Academic literature on the topic 'CA3 pyramidal neurons'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CA3 pyramidal neurons.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CA3 pyramidal neurons"
Dasari, Sameera, and Allan T. Gulledge. "M1 and M4 Receptors Modulate Hippocampal Pyramidal Neurons." Journal of Neurophysiology 105, no. 2 (February 2011): 779–92. http://dx.doi.org/10.1152/jn.00686.2010.
Full textLamsa, Karri, J. Matias Palva, Eva Ruusuvuori, Kai Kaila, and Tomi Taira. "Synaptic GABAA Activation Inhibits AMPA-Kainate Receptor–Mediated Bursting in the Newborn (P0–P2) Rat Hippocampus." Journal of Neurophysiology 83, no. 1 (January 1, 2000): 359–66. http://dx.doi.org/10.1152/jn.2000.83.1.359.
Full textZhuravleva, Z. N., V. N. Saifullina, and C. I. Zenchenko. "Morphometric Analysis of Hippocampal Pyramidal Neuronsin situand in Grafts Developing in the Anterior Eye Chambers of Young and Aged Wistar Rats." Journal of Neural Transplantation and Plasticity 6, no. 1 (1997): 49–57. http://dx.doi.org/10.1155/np.1997.49.
Full textDebanne, D., N. C. Guerineau, B. H. Gahwiler, and S. M. Thompson. "Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures." Journal of Neurophysiology 73, no. 3 (March 1, 1995): 1282–94. http://dx.doi.org/10.1152/jn.1995.73.3.1282.
Full textKirino, Takaaki, Hugh P. C. Robinson, Akiko Miwa, Akira Tamura, and Nobufumi Kawai. "Disturbance of Membrane Function Preceding Ischemic Delayed Neuronal Death in the Gerbil Hippocampus." Journal of Cerebral Blood Flow & Metabolism 12, no. 3 (May 1992): 408–17. http://dx.doi.org/10.1038/jcbfm.1992.58.
Full textLopez-Santiago, Luis F., Yukun Yuan, Jacy L. Wagnon, Jacob M. Hull, Chad R. Frasier, Heather A. O’Malley, Miriam H. Meisler, and Lori L. Isom. "Neuronal hyperexcitability in a mouse model of SCN8A epileptic encephalopathy." Proceedings of the National Academy of Sciences 114, no. 9 (February 13, 2017): 2383–88. http://dx.doi.org/10.1073/pnas.1616821114.
Full textMuller, W., and U. Misgeld. "Picrotoxin- and 4-aminopyridine-induced activity in hilar neurons in the guinea pig hippocampal slice." Journal of Neurophysiology 65, no. 1 (January 1, 1991): 141–47. http://dx.doi.org/10.1152/jn.1991.65.1.141.
Full textShcherbak, N. S., G. Yu Yukina, A. G. Gurbo, E. G. Sukhorukova, A. G. Sargsian, V. V. Thomson, and M. M. Galagudza. "Morphofunctional state of microglia and hippocampal neurons in aged rats after anesthesia with chloral hydrate." Regional blood circulation and microcirculation 21, no. 3 (October 12, 2022): 64–71. http://dx.doi.org/10.24884/1682-6655-2022-21-3-64-71.
Full textWang, Jun, Mark F. Yeckel, Daniel Johnston, and Robert S. Zucker. "Photolysis of Postsynaptic Caged Ca2+ Can Potentiate and Depress Mossy Fiber Synaptic Responses in Rat Hippocampal CA3 Pyramidal Neurons." Journal of Neurophysiology 91, no. 4 (April 2004): 1596–607. http://dx.doi.org/10.1152/jn.01073.2003.
Full textMigliore, M., E. P. Cook, D. B. Jaffe, D. A. Turner, and D. Johnston. "Computer simulations of morphologically reconstructed CA3 hippocampal neurons." Journal of Neurophysiology 73, no. 3 (March 1, 1995): 1157–68. http://dx.doi.org/10.1152/jn.1995.73.3.1157.
Full textDissertations / Theses on the topic "CA3 pyramidal neurons"
LICHERI, VALENTINA. "Modulation of Hyperpolarization-Activated Cation Currents (Ih) by Ethanol in Rat Hippocampal CA3 Pyramidal Neurons." Doctoral thesis, Università degli Studi di Cagliari, 2015. http://hdl.handle.net/11584/266622.
Full textDennis, Siobhan Dennis. "An investigation of the effects of oxygen glucose deprivation on glutamate receptor localisation within hippocampal CA3 pyramidal neurons." Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.544384.
Full textKüffner, Mercedes [Verfasser], and Michael [Akademischer Betreuer] Frotscher. "Ultrastructural analysis of spine apparatus in CA3 pyramidal neurons following single cell electroporation in Synaptopodin Knockout - mice = Elektronenmikroskopische Untersuchung des Spine-Apparats in CA3 Pyramidenzellen mittels Einzelzell-Elektroporation in Synaptopodin-defizienten Mäusen." Freiburg : Universität, 2013. http://d-nb.info/1115495283/34.
Full textCaiati, Maddalena Delma. "Activity-dependent regulation of GABA release at immature mossy fibers-CA3 synapses: role of the Prion protein." Doctoral thesis, SISSA, 2012. http://hdl.handle.net/20.500.11767/4719.
Full textMarissal, Thomas. "Une approche développementale de l' hétérogénéité fonctionnelle des neurones pyramidaux de CA3." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4001/document.
Full textThere is increasing evidence that CA3 pyramidal cells are biochemically, electrophysiologically, morphologically and functionally diverse. As most of these properties are acquired during development, we hypothesized that the heterogeneity of the morphofunctionnal properties of pyramidal cells could be determined at the early stages of life. To test this hypothesis, we used a transgenic mouse line in which we glutamatergic cells are labelled with GFP according to their birth date. Using calcium imaging, we recorded multineuron activity in hippocampal slices and show that early generated pyramidal neurons fire during the build-up phase of epileptiform activities generated in the absence of fast GABAergic transmission. Moreover, we show that early generated pyramidal neurons display distinct morpho-physiological properties. Finally, we demonstrate that early generated neurons can generate epileptiform activities when stimulated as assemblies at immature stages, and when stimulated individually at juvenile stages. Thus we suggest a link between the date of birth and the morpho-functional properties of CA3 pyramidal neurons
Bialowas, Andrzej. "Nouveaux aspects de la fonction axonale dans le néocortex et l'hippocampe de rat." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM5023.
Full textThe neuron is a polarised cell divided into two specialized compartments: the somato-dendritic and the axonal compartment. Generally, the first one receives information arriving from other neurones and the second generates an output message, when the sum of inputs exceeds a threshold value at the axon initial segment. This all-or-none signal, called the action potential (AP) is propagated actively to the synaptic terminal where it triggers chemical transmission of information. However, axonal function is not limited to transmission of AP sequences like a telegraph cable. The axon is also capable of transmitting continuously changing sub-threshold electric signals called analogue signals and to combine them with the digital information carried by the AP. I devoted the majority of my thesis work to the study of these novel aspects of axonal function in the framework of synaptic transmission between pyramidal neurons in the CA3 excitatory network of the rat hippocampus. The results obtained through paired recordings brought to light two kinds of analogue and digital signalling that lead to a facilitation of synaptic transmission. Analogue-digital facilitation (ADF) was observed during prolonged presynaptic depolarization and also after a transient hyperpolarization of the neuronal cell body. These are two sides of the same form of short-term synaptic plasticity depending on the biophysical state of voltage gated ion channels responsible for AP generation. The first variant of ADF induced by depolarization (ADFD) is due to AP broadening and involves Kv1 potassium channels
MANIEZZI, CLAUDIA. "Oxytocin modulates GABAA receptor-mediated inhibition onto CA1 pyramidal neurons in mouse." Doctoral thesis, Università degli studi di Pavia, 2017. http://hdl.handle.net/11571/1203349.
Full textSong, Jun. "Neuronal Adaptations in Rat Hippocampal CA1 Neurons during Withdrawal from Prolonged Flurazepam Exposure: Glutamatergic System Remodeling." Connect to Online Resource-OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=mco1177519349.
Full text"In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences." Major advisor: Elizabeth Tietz. Includes abstract. Title from title page of PDF document. Bibliography: pages 88-94, 130-136, 178-189, 218-266.
Nassrallah, Wissam. "Store-Operated Response in CA1 Pyramidal Neurons Exhibits Features of Homeostatic Synaptic Plasticity." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33357.
Full textTurner, Ray William. "Action potential discharge in somata and dendrites of CA1 pyramidal neurons of mammalian hippocampus : an electrophysiological analysis." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25989.
Full textMedicine, Faculty of
Cellular and Physiological Sciences, Department of
Graduate
Books on the topic "CA3 pyramidal neurons"
Levine, Michael S., Elizabeth A. Wang, Jane Y. Chen, Carlos Cepeda, and Véronique M. André. Altered Neuronal Circuitry. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199929146.003.0010.
Full textGaetz, Michael B., and Kelly J. Jantzen. Electroencephalography. Edited by Ruben Echemendia and Grant L. Iverson. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199896585.013.006.
Full textRoze, Emmanuel, and Frédéric Sedel. Gangliosidoses (GM1 and GM2). Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0050.
Full textBook chapters on the topic "CA3 pyramidal neurons"
Gaïarsa, J. L., R. Corradetti, Y. Ben-Ari, and E. Cherubini. "GABA Mediated Synaptic Events in Neonatal Rat CA3 Pyramidal Neurons in Vitro: Modulation by NMDA and Non-NMDA Receptors." In Excitatory Amino Acids and Neuronal Plasticity, 151–59. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5769-8_18.
Full textRuiz, Arnaud. "Kainate Receptors with a Metabotropic Signature Enhance Hippocampal Excitability by Regulating the Slow After-Hyperpolarization in CA3 Pyramidal Neurons." In Advances in Experimental Medicine and Biology, 59–68. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-9557-5_6.
Full textPoirazi, Panayiota, and Eleftheria-Kyriaki Pissadaki. "The Making of a Detailed CA1 Pyramidal Neuron Model." In Hippocampal Microcircuits, 317–52. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-0996-1_11.
Full textBagheriMofidi, S. M., M. Pouladian, and S. B. Jameie. "Effective Current Dipole Model of CA1 Hippocampus Pyramidal Neurons in Rat." In IFMBE Proceedings, 55–58. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03005-0_15.
Full textMa, Dan, Shenquan Liu, and Lei Wang. "Transition of Firing Patterns in a CA1 Pyramidal Neuron Model." In Advances in Cognitive Neurodynamics (III), 817–23. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4792-0_107.
Full textRao, D. G., and A. W. L. Chiu. "Enhance Signal Detection in Auto-Associative CA3 Pyramidal Neuron Model Using Electric Field Noise." In IFMBE Proceedings, 131–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01697-4_46.
Full textSaudargiene, Ausra, Rokas Jackevicius, and Bruce P. Graham. "Interplay of STDP and Dendritic Plasticity in a Hippocampal CA1 Pyramidal Neuron Model." In Artificial Neural Networks and Machine Learning – ICANN 2017, 381–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68600-4_44.
Full textTsubokawa, H., N. Kawai, and W. N. Ross. "Muscarinic Modulation of Na+ Spike Propagation in the Apical Dendrites of Hippocampal CA1 Pyramidal Neurons." In Slow Synaptic Responses and Modulation, 416–19. Tokyo: Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-66973-9_56.
Full textDave, Vijay, Arpit D. Shrimankar, Devanshi Gokani, and Abha Dashora. "Mathematical Modelling of Magnesium Block-Driven NMDA Receptor Response in CA1 Pyramidal Neuron for Alzheimer’s Disease." In Nanoelectronics, Circuits and Communication Systems, 91–100. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7486-3_10.
Full textNitatori, T., N. Sato, E. Kominami, and Y. Uchiyama. "Participation of Cathepsins B, H, and L in Perikaryal Condensation of CA1 Pyramidal Neurons Undergoing Apoptosis After Brief Ischemia." In Intracellular Protein Catabolism, 177–85. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0335-0_22.
Full textConference papers on the topic "CA3 pyramidal neurons"
Xie, Nan, Qingli Qiao, and Dan Wang. "Analysis of membrane dynamics of hippocampal CA1 pyramidal neurons." In 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2010. http://dx.doi.org/10.1109/bmei.2010.5639613.
Full textLorenzo, Jhunlyn, Roman Vuillaume, Steephane Binczak, and Sabir Jacquir. "Identification of Synaptic Integration Mode in CA3 Pyramidal Neuron Model." In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2019. http://dx.doi.org/10.1109/ner.2019.8717136.
Full textLiu, Hua-Kuang. "Multi-resolution pyramidal image compression via perfect convergent neural associative memory." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.mqq5.
Full textCastanares, Michael, and Vincent Ricardo Daria. "Holographic multi-site Ca2+ imaging along thin dendrites of cortical pyramidal neurons." In Clinical and Translational Biophotonics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/translational.2018.jth5a.3.
Full textLi, Guoshi, Harvey C. Cline, Pierre Blier, and Satish Nair. "Computational Studies of Gain Modification by Serotonin in Pyramidal Neurons of Prefrontal Coxtex." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15080.
Full textReza, F., T. Begum, M. U. Ilmie, M. C. L. Hanif, J. Zhang, and J. M. Abdullah. "Simulation study of the effect of Mitragyna speciosa on hybrid current in rat hippocampus CA3 pyramidal neuron." In 2011 11th International Conference on Hybrid Intelligent Systems (HIS 2011). IEEE, 2011. http://dx.doi.org/10.1109/his.2011.6122122.
Full textLin, Zhengrong, Lili Niu, Long Meng, Wei Zhou, Xiaowei Huang, and Hairong Zheng. "Notice of Removal: Ultrasound neuro-modulation chip for activating the pyramidal neurons in hippocampal CA1 slices." In 2017 IEEE International Ultrasonics Symposium (IUS). IEEE, 2017. http://dx.doi.org/10.1109/ultsym.2017.8091609.
Full textJang, T. S., J. Nair, S. Nair, and A. Lavin. "Modulation of PFC Pyramidal Cell Excitability by Clonidine: A Computational Modeling Study." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15109.
Full textGuelli, Mariana Sandoval Terra Campos, Daniela Bastos de Almeida Zampier, Lorena Araújo Silva Dias, and Marina de Oliveira Nunes Ibrahim. "Creutzfeldt-Jakob Disease - a literature review." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.126.
Full textSvoboda, K., W. Denk, W. H. Knox, and S. Tsuda. "Two-photon excitation scanning microscopy with a compact, mode locked, diode- pumped Cr:LiSAF Laser." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.wb.2.
Full text