Nano 7, no. 10 (September 25, 2013): 9469–79. http://dx.doi.org/10.1021/nn4043546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sun, X. H., T. K. Sham, R. A. Rosenberg, and G. K. Shenoy. "One-dimensional Silicon−Cadmium Selenide Heterostructures." Journal of Physical Chemistry C 111, no. 24 (June 2007): 8475–82. http://dx.doi.org/10.1021/jp071699z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Xu, Fen, Wei Zhou, and Alexandra Navrotsky. "Cadmium selenide: Surface and nanoparticle energetics." Journal of Materials Research 26, no. 5 (March 9, 2011): 720–25. http://dx.doi.org/10.1557/jmr.2011.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Carter, A. C., C. E. Bouldin, K. M. Kemner, M. I. Bell, J. C. Woicik, and S. A. Majetich. "Surface structure of cadmium selenide nanocrystallites." Physical Review B 55, no. 20 (May 15, 1997): 13822–28. http://dx.doi.org/10.1103/physrevb.55.13822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Doyle, Kevin, Craig H. Swartz, John H. Dinan, Thomas H. Myers, Gregory Brill, Yuanping Chen, Brenda L. VanMil, and Priyalal Wijewarnasuriya. "Mercury cadmium selenide for infrared detection." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 31, no. 3 (May 2013): 03C124. http://dx.doi.org/10.1116/1.4798651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wu, S., and D. Haneman. "Cadmium selenide-amorphous hydrogenated silicon heterostructures." Applied Surface Science 89, no. 3 (July 1995): 289–95. http://dx.doi.org/10.1016/0169-4332(95)00034-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Triboulet, R., J. O. Ndap, A. El Mokri, A. Tromson Carli, and A. Zozime. "Solid State Recrystallization of II-VI Semiconductors : Application to Cadmium Telluride, Cadmium Selenide and Zinc Selenide." Le Journal de Physique IV 05, no. C3 (April 1995): C3–141—C3–149. http://dx.doi.org/10.1051/jp4:1995312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kumar, Vivek, Héctor A. Fustér, Nuri Oh, You Zhai, Kishori Deshpande, Moonsub Shim, and Paul J. A. Kenis. "Continuous Flow Synthesis of Anisotropic Cadmium Selenide and Zinc Selenide Nanoparticles." ChemNanoMat 3, no. 3 (January 23, 2017): 204–11. http://dx.doi.org/10.1002/cnma.201600296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fedorov, V. A., V. A. Ganshin, and Yu N. Korkishko. "Solid-state phase diagram of the zinc selenide - cadmium selenide system." Materials Research Bulletin 27, no. 7 (July 1992): 877–84. http://dx.doi.org/10.1016/0025-5408(92)90183-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Singh, Kehar, and Sameer S. D. Mishra. "Photoelectrochemical Studies on Colloidal Cadmium Sulfide Containing Cadmium Selenide Electrodeposits." Electrochemical and Solid-State Letters 7, no. 7 (2004): A185. http://dx.doi.org/10.1149/1.1738552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Viswanathan, Kaliyaperumal, and C. Bor Fuh. "Synthesis and characterization of poly(N-vinylpyrrolidine)-silica hybrid shell coated cadmium selenide / cadmium sulphide and cadmium selenide / zinc sulfide nanoparticles." Materials Letters 65, no. 4 (February 2011): 646–49. http://dx.doi.org/10.1016/j.matlet.2010.11.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Штоббе (Shtobbe), Ирина (Irina) Андреевна (Andreevna), Сергей (Sergej) Александрович (Aleksandrovich) Безносюк (Beznosjuk), and Ирина (Irina) Евгеньевна (Evgen'evna) Мозорева (Mozoreva). "STUDY OF CHITOSAN PROTECTIVE PROPETIES IN COLLOIDAL SOLUTIONS OF CADMIUM SELENIDE QUANTUM DOTS." chemistry of plant raw material, no. 4 (October 11, 2017): 217–23. http://dx.doi.org/10.14258/jcprm.2017042658.

Full text
Abstract:
In this paper, by a low-temperature colloidal aqueous method, without the use of toxic media, the quantum dots of cadmium selenide in the shell of chitosan were synthesized. Chitosan was used as a matrix for the growth of colloidal semiconductor particles, and it also stabilized the obtained particles.The purpose of this work was studying the protective properties of chitosan in colloidal solutions of cadmium selenide quantum dots. The objective of the study was to analyze the protective effect of chitosan in colloidal systems by analyzing the optical and rheological properties of the obtained solutions.The dependence of the light transmission of colloidal solutions of cadmium selenide quantum dots in the shell of chitosan on the concentration of polysaccharide was investigated.It has been established that the light transmission of colloidal solutions decreases with time, the lower the content of chitosan in solution, which indicates that the protective action of colloidal solutions of quantum dots of cadmium selenide increases with increasing concentration of the polysaccharide.A study was made of the kinematic viscosity of the obtained solutions with different concentrations of chitosan in time. It was established that when the quantum dots are formed in the chitosan matrix, the viscosity of the colloidal system decreases. The protective effect of chitosan increases with increasing concentration in the solution.
APA, Harvard, Vancouver, ISO, and other styles
35

Mucha, Igor, and Katarzyna Wiglusz. "Phase studies on the quasi-binary thallium(I) selenide–cadmium selenide system." Thermochimica Acta 526, no. 1-2 (November 2011): 107–10. http://dx.doi.org/10.1016/j.tca.2011.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chowdhury, RI, MS Islam, F. Sabeth, G. Mustafa, SFU Farhad, DK Saha, FA Chowdhury, S. Hussain, and ABMO Islam. "Characterization of Electrodeposited Cadmium Selenide Thin Films." Dhaka University Journal of Science 60, no. 1 (April 15, 2012): 137–40. http://dx.doi.org/10.3329/dujs.v60i1.10352.

Full text
Abstract:
Cadmium selenide (CdSe) thin films have been deposited on glass/conducting glass substrates using low-cost electrodeposition method. X-ray diffraction (XRD) technique has been used to identify the phases present in the deposited films and observed that the deposited films are mainly consisting of CdSe phases. The photoelectrochemical (PEC) cell measurements indicate that the CdSe films are n-type in electrical conduction, and optical absorption measurements show that the bandgap for as-deposited film is estimated to be 2.1 eV. Upon heat treatment at 723 K for 30 min in air the band gap of CdSe film is decreased to 1.8 eV. The surface morphology of the deposited films has been characterized using scanning electron microscopy (SEM) and observed that very homogeneous and uniform CdSe film is grown onto FTO/glass substrate. The aim of this work is to use n-type CdSe window materials in CdTe based solar cell structures. The results will be presented in this paper in the light of observed data.DOI: http://dx.doi.org/10.3329/dujs.v60i1.10352 Dhaka Univ. J. Sci. 60(1): 137-140 2012 (January)
APA, Harvard, Vancouver, ISO, and other styles
37

Pawar, Sachin A., Dipali S. Patil, and Jae Cheol Shin. "Cadmium selenide microspheres as an electrochemical supercapacitor." Materials Today Chemistry 4 (June 2017): 164–71. http://dx.doi.org/10.1016/j.mtchem.2017.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Badr, Y., and M. A. Mahmoud. "Optimization and photophysics of cadmium selenide nanoparticles." Physica B: Condensed Matter 369, no. 1-4 (December 2005): 278–86. http://dx.doi.org/10.1016/j.physb.2005.08.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

BENAMAR, E., M. RAMI, M. FAHOUME, F. CHRAIBI, and A. ENNAOUI. "Electrodeposited cadmium selenide films for solar cells." Annales de Chimie Science des Mat�riaux 23, no. 1-2 (January 1998): 369–72. http://dx.doi.org/10.1016/s0151-9107(98)80094-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Eichkorn, Karin, and Reinhart Ahlrichs. "Cadmium selenide semiconductor nanocrystals: a theoretical study." Chemical Physics Letters 288, no. 2-4 (May 1998): 235–42. http://dx.doi.org/10.1016/s0009-2614(98)00306-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dukes, Albert D., Michael A. Schreuder, Jessica A. Sammons, James R. McBride, Nathanael J. Smith, and Sandra J. Rosenthal. "Pinned emission from ultrasmall cadmium selenide nanocrystals." Journal of Chemical Physics 129, no. 12 (September 28, 2008): 121102. http://dx.doi.org/10.1063/1.2983632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Xiao, Fajun, Kaihui Liu, Yaqing Bie, Jianlin Zhao, and Feng Wang. "Absorption spectroscopy of individual cadmium selenide nanowire." Applied Physics Letters 101, no. 9 (August 27, 2012): 093106. http://dx.doi.org/10.1063/1.4739786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hussain, Raja Azadar, and Iqtadar Hussain. "Cadmium selenide nanowires from growth to applications." Materials Research Express 6, no. 12 (January 17, 2020): 122007. http://dx.doi.org/10.1088/2053-1591/ab69be.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Nirmal, M., B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus. "Fluorescence intermittency in single cadmium selenide nanocrystals." Nature 383, no. 6603 (October 1996): 802–4. http://dx.doi.org/10.1038/383802a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rabani, Eran. "An interatomic pair potential for cadmium selenide." Journal of Chemical Physics 116, no. 1 (2002): 258. http://dx.doi.org/10.1063/1.1424321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mastai, Y., R. Polsky, Yu Koltypin, A. Gedanken, and G. Hodes. "Pulsed Sonoelectrochemical Synthesis of Cadmium Selenide Nanoparticles." Journal of the American Chemical Society 121, no. 43 (November 1999): 10047–52. http://dx.doi.org/10.1021/ja9908772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Murali, K. R., I. Radhakrishna, K. Nagaraja Rao, and V. K. Venkatesan. "Growth of cadmium selenide layers by electrodeposition." Journal of Materials Science 25, no. 8 (August 1990): 3521–23. http://dx.doi.org/10.1007/bf00575381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ndap, J. O., C. I. Rablau, K. Morrow, O. O. Adetunji, V. A. Johnson, K. Chattopadhyay, R. H. Page, and A. Burger. "Infrared spectroscopy of chromium-doped cadmium selenide." Journal of Electronic Materials 31, no. 7 (July 2002): 802–5. http://dx.doi.org/10.1007/s11664-002-0240-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nayak, Rekha, Jane Galsworthy, Peter Dobson, and John Hutchison. "Synthesis of gold-cadmium selenide co-colloids." Journal of Materials Research 13, no. 4 (April 1998): 905–8. http://dx.doi.org/10.1557/jmr.1998.0123.

Full text
Abstract:
Semiconductor-metal co-colloids of CdSey/Au have been prepared by various synthetic pathways. Their microstructure, including that of Au–CdSe(TOPO) co-colloid in a core-shell structure, has been examined by high resolution transmission electron microscopy (HRTEM) and found to be well defined within the 10 nm size range. The optical absorption spectra of the colloids and of various synthesis stages have been obtained.
APA, Harvard, Vancouver, ISO, and other styles
50

Asadov, S. M., M. A. Anisimov, K. I. Kel’baliev, and V. F. Lukichev. "Modeling of Colloidal Crystallization of Cadmium Selenide." Colloid Journal 84, no. 1 (February 2022): 1–12. http://dx.doi.org/10.1134/s1061933x22010021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography