Academic literature on the topic 'C(sp2)-H bond activation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'C(sp2)-H bond activation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "C(sp2)-H bond activation":

1

Wang, Xiao, Ming-Zhu Lu, and Teck-Peng Loh. "Transition-Metal-Catalyzed C–C Bond Macrocyclization via Intramolecular C–H Bond Activation." Catalysts 13, no. 2 (February 17, 2023): 438. http://dx.doi.org/10.3390/catal13020438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Macrocycles are commonly synthesized via late-stage macrolactamization and macrolactonization. Strategies involving C–C bond macrocyclization have been reported, and examples include the transition-metal-catalyzed ring-closing metathesis and coupling reactions. In this mini-review, we summarize the recent progress in the direct synthesis of polyketide and polypeptide macrocycles using a transition-metal-catalyzed C–H bond activation strategy. In the first part, rhodium-catalyzed alkene–alkene ring-closing coupling for polyketide synthesis is described. The second part summarizes the synthesis of polypeptide macrocycles. The activation of indolyl and aryl C(sp2)–H bonds followed by coupling with various coupling partners such as aryl halides, arylates, and alkynyl bromide is then documented. Moreover, transition-metal-catalyzed C–C bond macrocyclization reactions via alkyl C(sp3)–H bond activation are also included. We hope that this mini-review will inspire more researchers to explore new and broadly applicable strategies for C–C bond macrocyclization via intramolecular C–H activation.
2

Valentini, Federica, Oriana Piermatti, and Luigi Vaccaro. "Metal and Metal Oxide Nanoparticles Catalyzed C–H Activation for C–O and C–X (X = Halogen, B, P, S, Se) Bond Formation." Catalysts 13, no. 1 (December 22, 2022): 16. http://dx.doi.org/10.3390/catal13010016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The direct functionalization of an inactivated C–H bond has become an attractive approach to evolve toward step-economy, atom-efficient and environmentally sustainable processes. In this regard, the design and preparation of highly active metal nanoparticles as efficient catalysts for C–H bond activation under mild reaction conditions still continue to be investigated. This review focuses on the functionalization of un-activated C(sp3)–H, C(sp2)–H and C(sp)–H bonds exploiting metal and metal oxide nanoparticles C–H activation for C–O and C–X (X = Halogen, B, P, S, Se) bond formation, resulting in more sustainable access to industrial production.
3

Paira, Moumita. "Recent Developments of Palladium-Catalyzed C(sp3)/C(sp2)-H Bond Functionalizations Assisted by 8-Aminoquinoline Bidentate Directing Group." Asian Journal of Chemistry 34, no. 8 (2022): 1958–74. http://dx.doi.org/10.14233/ajchem.2022.23774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Recently growing demand for cleaner, direct even more regioselective reaction sequences, the formation of carbon-carbon or carbon-heteroatom bonds through C-H activation has developed as a unique methodology. Since the pioneering work of Daugulis on the use of the 8-aminoquinoline auxiliaries as removable bidentate directing groups in palladium-catalyzed C-H bond activations has emerged as a ground breaking strategy for the construction of carbon-carbon or carbon-heteroatom bonds. Hence, this review intends to cover most of the recent advances on 8-aminoquinoline directed palladium-catalyzed C(sp3)/C(sp2)–H bonds functionalizations and highlighted the synthesis of C-branched glycosides.
4

Liu, Jialin, Xiaoyu Xiong, Jie Chen, Yuntao Wang, Ranran Zhu, and Jianhui Huang. "Double C–H Activation for the C–C bond Formation Reactions." Current Organic Synthesis 15, no. 7 (October 16, 2018): 882–903. http://dx.doi.org/10.2174/1570179415666180720111422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Background: Among the numerous bond-forming patterns, C–C bond formation is one of the most useful tools for building molecules for the chemical industry as well as life sciences. Recently, one of the most challenging topics is the study of the direct coupling reactions via multiple C–H bond cleavage/activation processes. A number of excellent reviews on modern C–H direct functionalization have been reported by Bergman, Bercaw, Yu and others in recent years. Among the large number of available methodologies, Pdcatalyzed reactions and hypervalent iodine reagent mediated reactions represent the most popular metal and non-metal involved transformations. However, the comprehensive summary of the comparison of metal and non-metal mediated transformations is still not available. Objective: The review focuses on comparing these two types of reactions (Pd-catalyzed reactions and hypervalent iodine reagent mediated reactions) based on the ways of forming new C–C bonds, as well as the scope and limitations on the demonstration of their synthetic applications. Conclusion: Comparing the Pd-catalyzed strategies and hypervalent iodine reagent mediated methodologies for the direct C–C bond formation from activation of C-H bonds, we clearly noticed that both strategies are powerful tools for directly obtaining the corresponding pruducts. On one hand, the hypervalent iodine reagents mediated reactions are normally under mild conditions and give the molecular diversity without the presence of transition-metal, while the Pd-catalyzed approaches have a broader scope for the wide synthetic applications. On the other hand, unlike Pd-catalyzed C-C bond formation reactions, the study towards hypervalent iodine reagent mediated methodology mainly focused on the stoichiometric amount of hypervalent iodine reagent, while few catalytic reactions have been reported. Meanwhile, hypervalent iodine strategy has been proved to be more efficient in intramolecular medium-ring construction, while there are less successful examples on C(sp3)–C(sp3) bond formation. In summary, we have demonstrated a number of selected approaches for the formation of a new C–C bond under the utilization of Pd-catalyzed reaction conditions or hyperiodine reagents. The direct activations of sp2 or sp3 hybridized C–H bonds are believed to be important strategies for the future molecular design as well as useful chemical entity synthesis.
5

Cheng, Huiling, Yubo Jiang, Jianhua Yang, Fen Zhao, Yaowen Liu, and Fang Luo. "Selective Diacetoxylation of Disubstituted 1,2,3-Triazoles through Palladium-Catalyzed C–H Activation." Synlett 29, no. 10 (April 12, 2018): 1373–78. http://dx.doi.org/10.1055/s-0036-1591564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A simple and efficient selective diacetoxylation of 1,4-disubstituted 1,2,3-triazoles by Pd-catalyzed C–H bond activation is described. PhI(OAc)2 was used as an acetyloxy source to convert aromatic sp2 C–H bonds into C–O bonds with high selectivity by employing a 1,2,3-triazole ring as an elegant directing group. A range of 1,2,3-triazoles bearing two acetyloxy groups can be readily synthesized by the reaction.
6

Shin, Seohyun, Dongjin Kang, Woo Hyung Jeon, and Phil Ho Lee. "Synthesis of ethoxy dibenzooxaphosphorin oxides through palladium-catalyzed C(sp2)–H activation/C–O formation." Beilstein Journal of Organic Chemistry 10 (May 23, 2014): 1220–27. http://dx.doi.org/10.3762/bjoc.10.120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We report an efficient Pd-catalyzed C(sp2)–H activation/C–O bond formation for the synthesis of ethoxy dibenzooxaphosphorin oxides from 2-(aryl)arylphosphonic acid monoethyl esters under aerobic conditions.
7

Liu, Weidong, Qingzhen Yu, Le'an Hu, Zenghua Chen, and Jianhui Huang. "Modular synthesis of dihydro-isoquinolines: palladium-catalyzed sequential C(sp2)–H and C(sp3)–H bond activation." Chemical Science 6, no. 10 (2015): 5768–72. http://dx.doi.org/10.1039/c5sc01482d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
An efficient synthesis of dihydro-isoquinolines via a Pd–catalyzed double C–H bond activation/annulation featuring a short reaction time, high atom economy and the formation of a sterically less favoured tertiary C–N bond.
8

Britton, Luke, Jamie H. Docherty, Andrew P. Dominey, and Stephen P. Thomas. "Iron-Catalysed C(sp2)-H Borylation Enabled by Carboxylate Activation." Molecules 25, no. 4 (February 18, 2020): 905. http://dx.doi.org/10.3390/molecules25040905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Arene C(sp2)-H bond borylation reactions provide rapid and efficient routes to synthetically versatile boronic esters. While iridium catalysts are well established for this reaction, the discovery and development of methods using Earth-abundant alternatives is limited to just a few examples. Applying an in situ catalyst activation method using air-stable and easily handed reagents, the iron-catalysed C(sp2)-H borylation reactions of furans and thiophenes under blue light irradiation have been developed. Key reaction intermediates have been prepared and characterised, and suggest two mechanistic pathways are in action involving both C-H metallation and the formation of an iron boryl species.
9

Geng, Cuihuan, Sujuan Zhang, Chonggang Duan, Tongxiang Lu, Rongxiu Zhu, and Chengbu Liu. "Theoretical investigation of gold-catalyzed oxidative Csp3–Csp2 bond formation via aromatic C–H activation." RSC Advances 5, no. 97 (2015): 80048–56. http://dx.doi.org/10.1039/c5ra16359e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The mechanisms of Selectfluor-mediated homogeneous Au-catalyzed intramolecular Csp3–Csp2 cross-coupling reaction involving direct aryl Csp2–H functionalization has been investigated theoretically.
10

Li, Guang-Hui, Dao-Qing Dong, Xian-Yong Yu, and Zu-Li Wang. "Direct synthesis of 8-acylated quinoline N-oxidesviapalladium-catalyzed selective C–H activation and C(sp2)–C(sp2) cleavage." New Journal of Chemistry 43, no. 4 (2019): 1667–70. http://dx.doi.org/10.1039/c8nj05374j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
An efficient method for the synthesis of 8-acylated quinoline N-oxides from the reaction of quinoline N-oxides with α-diketonesviaC–C bond cleavage was developed. A variety of quinoline N-oxides and α-diketones with different groups was well tolerated in this system.

Dissertations / Theses on the topic "C(sp2)-H bond activation":

1

Massouh, Joe. "Transition metals-catalyzed C(sp2)-H bond activation for aldehyde functionalization." Electronic Thesis or Diss., Ecole centrale de Marseille, 2022. http://www.theses.fr/2022ECDM0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La synthèse de α-cétoacide, précurseur ou analogue d’amino-acide, présente un centre d’intérêt. L’une des voies de synthèse menant à ces molécules pourrait être la fonctionnalisation directe de l’aldéhyde. L’activation de la liaison C(sp2)-H de l’aldéhyde catalysée par des complexes organométalliques est un outil puissant qui permet de synthétiser divers produits élaborés de manière relativement durable.Dans le premier chapitre de ce manuscrit, nous avons présenté les complexes organométalliques basés sur différents métaux de transition comme Rh, Co, Ru, Ni et Ir, qui sont capables d’activer sélectivement la liaison C(sp2)-H de l’aldéhyde. Les procédures rapportées impliquent des métaux de transition à faible degré d’oxydation favorisant le mécanisme d’addition oxydante, ou à haut degré d’oxydation favorisant le processus de métallation-déprotonation concertée. Cette présentation permet de montrer les avantages et les inconvénients de chaque approche et met en évidence la nouveauté de chaque concept.Dans le deuxième chapitre, selon la bibliographie, des procédures ont été étudiées pour réaliser la fonctionnalisation de la C-H liaison de l’aldéhyde avec divers réactifs, notamment le dioxyde de carbone. Divers métaux de transition à bas degré d’oxydation ont été étudiés, et la réactivité du substrat aldéhyde est restée limitée à la catalyse au Rh(I). Dans le cas des métaux de transition à haut degré d’oxydation, le complexe catalytique Rh(III) s’est avéré efficace pour accéder à une nouvelle voie de synthèse vers des imides avec de bons rendements (jusqu’à 97%) en utilisant des dioxazolones. De nombreux paramètres affectant l’activation C-H de l’aldéhyde ont été examinés et les études mécanistiques ont été étayées par des tests de marquage. Malheureusement, nous avons observé que certains systèmes catalytiques capables de réaliser une fonctionnalisation de liaison aromatique C(sp2)-H avec du dioxyde de carbone, n’étaient pas efficaces pour catalyser la carboxylation de la liaison C(sp2)-H d’aldéhydes. Le troisième chapitre contient les procédures expérimentales et la caractérisation des nouveaux produits, notamment les imides
The synthesis of α-ketoacid, precursor or analogue of amino-acid, presents a center of interest. One of the synthetic pathways leading to these molecules could be the direct functionalization of aldehyde. The C(sp2)-H bond activation of aldehyde catalyzed by organometallic complexes is a powerful tool to afford various elaborated products in a relatively sustainable manner.In the first chapter of this manuscript, we presented the organometallic complexes based on different transition metals like Rh, Co, Ru, Ni, and Ir, that are able to activate selectively the C(sp2)-H bond of aldehyde. The reported procedures involve transition metals at low oxidation state favoring the oxidative addition mechanism, or at high oxidation state favoring the concerted metalation deprotonation process. This presentation allows to display the advantages and the drawbacks of each approach and highlights the novelty in each concept.In the second chapter, according to bibliography, procedures were investigated to achieve aldehyde C-H functionalization with various reagents, notably carbon dioxide. Various transition metals at low oxidation states were studied, and the reactivity of the aldehyde substrate remained restricted to the reported examples under Rh(I)-catalysis. In the case of high oxidation state transition metals, Rh(III)-catalytic complex was found efficient to mediate new pathway to imides using dioxazolones in good yields (up to 97%). Numerous parameters affecting the C-H activation of aldehyde were screened, and the mechanistic investigations were supported by labelling tests. Unfortunately, we observed that some catalytic systems, that are able to achieve aromatic C(sp2)-H bond functionalization with carbon dioxide, were not efficient to afford the carboxylation of aldehydic C(sp2)-H bond. The third chapter disclosed the experimental procedures and the characterization of the new products, notably imides
2

Zhao, Liqin. "Palladium-catalyzed direct arylation via sp² and sp³ C-H activation of hetero(aromatics) and hydrocarbons for C-C bond formation." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S038/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Au cours de cette thèse, nous nous sommes intéressés à l'activation de liaisons sp² et sp³ C-H catalysée par le palladium pour la préparation d'(hétéro)aryl-aryles et de biaryles. Cette méthode est considérée comme attractive pour l'environnement par rapport aux méthodes classiques, tels que Suzuki, Heck, ou Negishi. Tout d'abord, nous avons décrit que la C2-arylation directe de benzothiophènes peut être effectuée par un catalyseur du palladium en l'absence de ligand phosphine avec une grande sélectivité. Nous avons également démontré qu'il est possible d'activer les positions C2 et C5 de pyrroles pour accéder en une seule étape a des 2,5-diarylpyrroles. Des 2,5-diarylpyrroles non-symétriques ont été formés par arylation séquentielle en C2 suivie par une arylation en C5. Nous avons également étudié la réactivité de polychlorobenzenes pour l'activation de liaisons C-H catalysé au palladium. Nous avons finalement étudié l'activation sp² et sp³ sélective catalysé au palladium de liaisons C-H du guaiazulene. La sélectivité de la réaction dépend du solvant et de la base : C2-arylation (KOAc en éthylbenzène), C3-arylation (KOAc dans le DMAc) et C4-Me arylation (CsOAc/K₂CO₃ dans le DMAc). Grâce à cette méthode, une liaison sp³ C-H peu réactive a été activée
During this thesis, we were interested in the sp² and sp³ C-H bond activation catalyzed by palladium catalysts for the preparation of (hetero)aryl-aryls and biaryls. This method is considered as cost effective and environmentally attractive compared to the classical couplings such as Suzuki, Heck, or Negishi. First we described the palladium-catalyzed direct C2-arylation of benzothiophene in the absence of phosphine ligand with high selectivity. We also demonstrated that it is possible to active both C2 and C5 C-H bonds for access to 2,5-diarylated compounds in one step, and also to non-symmetrically substituted 2,5-diarylpyrroles via sequential C2 arylation followed by C5 arylation. We also studied the reactivity of polychlorobenzenes via palladium-catalyzed C-H activation. We finally examined the palladium-catalysed selective sp² and sp³ C-H bond activation of guaiazulene. The selectivity depends on the solvent and base: sp² C2-arylation (KOAc in ethylbenzene), sp² C3-arylation (KOAc in DMAc) and sp³ C4-Me arylation (CsOAc/K₂CO₃ in DMAc). Through this method, a challenging sp³ C-H bond was activated
3

Jadhav, D. "Visible light photoredox catalysis in sp3 C-H activation of t-amines for C-C bond formation reaction." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2014. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/1948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Obenhuber, Andreas H. [Verfasser]. "Investigation into the chelate assisted activation of non-strained C(sp2)-C(sp2) single bonds using group 8, 9 and 10 transition metal complexes / Andreas H. Obenhuber." München : Verlag Dr. Hut, 2011. http://d-nb.info/1011441535/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sofack-Kreutzer, Julien. "Synthèses de carbocycles et d'hétérocycles à cinq chaînons par activation de liaisons c(sp3)-h non activées." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00744243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La fonctionnalisation de liaisons C-H réputées peu réactives ouvre de nouvelles perspectives en synthèse organique. La catalyse par un métal de transition comme le palladium représente une solution particulièrement efficace à ce problème. Les travaux de thèse présentés dans ce mémoire s'inscrivent dans ce contexte. Dans un premier temps, la réaction étudiée, catalysée par le palladium, a visé à étendre une méthodologie mise au point au laboratoire pour la synthèse de carbocycles et d'hétérocycles à cinq chaînons par activation intramoléculaire de liaisons C(sp3)-H à partir de chlorures d'aryles. Ces derniers sont en effet plus disponibles et moins onéreux que les bromures d'aryle correspondants. Des études d'optimisation ont été effectuées pour la mise au point d'une réaction diastéréosélective et régiosélective. Plusieurs substrats ont été synthétisés pour être ensuite placés dans les conditions optimales de la réaction d'activation C(sp3)-H, et ont conduit à une grande diversité de cycles à cinq chaînons fusionnés. Dans un deuxième temps, nos travaux ont consisté à étendre l'activation C(sp3)-H pallado-catalysée à des précurseurs non aromatiques cycliques ou acycliques. Pour des raisons d'accessibilité, nos études se sont alors portées sur la préparation de bromures vinyliques azotés pouvant conduire après activation C-H à des motifs hexahydroindoles ou pyrrolidines. De nouvelles conditions d'activation CH ont alors été trouvées pour cette famille de substrats, et ont conduit aux hétérocycles cibles de manière diastéréosélective et régiosélective. Après extension de la réaction à divers précurseurs, nous nous sommes intéressés à la synthèse d'un intermédiaire poly-fonctionnalisé permettant d'accéder aux aéruginosines, famille de produits naturels bioactifs.
6

Guyonnet, Mathieu. "Synthèse totale d’alcaloïdes de type dibenzopyrrocoline par arylation C(sp3)-H intramoléculaire." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La fonctionnalisation de liaisons carbone – hydrogène réputées peu réactives ouvre de nouvelles perspectives en synthèse organique. Une stratégie efficace consiste en l'utilisation de métaux de transition comme le palladium. L'activation C-H organométallique a fait l'objet de nombreux développements méthodologiques au cours des dernières décennies, toutefois peu d'applications de ces travaux en synthèse multi-étapes ou totale sont reportées dans la littérature. Les travaux de recherche décrits dans ce mémoire s'inscrivent dans ce contexte. Nous nous sommes intéressés à la famille des alcaloïdes de type dibenzopyrrocoline, une famille de produits naturels structurellement originaux. Au vu des travaux précédemment reportés dans la littérature, l'analyse rétrosynthétique de ces produits nous a conduits à développer dans un premier temps une séquence N-arylation / bromation / arylation C(sp3)-H intramoléculaire de lactames et analogues qui nous a permis d'accéder à diverses indolines tricycliques fusionnées. Dans un deuxième temps, la synthèse du squelette dibenzopyrrocoline a été entreprise à l'aide de la méthodologie séquentielle développée et la difficulté d'accès au précurseur d'arylation C(sp3)-H intramoléculaire a nécessité l'exploration de différentes voies synthétiques, potentiellement prometteuses. Enfin les différents travaux méthodologiques effectués ont mis à jour la faisabilité de l'arylation C(sp3)-H intramoléculaire d'anilines tertiaires, jamais reportée dans la littérature
The direct functionalization of unactivated C-H bonds represents an atom- and stepeconomical alternative to more traditional synthetic methods based on functional group interconversion. Transition-metal catalysis has recently emerged as a powerful tool to functionalize otherwise unreactive C-H bonds. Whereas a lot of methodological studies have been developed in the past decade, few applications of these methodologies in multi-step or total synthesis have been reported in the literature. In this context, we envisioned the total synthesis of dibenzopyrrocoline alkaloids, a family of structurally original natural products, by using intramolecular C(sp3)-H arylation as a key step. This work led us to first develop a N-arylation / bromination / intramolecular C(sp3)-H arylation sequence which allowed us to access diverse fused tricyclic indolines. We next investigated the application of this strategy to the synthesis of the dibenzopyrrocoline motif. The difficulty to access the C(sp3)-H arylation precursor required an exploration of different synthetic pathways, which proved to be potentially promising. Finally the different performed methodological studies showed the feasibility of the intramolecular C(sp3)-H arylation of tertiary anilines, which was never described in the literature
7

Renaudat, Alice. "Fonctionnalisation de liaisons C(sp3)-H non activées catalysées par le palladium." Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00704011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La fonctionnalisation de liaisons C-H réputées peu réactives ouvre de nouvelles perspectives en synthèse organique. Une stratégie efficace consiste en l'utilisation d'un métal de transition. Les travaux de thèse présentés dans ce mémoire s'inscrivent dans ce contexte. Dans un premier temps, la réaction étudiée, catalysée par le palladium, vise à étendre une méthodologie mise au point au laboratoire, permettant la synthèse de benzocyclobutènes par activation intramoléculaire de liaisons C(sp3)-H de groupements méthyles benzyliques, à des composés non aromatiques. Plusieurs substrats ont été synthétisés pour être ensuite placés dans les conditions de la réaction d'activation C(sp3)-H, dans le but d'induire la formation du cyclobutène ou du cyclobutane désiré. Le processus n'est pas sélectif et de nombreux produits secondaires sont obtenus par des réactions péricyliques ou par des réarrangements suite à l'ouverture du palladacycle intermédiaire. Dans un deuxième temps, nos travaux ont permis de mettre à jour une nouvelle réaction de fonctionnalisation C(sp3)-H, catalysée par le palladium permettant l'arylation d'esters en position β par un mécanisme original. Les investigations portent sur l'optimisation complète de cette réaction, la compréhension du mécanisme et le développement d'une version énantiosélective prometteuse. Le mécanisme de cette réaction, confirmé par des calculs DFT réalisés en collaboration avec C. Kefalidis et E. Clot, se rapproche formellement de celui observé en α-arylation, puisqu'il repose sur la formation d'un énolate de palladium. La stratégie mise au point permet le couplage, dans des conditions douces, d'esters simples et commerciaux avec des halogénures d'aryles contenant un groupement électronégatif en position ortho, donnant ainsi accès à des intermédiaires de synthèse intéressants tels qu'un analogue de la phénylalanine ou des composés fluorés.
8

Rousseaux, Sophie. "Palladium-Catalyzed C(sp2)-C(sp3) Bond Formation." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Palladium-catalyzed reactions for carbon-carbon bond formation have had a significant impact on the field of organic chemistry in recent decades. Illustrative is the 2010 Nobel Prize, awarded for “palladium-catalyzed cross couplings in organic synthesis”, and the numerous applications of these transformations in industrial settings. This thesis describes recent developments in C(sp2)-C(sp3) bond formation, focusing on alkane arylation reactions and arylative dearomatization transformations. In the first part, our contributions to the development of intramolecular C(sp3)-H arylation reactions from aryl chlorides are described (Chapter 2). The use of catalytic quantities of pivalic acid was found to be crucial to observe the desired reactivity. The reactions are highly chemoselective for arylation at primary aliphatic C-H bonds. Theoretical calculations revealed that C-H bond cleavage is facilitated by the formation of an agostic interaction between the palladium centre and a geminal C-H bond. In the following section, the development of an alkane arylation reaction adjacent to amides and sulfonamides is presented (Chapter 3). The mechanism of C(sp3)-H bond cleavage in alkane arylation reactions is also addressed through an in-depth experimental and theoretical mechanistic study. The isolation and characterization of an intermediate in the catalytic cycle, the evaluation of the roles of both carbonate and pivalate bases in reaction mechanism as well as kinetic studies are reported. Our serendipitous discovery of an arylation reaction at cyclopropane methylene C-H bonds is discussed in Chapter 4. Reaction conditions for the conversion of cyclopropylanilines to quinolines/tetrahydroquinolines via one-pot palladium(0)-catalyzed C(sp3)-H arylation with subsequent oxidation/reduction are described. Initial studies are also presented, which suggest that this transformation is mechanistically unique from other Pd catalyzed cyclopropane ring-opening reactions. Preliminary investigations towards the development of an asymmetric alkane arylation reaction are highlighted in Chapter 5. Both chiral carboxylic acid additives and phosphine ligands have been examined in this context. While high yields and enantiomeric excesses were never observed, encouraging results have been obtained and are supported by recent reports from other research groups. Finally, in part two, the use of Pd(0)-catalysis for the intramolecular arylative dearomatization of phenols is presented (Chapter 7). These reactions generate spirocyclohexadienones bearing all-carbon quaternary centres in good to excellent yields. The nature of the base, although not well understood, appears to be crucial for this transformation. Preliminary results in the development of an enantioselective variant of this transformation demonstrate the influence of catalyst activation on levels of enantiomeric excess.
9

Torkelson, Jeffrey Robert. "C-H bond activation and C-C bond formation at adjacent metals." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ34848.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vastine, Benjamin Alan. "Understanding mechanisms for C-H bond activation." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2679.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "C(sp2)-H bond activation":

1

Dixneuf, Pierre H., and Henri Doucet, eds. C-H Bond Activation and Catalytic Functionalization II. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29319-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dixneuf, Pierre H., and Henri Doucet, eds. C-H Bond Activation and Catalytic Functionalization I. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24630-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Matsumoto, Arimasa. Iron-Catalyzed Synthesis of Fused Aromatic Compounds via C–H Bond Activation. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54928-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Jie Jack. C-H Bond Activation in Organic Synthesis. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Jie Jack. C-H Bond Activation in Organic Synthesis. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Jie Jack. C-H Bond Activation in Organic Synthesis. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Jie Jack. C-H Bond Activation in Organic Synthesis. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dixneuf, Pierre H., and Henri Doucet. C-H Bond Activation and Catalytic Functionalization II. Springer London, Limited, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dixneuf, Pierre H., and Henri Doucet. C-H Bond Activation and Catalytic Functionalization I. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dixneuf, Pierre H., and Henri Doucet. C-H Bond Activation and Catalytic Functionalization II. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "C(sp2)-H bond activation":

1

Kakiuchi, Fumitoshi, and Naoto Chatani. "Ruthenium-Catalyzed Reactions via sp CH, sp2 CH, sp3 CH, and CHalogen Bond Activations." In Ruthenium in Organic Synthesis, 219–55. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603832.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shang, Rui. "β-Arylation of Carboxamides Via Iron-Catalyzed C(sp3)–H Bond Activation." In Springer Theses, 175–96. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3193-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yoo, Woo-Jin, and Chao-Jun Li. "Cross-Dehydrogenative Coupling Reactions of sp3-Hybridized C–H Bonds." In C-H Activation, 281–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bouffard, Jean, and Kenichiro Itami. "Rhodium-Catalyzed C–H Bond Arylation of Arenes." In C-H Activation, 231–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Guosheng, and Yichen Wu. "Palladium-Catalyzed Allylic C–H Bond Functionalization of Olefins." In C-H Activation, 195–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ackermann, Lutz, and Rubén Vicente. "Ruthenium-Catalyzed Direct Arylations Through C–H Bond Cleavages." In C-H Activation, 211–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

You, Shu-Li, and Ji-Bao Xia. "Palladium-Catalyzed Aryl–Aryl Bond Formation Through Double C–H Activation." In C-H Activation, 165–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Beck, Elizabeth M., and Matthew J. Gaunt. "Pd-Catalyzed C–H Bond Functionalization on the Indole and Pyrrole Nucleus." In C-H Activation, 85–121. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Bin, and Pierre H. Dixneuf. "Ruthenium(II)-Catalysed sp2 C–H Bond Functionalization by C–C Bond Formation." In Ruthenium in Catalysis, 119–93. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/3418_2014_85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ilies, Laurean, and Eiichi Nakamura. "Iron-Catalyzed C–H Bond Activation." In Topics in Organometallic Chemistry, 1–18. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/3418_2015_129.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "C(sp2)-H bond activation":

1

Wang, Xueqiang, Joan G. Donaire, and Ruben Martin. "Metal-Free sp2 and sp3 C-H Functionalization/C-O Bond Forming Reaction." In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013815132216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ulin-Avila, Erick, and Akhilesh Kumar Mishra. "Graphene-based Photonic C-H bond activation." In Frontiers in Optics. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/fio.2021.jtu1a.55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nyambo, Silver, Dong-Sheng Yang, and Yuchen Zhang. "PROBING SELECTIVE BOND ACTIVATION IN ALKYLAMINES: LANTHANUM-MEDIATED C-H AND N-H BOND ACTIVATION STUDIED BY MATI SPECTROSCOPY." In 73rd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2018. http://dx.doi.org/10.15278/isms.2018.fb01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lian, T., S. E. Bromberg, H. Yang, M. Asplund, R. G. Bergman, and C. B. Harris. "Femtosecond IR Studies of Alkane C-H Bond Activation by Organometallic Compounds." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.fe.27a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The mechanism of alkane C-H bond activation by transition metal complexes such as CpM(CO)2 (M=Rh, Ir) has been intensely studied because it represents a first step in a catalytic process using unreactive hydrocarbons.[1] The bond activation reaction starts with the formation of monocarbonyl intermediates such as CpRh(CO). These species have been detected in the gas phase[2] and in liquefied rare Kr and Xe[3] by µs time resolved IR spectroscopy. Unfortunately, the subsequent oxidative insertion of CpRh(CO) into the C-H bond is not well understood due to its rapid rate and low quantum yield (~1%) for formation of the C-H activated product. These properties have hindered previous femtosecond and picosecond time-resolved studies of activation reaction in room temperature alkane solution. [4]
5

Kim, Jong, and Dong-Sheng Yang. "YTTRIUM-ASSISTED C-H AND C-C BOND ACTIVATION OF ETHYLENE PROBED BY MASS-ANALYZED THRESHOLD IONIZATION SPECTROSCOPY." In 71st International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2016. http://dx.doi.org/10.15278/isms.2016.ri06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, Jong, and Dong-Sheng Yang. "SPECTROSCOPIC IDENTIFICATION OF Y(C4H6) ISOMERS FORMED BY YTTRIUM-MEDIATED C-H BOND ACTIVATION OF BUTENES." In 71st International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2016. http://dx.doi.org/10.15278/isms.2016.mh09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jay, Raphael M., Ambar Banerjee, Torsten Leitner, Robert Stefanuik, Ru-Pan Wang, Jessica Harich, Emma Beale, et al. "From Femtosecond Excited-State and Dissociation Dynamics to Nanosecond Reaction Kinetics: Following C-H Bond Activation with X-rays." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.tu1a.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Using ultrafast X-ray absorption spectroscopy, we observe how a rhodium carbonyl catalyst is formed on femtosecond timescales and reveal the decisive orbital interactions which facilitate the efficient cleavage of an alkane C-H bond from solution.
8

Atanasković, Ana, Thomas Eichhorn, Dejan Milenković, Dušan Dimić, Goran Kaluđerović, and Jasmina Dimitrić Marković. "Synthesis, spectroscopic, and theoretical analysis of Ru(II)-phenylhydrazine complex." In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.395a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In recent decades, metal-based chemotherapeutics have attracted considerable attention and excitement within the oncology research community, with ruthenium(II) complexes emerging as a particularly promising class of anticancer agents. In this study, the synthesis of a new ruthenium complex was performed, followed by its structural characterization using NMR and IC spectroscopy. The compound’s infrared spectrum reveals characteristic bands corresponding to N-H and C-H stretching vibrations from sp2 and sp3 hybridized carbon atoms, vibrations of aromatic rings and additional vibrations related to CH3, C-N, and chloride species at various wavenumbers. The 1H NMR spectrum of the Ru140 complex reveals distinct peaks corresponding to different atomic environments, including protons attached to sp3 hybridized C-atoms, nitrogen atoms, and protons involved in aromatic rings, as well as signals from deuterated chloroform and water. The 13C NMR spectrum displays peaks for saturated carbon atoms in methyl and isopropyl groups at lower, and aromatic carbons at higher chemical shifts. The structure of the complex was optimized at B3LYP/6-31+G(d,p)(H,C,N,Cl)/LanL2DZ level of theory and intramolecular interactions were analyzed through the Natural Bond Orbital approach.
9

Khan, Shahriar, and Evangelos Miliordos. "ELECTRONIC STRUCTURE OF THE GROUND AND EXCITED STATES OF RhO2+: ITS ROLE IN THE C-H BOND ACTIVATION OF METHANE." In 2020 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2020. http://dx.doi.org/10.15278/isms.2020.fd05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khan, Shahriar, and Evangelos Miliordos. "ELECTRONIC STRUCTURE OF THE GROUND AND EXCITED STATES OF RhO<sup>2+</sup>: ITS ROLE IN THE C-H BOND ACTIVATION OF METHANE." In 2021 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2021. http://dx.doi.org/10.15278/isms.2021.rl03.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "C(sp2)-H bond activation":

1

Lees, Alistair J. Photochemistry of Intermolecular C-H Bond Activation Reactions. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/761218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Asplund, M. C. Time resolved infrared studies of C-H bond activation by organometallics. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/290889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lees, A. J. [Photochemistry of intermolecular C-H bond activation reactions]. Progress report, [September 15, 1994--March 15, 1995]. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/35271.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography