To see the other types of publications on this topic, follow the link: C-S bond formation.

Journal articles on the topic 'C-S bond formation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'C-S bond formation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Xu, Yulong, Xiaonan Shi, and Lipeng Wu. "tBuOK-triggered bond formation reactions." RSC Advances 9, no. 41 (2019): 24025–29. http://dx.doi.org/10.1039/c9ra04242c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gao, Jian, Jie Feng, and Ding Du. "Shining Light on C−S Bonds: Recent Advances in C−C Bond Formation Reactions via C−S Bond Cleavage under Photoredox Catalysis." Chemistry – An Asian Journal 15, no. 22 (October 14, 2020): 3637–59. http://dx.doi.org/10.1002/asia.202000905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Modha, Sachin G., Vaibhav P. Mehta, and Erik V. Van der Eycken. "Transition metal-catalyzed C–C bond formation via C–S bond cleavage: an overview." Chemical Society Reviews 42, no. 12 (2013): 5042. http://dx.doi.org/10.1039/c3cs60041f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Fengli, Xuemin Liu, Xinzhi Chen, Chao Qian, and Xin Ge. "Progress in the Formation of C-S Bond." Chinese Journal of Organic Chemistry 37, no. 9 (2017): 2211. http://dx.doi.org/10.6023/cjoc201703038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jean, Mickaël, Jacques Renault, Pierre van de Weghe, and Naoki Asao. "Gold-catalyzed C–S bond formation from thiols." Tetrahedron Letters 51, no. 2 (January 2010): 378–81. http://dx.doi.org/10.1016/j.tetlet.2009.11.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Choudhuri, Khokan, Milan Pramanik, and Prasenjit Mal. "Noncovalent Interactions in C–S Bond Formation Reactions." Journal of Organic Chemistry 85, no. 19 (August 25, 2020): 11997–2011. http://dx.doi.org/10.1021/acs.joc.0c01534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Haibo, Lu Wang, Jinsai Shang, Xing Li, Haoyuan Wang, Jie Gui, and Aiwen Lei. "Fe-catalysed oxidative C–H functionalization/C–S bond formation." Chem. Commun. 48, no. 1 (2012): 76–78. http://dx.doi.org/10.1039/c1cc16184a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stenfors, Brock A., Richard J. Staples, Shannon M. Biros, and Felix N. Ngassa. "Crystal structure of 1-[(4-methylbenzene)sulfonyl]pyrrolidine." Acta Crystallographica Section E Crystallographic Communications 76, no. 3 (February 28, 2020): 452–55. http://dx.doi.org/10.1107/s205698902000208x.

Full text
Abstract:
The molecular structure of the title compound, C11H15NO2S, features a sulfonamide group with S=O bond lengths of 1.4357 (16) and 1.4349 (16) Å, an S—N bond length of 1.625 (2) Å, and an S—C bond length of 1.770 (2) Å. When viewing the molecule down the S—N bond, both N—C bonds of the pyrrolidine ring are oriented gauche to the S—C bond with torsion angles of −65.6 (2)° and 76.2 (2)°. The crystal structure features both intra- and intermolecular C—H...O hydrogen bonds, as well as intermolecular C—H...π and π–π interactions, leading to the formation of sheets parallel to the ac plane.
APA, Harvard, Vancouver, ISO, and other styles
9

Shen, Chao, Pengfei Zhang, Qiang Sun, Shiqiang Bai, T. S. Andy Hor, and Xiaogang Liu. "Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation." Chemical Society Reviews 44, no. 1 (2015): 291–314. http://dx.doi.org/10.1039/c4cs00239c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saidalimu, Ibrayim, Shugo Suzuki, Etsuko Tokunaga, and Norio Shibata. "Successive C–C bond cleavage, fluorination, trifluoromethylthio- and pentafluorophenylthiolation under metal-free conditions to provide compounds with dual fluoro-functionalization." Chemical Science 7, no. 3 (2016): 2106–10. http://dx.doi.org/10.1039/c5sc04208a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lv, Zongchao, Huamin Wang, Zhicong Quan, Yuan Gao, and Aiwen Lei. "Dioxygen-triggered oxidative cleavage of the C–S bond towards C–N bond formation." Chemical Communications 55, no. 82 (2019): 12332–35. http://dx.doi.org/10.1039/c9cc05707b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ren, Rongguo, Zhen Wu, and Chen Zhu. "Manganese-catalyzed regiospecific sp3C–S bond formation through C–C bond cleavage of cyclobutanols." Chemical Communications 52, no. 52 (2016): 8160–63. http://dx.doi.org/10.1039/c6cc01843b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gogoi, Prasanta, Bappi Paul, Sukanya Hazarika, and Pranjit Barman. "Gold nanoparticle catalyzed intramolecular C–S bond formation/C–H bond functionalization/cyclization cascades." RSC Advances 5, no. 71 (2015): 57433–36. http://dx.doi.org/10.1039/c5ra10885c.

Full text
Abstract:
An efficient synthesis of 2-(N-aryl)aminobenzo[d]-1,3-thiazoles via intramolecular C–S bond formation/C–H bond functionalization utilizing an unusual cocatalytic Au-NPs/KMnO4 system under an oxygen atmosphere at 80 °C is presented.
APA, Harvard, Vancouver, ISO, and other styles
14

Morita, Iori, Takahiro Mori, Takaaki Mitsuhashi, Shotaro Hoshino, Yoshimasa Taniguchi, Takashi Kikuchi, Kei Nagae, et al. "Exploiting a C–N Bond Forming Cytochrome P450 Monooxygenase for C–S Bond Formation." Angewandte Chemie 132, no. 10 (January 23, 2020): 4017–22. http://dx.doi.org/10.1002/ange.201916269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Morita, Iori, Takahiro Mori, Takaaki Mitsuhashi, Shotaro Hoshino, Yoshimasa Taniguchi, Takashi Kikuchi, Kei Nagae, et al. "Exploiting a C–N Bond Forming Cytochrome P450 Monooxygenase for C–S Bond Formation." Angewandte Chemie International Edition 59, no. 10 (January 23, 2020): 3988–93. http://dx.doi.org/10.1002/anie.201916269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wang, Min, Zhoujie Xie, Shoubin Tang, Ee Ling Chang, Yue Tang, Zhengyan Guo, Yinglu Cui, Bian Wu, Tao Ye, and Yihua Chen. "Reductase of Mutanobactin Synthetase Triggers Sequential C–C Macrocyclization, C–S Bond Formation, and C–C Bond Cleavage." Organic Letters 22, no. 3 (January 9, 2020): 960–64. http://dx.doi.org/10.1021/acs.orglett.9b04501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Modha, Sachin G., Vaibhav P. Mehta, and Erik V. Van der Eycken. "ChemInform Abstract: Transition Metal Catalyzed C-C Bond Formation via C-S Bond Cleavage: An Overview." ChemInform 44, no. 36 (August 15, 2013): no. http://dx.doi.org/10.1002/chin.201336215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yang, Daoshan, Kelu Yan, Wei Wei, Laijin Tian, Qinghe Li, Jinmao You, and Hua Wang. "Metal-free n-Et4NBr-catalyzed radical cyclization of disulfides and alkynes leading to benzothiophenes under mild conditions." RSC Adv. 4, no. 89 (2014): 48547–53. http://dx.doi.org/10.1039/c4ra08260e.

Full text
Abstract:
The title reaction involves metal free TEAB-catalyzed S–S bond cleavage, C–S bond formation and C–C bond formation; it uses readily available disulfides and alkynes as substrates, and environmentally friendly TEAB as catalyst to synthesize useful benzothiophene derivatives.
APA, Harvard, Vancouver, ISO, and other styles
19

Allen, F. H., C. M. Bird, R. S. Rowland, and P. R. Raithby. "Resonance-Induced Hydrogen Bonding at Sulfur Acceptors in R 1 R 2C=S and R 1CS2 − Systems." Acta Crystallographica Section B Structural Science 53, no. 4 (August 1, 1997): 680–95. http://dx.doi.org/10.1107/s0108768197002656.

Full text
Abstract:
The hydrogen-bond acceptor ability of sulfur in C=S systems has been investigated using crystallographic data retrieved from the Cambridge Structural Database and via ab initio molecular orbital calculations. The R1R2C=S bond lengths span a wide range, from 1.58 Å in pure thiones (R 1 = R 2 = Csp 3) to 1.75 Å in thioureido species (R 1 = R 2 = N) and in dithioates —CS^{-}_2. The frequency of hydrogen-bond formation at =S increases from 4.8% for C=S > 1.63 Å to more than 70% for C=S > 1.70 Å in uncharged species. The effective electronegativity of S is increased by conjugative interactions between C=S and the lone pairs of one or more N substituents (R 1 R 2): a clear example of resonance-induced hydrogen bonding. More than 80% of S in —CS^{-}_2 accept hydrogen bonds. C=S...H—N,O bonds are shown to be significantly weaker than their C=O...H—N,O analogues by (a) comparing mean S...H and O...H distances (taking account of the differing non-bonded sizes of S and O and using neutron-normalized H positions) and (b) comparing frequencies of hydrogen-bond formation in `competitive' environments, i.e. in structures containing both C=S and C=O acceptors. The directional properties and hydrogen-bond coordination numbers of C=S and C=O acceptors have also been compared. There is evidence for lone-pair directionality in both systems, but =S is more likely (17% of cases) than =O (4%) to accept more than two hydrogen bonds. Ab initio calculations of residual atomic charges and electrostatic potentials reinforce the crystallographic observations.
APA, Harvard, Vancouver, ISO, and other styles
20

Liu, Zijian, Kunbing Ouyang, and Nianfa Yang. "The thiolation of pentafluorobenzene with disulfides by C–H, C–F bond activation and C–S bond formation." Organic & Biomolecular Chemistry 16, no. 6 (2018): 988–92. http://dx.doi.org/10.1039/c7ob02836a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sundaravelu, Nallappan, Subramani Sangeetha, and Govindasamy Sekar. "Metal-catalyzed C–S bond formation using sulfur surrogates." Organic & Biomolecular Chemistry 19, no. 7 (2021): 1459–82. http://dx.doi.org/10.1039/d0ob02320e.

Full text
Abstract:
This review presents the metal-catalyzed C–S bond-formation reaction to access organosulfur compounds using various sulfur surrogates with an extended discussion on the reaction mechanism, regioselectivity of product and pharmaceutical application.
APA, Harvard, Vancouver, ISO, and other styles
22

Huang, Zhiliang, Dongchao Zhang, Xiaotian Qi, Zhiyuan Yan, Mengfan Wang, Haiming Yan, and Aiwen Lei. "Radical–Radical Cross-Coupling for C–S Bond Formation." Organic Letters 18, no. 10 (May 6, 2016): 2351–54. http://dx.doi.org/10.1021/acs.orglett.6b00764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Li, Jianxiao, Shaorong Yang, Wanqing Wu, and Huanfeng Jiang. "Recent developments in palladium-catalyzed C–S bond formation." Organic Chemistry Frontiers 7, no. 11 (2020): 1395–417. http://dx.doi.org/10.1039/d0qo00377h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bahekar, Sushilkumar S., Aniket P. Sarkate, Vijay M. Wadhai, Pravin S. Wakte, and Devanand B. Shinde. "CuI catalyzed C S bond formation by using nitroarenes." Catalysis Communications 41 (November 2013): 123–25. http://dx.doi.org/10.1016/j.catcom.2013.07.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dong, Dao-Qing, Shuang-Hong Hao, Dao-Shan Yang, Li-Xia Li, and Zu-Li Wang. "Sulfenylation of C-H Bonds for C-S Bond Formation under Metal-Free Conditions." European Journal of Organic Chemistry 2017, no. 45 (August 28, 2017): 6576–92. http://dx.doi.org/10.1002/ejoc.201700853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhao, Jian-Nan, Muzaffar Kayumov, Dong-Yu Wang, and Ao Zhang. "Transition-Metal-Free Aryl–Heteroatom Bond Formation via C–S Bond Cleavage." Organic Letters 21, no. 18 (August 29, 2019): 7303–6. http://dx.doi.org/10.1021/acs.orglett.9b02584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sun, Kai, Yunhe Lv, Zhonghong Zhu, Liping Zhang, Hankui Wu, Lin Liu, Yongqing Jiang, Beibei Xiao, and Xin Wang. "Oxidative C–S bond cleavage reaction of DMSO for C–N and C–C bond formation: new Mannich-type reaction for β-amino ketones." RSC Advances 5, no. 4 (2015): 3094–97. http://dx.doi.org/10.1039/c4ra14249g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lanzi, Matteo, Jérémy Merad, Dina V. Boyarskaya, Giovanni Maestri, Clémence Allain, and Géraldine Masson. "Visible-Light-Triggered C–C and C–N Bond Formation by C–S Bond Cleavage of Benzylic Thioethers." Organic Letters 20, no. 17 (August 16, 2018): 5247–50. http://dx.doi.org/10.1021/acs.orglett.8b02196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kaur, Navjeet. "Cobalt-catalyzed C–N, C–O, C–S bond formation: synthesis of heterocycles." Journal of the Iranian Chemical Society 16, no. 12 (July 6, 2019): 2525–53. http://dx.doi.org/10.1007/s13738-019-01731-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Rui, Huaiwei Ding, Xiangling Pu, Zhiping Qian, and Yan Xiao. "Recent Advances in the Synthesis of Sulfides, Sulfoxides and Sulfones via C-S Bond Construction from Non-Halide Substrates." Catalysts 10, no. 11 (November 17, 2020): 1339. http://dx.doi.org/10.3390/catal10111339.

Full text
Abstract:
The construction of a C-S bond is a powerful strategy for the synthesis of sulfur containing compounds including sulfides, sulfoxides, and sulfones. Recent methodological developments have revealed lots of novel protocols for C-S bond formation, providing easy access to sulfur containing compounds. Unlike traditional Ullmann typed C-S coupling reaction, the recently developed reactions frequently use non-halide compounds, such as diazo compounds and simple arenes/alkanes instead of aryl halides as substrates. On the other hand, novel C-S coupling reaction pathways involving thiyl radicals have emerged as an important strategy to construct C-S bonds. In this review, we focus on the recent advances on the synthesis of sulfides, sulfoxides, and sulfones from non-halide substrates involving C-S bond construction.
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, Haibo, Lu Wang, Jinsai Shang, Xing Li, Haoyuan Wang, Jie Gui, and Aiwen Lei. "ChemInform Abstract: Fe-Catalyzed Oxidative C-H Functionalization/C-S Bond Formation." ChemInform 43, no. 16 (March 22, 2012): no. http://dx.doi.org/10.1002/chin.201216130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ngo, Thi-Thuy-Duong, Thi-Huong Nguyen, Chloée Bournaud, Régis Guillot, Martial Toffano, and Giang Vo-Thanh. "Phosphine-Thiourea-Organocatalyzed Asymmetric C−N and C−S Bond Formation Reactions." Asian Journal of Organic Chemistry 5, no. 7 (May 30, 2016): 895–99. http://dx.doi.org/10.1002/ajoc.201600212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Song, Chunlan, Kun Liu, Xin Dong, Chien-Wei Chiang, and Aiwen Lei. "Recent Advances in Electrochemical Oxidative Cross-Coupling for the Construction of C–S Bonds." Synlett 30, no. 10 (April 15, 2019): 1149–63. http://dx.doi.org/10.1055/s-0037-1611753.

Full text
Abstract:
With the importance of sulfur-containing organic molecules, developing methodologies toward C–S bond formation is a long-standing goal, and, to date, considerable progress has been made in this area. Recent electrochemical oxidative cross-coupling reactions for C–S bond formation allow the synthesis of sulfur-containing molecules from more effective synthetic routes with high atom economy under mild conditions. In this review, we highlight the vital progress in this novel research arena with an emphasis on the synthetic and mechanistic aspects of the organic electrochemistry reactions.1 Introduction2 Electrochemical Oxidative Sulfonylation for the Formation of C–S Bonds2.1 Applications of Sulfinic Acid Derivatives for the Formation of C–S Bonds2.2 Applications of Sulfonylhydrazide Derivatives for the Formation of C–S Bonds3 Electrochemical Oxidative Thiolation for the Formation of C–S Bonds3.1 Applications of Disulfide Derivatives for the Formation of C–S Bonds3.2 Applications of Thiophenol Derivatives for the Formation of C–S Bonds4 Electrochemical Oxidative Thiocyanation for the Formation of C–S Bonds5 Electrochemical Oxidative Cyclization for the Formation of C–S Bonds6 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
34

Zhao, Binlin, Torben Rogge, Lutz Ackermann, and Zhuangzhi Shi. "Metal-catalysed C–Het (F, O, S, N) and C–C bond arylation." Chemical Society Reviews 50, no. 16 (2021): 8903–53. http://dx.doi.org/10.1039/c9cs00571d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Valentini, Federica, Oriana Piermatti, and Luigi Vaccaro. "Metal and Metal Oxide Nanoparticles Catalyzed C–H Activation for C–O and C–X (X = Halogen, B, P, S, Se) Bond Formation." Catalysts 13, no. 1 (December 22, 2022): 16. http://dx.doi.org/10.3390/catal13010016.

Full text
Abstract:
The direct functionalization of an inactivated C–H bond has become an attractive approach to evolve toward step-economy, atom-efficient and environmentally sustainable processes. In this regard, the design and preparation of highly active metal nanoparticles as efficient catalysts for C–H bond activation under mild reaction conditions still continue to be investigated. This review focuses on the functionalization of un-activated C(sp3)–H, C(sp2)–H and C(sp)–H bonds exploiting metal and metal oxide nanoparticles C–H activation for C–O and C–X (X = Halogen, B, P, S, Se) bond formation, resulting in more sustainable access to industrial production.
APA, Harvard, Vancouver, ISO, and other styles
36

Arisawa, Mieko, Kenji Fujimoto, Satoshi Morinaka, and Masahiko Yamaguchi. "Equilibrating C−S Bond Formation by C−H and S−S Bond Metathesis. Rhodium-Catalyzed Alkylthiolation Reaction of 1-Alkynes with Disulfides." Journal of the American Chemical Society 127, no. 35 (September 2005): 12226–27. http://dx.doi.org/10.1021/ja0527121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gogoi, Anupal, Srimanta Guin, Suresh Rajamanickam, Saroj Kumar Rout, and Bhisma K. Patel. "Synthesis of 1,2,4-Triazoles via Oxidative Heterocyclization: Selective C–N Bond Over C–S Bond Formation." Journal of Organic Chemistry 80, no. 18 (September 9, 2015): 9016–27. http://dx.doi.org/10.1021/acs.joc.5b00956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shen, Chao, Pengfei Zhang, Qiang Sun, Shiqiang Bai, T. S. Andy Hor, and Xiaogang Liu. "ChemInform Abstract: Recent Advances in C-S Bond Formation via C-H Bond Functionalization and Decarboxylation." ChemInform 46, no. 15 (March 26, 2015): no. http://dx.doi.org/10.1002/chin.201515296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gogoi, Prasanta, Bappi Paul, Sukanya Hazarika, and Pranjit Barman. "ChemInform Abstract: Gold Nanoparticle Catalyzed Intramolecular C-S Bond Formation/C-H Bond Functionalization/Cyclization Cascades." ChemInform 46, no. 47 (November 2015): no. http://dx.doi.org/10.1002/chin.201547144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Shin, Jeongcheol, Jiseon Lee, Jong-Min Suh, and Kiyoung Park. "Ligand-field transition-induced C–S bond formation from nickelacycles." Chemical Science 12, no. 48 (2021): 15908–15. http://dx.doi.org/10.1039/d1sc05113j.

Full text
Abstract:
d–d excitations can accelerate C–S reductive eliminations of nickelacycles via intersystem crossing to a repulsive 3(C-to-Ni charge transfer) state inducing Ni–C bond homolysis. This homolytic photoreactivity is common for organonickel(ii) complexes.
APA, Harvard, Vancouver, ISO, and other styles
41

Jegelka, Markus, and Bernd Plietker. "Selective C−S Bond Formation via Fe-Catalyzed Allylic Substitution." Organic Letters 11, no. 15 (August 6, 2009): 3462–65. http://dx.doi.org/10.1021/ol901297s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Mitsudo, Koichi, Toki Yonezawa, Ren Matsuo, and Seiji Suga. "Electrochemical Intramolecular C–S Bond Formation Leading to Thienoacene Derivatives." ECS Meeting Abstracts MA2020-01, no. 43 (May 1, 2020): 2507. http://dx.doi.org/10.1149/ma2020-01432507mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Chen, Lian, Ali Noory Fajer, Zhanibek Yessimbekov, Mosstafa Kazemi, and Masoud Mohammadi. "Diaryl sulfides synthesis: copper catalysts in C–S bond formation." Journal of Sulfur Chemistry 40, no. 4 (March 24, 2019): 451–68. http://dx.doi.org/10.1080/17415993.2019.1596268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Seleznev, A. A., D. P. Radchenko, S. I. Golubova, S. A. Safronov, and V. A. Navrotskiy. "SULFONYL CHLORIDES - NOVEL SOURCE OF FREE RADICALS." IZVESTIA VOLGOGRAD STATE TECHNICAL UNIVERSITY, no. 12(259) (December 21, 2021): 103–14. http://dx.doi.org/10.35211/1990-5297-2021-12-259-103-114.

Full text
Abstract:
Novel free radicals source based on sulfonyl chlorides is discovered. The radical mechanism is confirmed by 2,3-dimethyl-2,3-diphenylbutane formation under chlorosulfonated polyethylene heating in the isopropylbenzene solution. Concerted homolytic C-S and S-Cl bond scission of chlorosulfonated polyethylene thermal degradation mechanism proved by kinetic analysis. The proof of the two bonds simultaneous breaking is provided by the threefold activation energy reduction (83 kJ/mol) in comparison to the C-S and C-Cl bond dissociation energy (280 and 286 kJ/mol respectively), the 6 orders lower preexponential factor (2,46 ∙ 10 s) in Arrhenius equation in comparison to one bond cleavage (≈10-10 s) as well as the strongly negative activation entropy value (-134 J/mol∙K).
APA, Harvard, Vancouver, ISO, and other styles
45

Allen, F. H., C. M. Bird, R. S. Rowland, and P. R. Raithby. "Hydrogen-Bond Acceptor and Donor Properties of Divalent Sulfur (Y-S-Z and R-S-H)." Acta Crystallographica Section B Structural Science 53, no. 4 (August 1, 1997): 696–701. http://dx.doi.org/10.1107/s0108768197002644.

Full text
Abstract:
The hydrogen-bond acceptor ability of divalent sulfur in Y—S—Z systems, Y, Z= C, N, O or S, and the donor ability of thiol S—H have been studied using crystallographic data retrieved from the Cambridge Structural Database. Of 1811 Y—S—Z substructures that co-occur with N—H or O—H donors, only 86 (4.75%) form S...H—N,O bonds within S...H < 2.9 Å. In dialkylthioethers, the frequency of S...H bond formation is 6.24%, but drops below 3% when the alkyl groups are successively replaced by Csp 2 centres. This parallels an increasing \delta-positivity of S as calculated using ab initio methods. A similar frequency trend is observed for O...H—N,O bond formation by analogous oxyethers. Mean intermolecular >S...H distances for O—H [2.67 (3) Å] and N—H [2.75 (2) Å] donors (with H positions normalized to neutron values) are ca 0.25 Å longer than in C=S...H—N,O systems, indicative of very weak hydrogen bonding to >S. Intramolecular >S...H are slightly more frequent (8.56%), with S...H slightly shorter than for the intermolecular case. In contrast, 26 (70.3%) out of 37 S—H donors that co-occur with suitable acceptors form X...H—S bonds. The C=O...H—S system is predominant with a mean O...H distance of 2.34 (4) Å, considerably longer (weaker) than in C=O...H—O systems.
APA, Harvard, Vancouver, ISO, and other styles
46

Bhunia, Subhajit, Govind Goroba Pawar, S. Vijay Kumar, Yongwen Jiang, and Dawei Ma. "Selected Copper-Based Reactions for C−N, C−O, C−S, and C−C Bond Formation." Angewandte Chemie International Edition 56, no. 51 (November 15, 2017): 16136–79. http://dx.doi.org/10.1002/anie.201701690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Anand, Devireddy, Yuwei He, Linyong Li, and Lei Zhou. "A photocatalytic sp3 C–S, C–Se and C–B bond formation through C–C bond cleavage of cycloketone oxime esters." Organic & Biomolecular Chemistry 17, no. 3 (2019): 533–40. http://dx.doi.org/10.1039/c8ob02987c.

Full text
Abstract:
The photocatalytic sulfuration, selenylation and borylation of cycloketone oxime esters through iminyl radical-triggered C–C bond cleavage were described. The reactions provide a unified approach to alkyl sulfur, selenium and boron compounds tethered to a synthetically useful nitrile group.
APA, Harvard, Vancouver, ISO, and other styles
48

Flood, Dillon T., Xuejing Zhang, Xiang Fu, Zhenxiang Zhao, Shota Asai, Brittany B. Sanchez, Emily J. Sturgell, et al. "RASS‐Enabled S/P−C and S−N Bond Formation for DEL Synthesis." Angewandte Chemie 132, no. 19 (March 11, 2020): 7447–53. http://dx.doi.org/10.1002/ange.201915493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Flood, Dillon T., Xuejing Zhang, Xiang Fu, Zhenxiang Zhao, Shota Asai, Brittany B. Sanchez, Emily J. Sturgell, et al. "RASS‐Enabled S/P−C and S−N Bond Formation for DEL Synthesis." Angewandte Chemie International Edition 59, no. 19 (March 11, 2020): 7377–83. http://dx.doi.org/10.1002/anie.201915493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ngah, Nurziana, Nor Azanita Mohamed, Bohari M. Yamin, and Hamizah Mohd Zaki. "3-[3-(2-Fluorobenzoyl)thioureido]propionic acid." Acta Crystallographica Section E Structure Reports Online 70, no. 6 (May 24, 2014): o705. http://dx.doi.org/10.1107/s1600536814011404.

Full text
Abstract:
In the title compound, C10H11FN3O3S, the 2-fluorobenzoyl and proponic acid groups maintain atrans–cisconformation with respect to the thiono C=S bond across their C—N bonds. The propionic acid group adopts ananticonformation about the C—C bond, with an N—C—C—C torsion angle of 173.8 (2)°. The amino groups are involved in the formation of intramolecular N—H...O and N—H...F hydrogen bonds. In the crystal, pairs of O—H...O hydrogen bonds link molecules into inversion dimers.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography